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1. CONVERGENCE OF THE TIME DERIVATIVE OF THE
MUTUAL COHERENCE FUNCTION

The passive measurement of the Green’s function is based on
the fundamental property that the time derivative of the corre-
lation function should converge for infinite integration times to-
wards the difference between the causal and anti-causal Green’s
functions [see Eq.1 of the accompanying paper]. In practice, this
integration time remains fixed to T = 750 ms in the experiments
shown in the accompanying paper. Hence the measured signal
may be polluted by noise. To assess the signal-to-noise ratio
(SNR) in our measurements, the convergence of ∂tC as a func-
tion of the integration time T should be investigated. It can
be expressed as the sum of a deterministic term that resists to
average, the expected Green’s functions, and a noise term that
should vanish with average

∂tC(t) = {g(t)− g(−t)}
︸ ︷︷ ︸

signal

+
1
T

∫ T

0
n(τ)dτ

︸ ︷︷ ︸

noise

(S1)

where n(τ) accounts for the incoherent noise term whose coher-
ence time τc is governed by the bandwidth of the white light
source. To estimate the SNR, the mean intensity of Eq.S1 should

be considered. It yields
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︸ ︷︷ ︸

noise intensity

(S2)

The coherence properties of the noise n(τ) allows to simplify
the last equation into

〈

|∂tC|2
〉

=
〈

|{g(t)− g(−t)}|2
〉

︸ ︷︷ ︸

signal intensity

+
τc

T

〈

|n(τ)|2
〉

︸ ︷︷ ︸

noise intensity

(S3)

Not surprisingly, the noise intensity should decrease as the in-
verse of the integration time T. Fig.S1 confirms this behavior by
showing the spatially averaged intensity of ∂tC(t) measured in
the TiO2 layer as a function of T. For short time delays (δ = 0
μm in Fig.S1), the signal intensity is sufficiently large to make
the convergence of ∂tC(t) nearly immediate. For intermediate
time delays (δ = 20 − 100 μm in Fig.S1),

〈|∂tC|2
〉

decreases as
1/T for small integration times before saturating at the signal
level for large integration times. This means that the integration
time T = 750 ms is enough to get rid of most of the noise back-
ground and have a satisfying estimation of the Green’s function.
On the contrary, for larger time delays (δ = 130 μm in Fig.S1),
the signal intensity is too weak to emerge from the noise back-
ground:

〈|∂tC|2
〉

decreases as 1/T over the whole integration
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Fig. S1. Convergence of the time derivative of the mutual
coherence function in the TiO2 layer. The spatially averaged
intensity of the mutiual coherence functoin,

〈|∂tC|2
〉

, is plotted
as a function of the integration time T at different OPDs. The
continous black line shows for comparison the expected noise
intensity decrease as 1/T (see Eq.S3).

time range, which is characteristic of a predominant noise back-
ground. The value of

〈|∂tC|2
〉

at time T = 750 ms allows to
determine the noise level in our experiment. A SNR can be
derived for each OPD: SNR∼ 102 at δ = 0 μm, SNR∼ 8 at
δ = 20 μm and SNR∼ 3 at δ = 100 μm. Note that this noise
background is systematically subtracted from the raw mean in-
tensity prior to investigating the growth of the diffusive halo in
each experiment.

2. INCOHERENT INTENSITY IN THE MULTIPLE SCAT-
TERING REGIME

In this section we investigate the case of the propagation of light
in the multiple scattering regime. As mentioned in the article,
the energy density W whose flux corresponds to the incoherent
intensity obeys the diffusion equation :

∂W(r, t)
∂t

= DΔW(r, t)− c
la

W(r, t) + S(r, t). (S4)

with S(r, t) a source function, la the absorption mean free path
and D the diffusion constant. The solution of this equation cor-
responds to a diffusive halo whose spatial extent broadens with
time [see Fig. S2]. Its mathematical expression also depends on
the boundary conditions. In the accompanying paper, the sam-
ples under study consist in strongly scattering layers of thick-
ness L ∼ 80 μm. The characteristic time for the diffusive wave-
field to travel through the scattering medium is given by the
Thouless time τD = L2/D ∼ 6 ps for D = 730 m2/s. As
the temporal range investigated in our study is of the order of
500 fs, the scattering medium can thus be considered as semi-
infinite. In these conditions, Patterson et al. [1] established the
expression for the backscattered incoherent intensity :

Iinc(Δr, t) = (4πD)−3/2z0t−5/2exp
(

− ct
la

)

exp
(

− Δr2

4Dt

)

(S5)
with z0 the extrapolation length [2] and Δr the source-receiver
distance. The incoherent intensity can thus be written as the

L

Fig. S2. Expansion of the diffusive halo in a scattering slab

product of two terms:

Iinc(Δr, t) = Iz(t) exp
(

− Δr2

4Dt

)

(S6)

with :

Iz(t) = (4πD)−3/2z0t−5/2exp
(

− ct
la

)

(S7)

The first term Iz(t) accounts for the temporal decreasing
of the incoherent intensity whereas the second term in
exp(−Δr2/4Dt) accounts for the temporal growth of the diffu-
sive halo. By normalizing the incoherent intensity at each time
flight, one can therefore investigate the the diffusive properties
of the scattering medium independently from the absorption
losses.

3. INCOHERENT INTENSITY FOR AN ANISOTROPIC
SCATTERING MEDIUM

In this section, we investigate the case of the propagation of
light in an anisotropic scattering medium. In such a medium,
the diffusion equation is now given by [3]:

∂W(r, t)
∂t

= ∇.D∇W(r, t)− c
la

W(r, t) + S(r, t). (S8)

with W(r, t) the energy density, S(r, t) a source function, la the
absorption mean free path and D the diffusion tensor. Accord-
ing to Ref.[4], the corresponding incoherent intensity is given
by:

I(Δx, Δy, t) = Iz(t)exp
(

−Δx2

Dxx

)

exp
(

−Δy2

Dyy

)

. (S9)

with Dxx and Dyy the in-plane components of the diffusion ten-
sor. Δx and Δy are the projections of the source-receiver relative
positions along the x and y-axis. For a semi-infinite medium, Iz
is given by:

Iz(t) =
(

DxxDyyDzz
)−1/2 z0t5/2exp

(

− ct
la

)

. (S10)

At a given time of flight, the normalized incoherent intensity
can be expressed as:

Iinc(Δx, Δy, t)
Iinc(0, 0, t)

= exp
(

− Δx2

4Dxxt

)

exp
(

− Δy2

4Dyyt

)

(S11)

As in the isotropic case, the normalized incoherent intensity is
independent on the absorption losses.

Fig. S3 displays the spatio-temporal evolution of the mean
intensity measured in the stretched Teflon tape. The two com-
ponents Dxx and Dyy of the diffusion tensor can be estimated
separately. First, the relative position Δx is set to 0 and the
mean intensity is investigated as a function of time and Δy [see
Fig. S3(b)]. A linear fit of the square width W2 of the diffusive
halo versus time allows an estimation of Dyy=3000 m2.s−1. Al-
ternatively, by setting Δy = 0, we can investigate the diffuse
intensity as a function of time and Δx [see Fig.S3(d)]. Again, a
linear fit of W2 yields an estimation of Dxx=1100 m2.s−1.
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Fig. S3. Anisotropic diffusion in a stretched Teflon tape. (a)
Sketch of the spatio-temporal diffusive halo and its section at
Δx = 0. (b) Measured spatio-temporal evolution of the mean
intensity at Δx = 0. The intensity is renormalized by its max-
imum at each time of flight. (c) Sketch of the spatio-temporal
evolution of the mean intensity and its section at Δy = 0. (d)
Measured spatio-temporal evolution of the mean intensity for
Δy = 0. The intensity is renormalized by its maximum at each
time of flight.

4. TIME-OF-FLIGHT DISTRIBUTION IN THE TIO2 LAYER

In this section, we investigate the time-of-flight distribution of
the reflected intensity integrated over the surface of the scatter-
ing sample,

R(t) =
∫

I(Δr, t)d2Δr. (S12)

The decay of the reflected intensity with time bears particular
signatures of light diffusion. For times of flight smaller than
the Thouless time τD, the medium can be considered as semi-
infinite. In that case, a power law decay is expected for the
reflected intensity at the surface of the sample [5]:

R(t) ∝ t−3/2. (S13)

At longer times of flight, the finite sample size should come
into play so that the decay becomes similar to that of time-
dependent transmission, i.e., exponential in the diffuse regime
[5, 6], such that

R(t) ∝ exp
(

− ct
la

)

exp
(

− π2Dt
(L + 2zo)2

)

(S14)

In absence of absorption (la → ∞), the time-of-flight distribu-
tion of the backscattered intensity is thus an alternative way of
measuring the diffusion constant D.

An experimental set up involving a coherent illumination
scheme and an interferometric arm in reception [7] has been
used to measure R(t) in the TiO2 layer over an extensive range
of time-of-flight. The result is displayed in Fig.S4. As predicted
by theory [Eq.S13], the experimental time-of-flight distribution
can be qualitatively fitted by the t−3/2 power law for t << τD
[see Fig.S4(a)]. In agreement with theory, the time decay of R(t)
becomes exponential at larger times of flight [see Fig.S4(b)]. If
we neglected absorption losses, a fit of the exponential decay
would yield an estimation of the diffusion constant D ∼1250
m2.s−1. This value is quite far from our measurement deduced
with the growth of the diffusive halo (D � 730 m2.s−1, see
Sec.3A of the accompanying paper). The mismatch between
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Fig. S4. Time-of-flight distribution of the intensity reflected
by the TiO2 sample. (a) The time-evolution of R(t) (blue
circles) is plotted in a log-log scale and fitted with the t−3/2

power law over the time range [500 fs - 1 ps]. (b) The time-
evolution of R(t) (blue circles) is plotted in a linear-log scale
and fitted with an exponential decay over the time range [2 ps
- 4.5 ps].

both values can be easily accounted for by the presence of ab-
sorption losses. Considering that D � 730 m2.s−1, the expo-
nential decay fit performed in Fig.S4(b) leads to the following
estimation for the absorption mean free path: la � 118 μm.
This time-of-flight experiment illustrates the benefit of our ap-
proach that allows a quantitative measurement of the diffusion
constant, independent from the absorption losses.
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