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1. DERIVATION OF WKB REFLECTANCE

In this section, we outline the calculation of the WKB expres-
sion for the reflectance of adiabatic chirped photonic crystals
presented in the main text. We also give the WKB reflectance
calculated to the next order in ρ.

As presented in the main text, the wavelength-dependent bi-
layer transfer matrix Fm(λ), relating the forward- and backward-
propagating electric fields

Em =

 E+
m

E−m

 (S1)

via the vector recursion relation

Em = Fm(λ) Em+1, (S2)

for our model takes the form

Fm (λ) =

 Xm (λ) Ym (λ)

Y?
m (λ) X?

m (λ)

 (S3)

with complex matrix elements Xm(λ), Ym(λ) satisfying
det Fm(λ) = |Xm|2 − |Ym|2 = 1. The eigenvectors w±m and corre-
sponding eigenvalues µ±m of the general transfer matrix Fm are

explicitly

w±m = D±m

 1(
µ±m − Xm

Ym

)  (S4)

µ±m =

(
Xm + X?

m
2

)
±

√(
Xm + X?

m
2

)2
− 1, (S5)

where the D±m are arbitrary eigenvector normalizations.
In the main text it is shown that linear combinations of mod-

ulated Bloch waves

Em = ∑
i=±
C i exp

[
−
∫ m

ln µi
kdk
]

wi
m (S6)

approximately solve the transfer matrix recursion (S2) in
the limit of adiabatic chirp. One could proceed by seek-
ing higher-order corrections to the modulated Bloch wave
solution (S6), but we instead invoke energy conservation
to find the m-dependence of the eigenvector normaliza-
tions D±m and thereby extract the dominant effect of these
corrections [1]. From Eqs. (S5) and (S6) we calculate the
Poynting energy flux density Pm ∝

∣∣E+
m
∣∣2 − ∣∣E−m ∣∣2 [2] to be

https://doi.org/10.1364/optica.3.001436.s001
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Pm ∝


∣∣C+∣∣2 ∣∣D+

m
∣∣2 ( µ+

m − µ−m
µ+

m − X?
m

)
−
∣∣C−∣∣2 ∣∣D−m ∣∣2 ( µ+

m − µ−m
µ−m − X?

m

)
(passband)(

C+D+
m
) (

BD−m
)? ( µ+

m − µ−m
µ+

m − X?
m

)
−
(
C+D+

m
)? (C−D−m

) ( µ+
m − µ−m

µ−m − X?
m

)
(stopband)

(S7)

which a priori defpends on the bilayer index m. However, taking
the eigenvector normalizations D±m to scale as

D±m ∼

√
µ±m − X?

m
µ+

m − µ−m
. (S8)

removes the m-dependence of Pm = P (S7) and therefore en-
forces constant energy flux density in the multilayer, as required
by energy conservation. The modulated Bloch wave solution
(S6) with the eigenvector normalizations (S8) is a generalization
of the Bremmer method for deriving WKB-type solutions [3, 4].

As a turning point m→ m1,2 in the multilayer is approached,
the transfer matrix eigenvalues (S5) µ+

m → µ−m converge to one
another and the required eigenvector normalizations D±m (S8)
become arbitrarily large. This implies that our assumption of
slowly varying transfer matrix eigenvectors w±m breaks down
and our approximate solution (S6) no longer holds near the
turning points m ∼ m1,2, even in the case of adiabatic chirp. We
must therefore write general solutions of the form (S6) separately
in the three regions of the multilayer separated by the turning
points m1 and m2, giving

 E+
m

E−m

 =


A exp

{
i
∫ m1

m cos−1
( ak

2

)
dk
}

w+
m + B exp

{
−i
∫ m1

m cos−1
( ak

2

)
dk
}

w−m (m < m1)

(−1)m

[
C exp

{∫ m
m1

cosh−1
(
− ak

2

)
dk
}

w−m + D exp
{
−
∫ m

m1
cosh−1

(
− ak

2

)
dk
}

w+
m

]
(m1 < m < m2)

F exp
{
−i
∫ m

m2
cos−1

( ak
2

)
dk
}

w+
m + G exp

{
i
∫ m

m2
cos−1

( ak
2

)
dk
}

w−m (m2 < m)

(S9)

where we have introduced the complex coefficients A, B, C,
D, F, and G, in addition to the trace am(λ) ≡ Tr [Fm(λ)] whose
magnitude determines the complex structure of the transfer
matrix eigenvalues µ±m , so that

|am (λ)| < 2 ⇐⇒ m ∈ passband
|am (λ)| > 2 ⇐⇒ m ∈ stopband
|am (λ)| = 2 ⇐⇒ m is a turning point

(S10)

Since our modulated Bloch wave solution (S9) breaks down
near turning points m ∼ m1,2, we return to the exact vector
recurrence (S2), which may be approximated in the limit of
adiabatic chirp as

Em+1 + Em−1 =
(

F−1
m + Fm−1

)
Em ≈ amEm (S11)

in the vicinity of a given bilayer m. This implies that we can
treat E±m as decoupled fields each independently satisfying the
recurrence relation

E±m+1 = amE±m − E±m−1 (S12)

near turning points m ∼ m1,2. A discrete form of the Wentzel-
Kramers-Brillouin (WKB) method [5–9] then allows us to approx-
imately solve Eq. (S12) in the vicinity of turning points m ∼ m1,2
and match the modulated Bloch waves (S9) across the stopband
region m ∈ [m1, m2].

The discrete WKB method has traditionally found applica-
tion in approximate calculations of quantum mechanical energy
spectra [1, 6, 9, 10]. The discrete WKB method in the present
context is detailed in Section 3, with discrete WKB solutions to
the difference equation (S12) given by Eq. (S36).

Crucially, the discrete WKB solutions (S36) share the same
functional form as the modulated Bloch waves (S9) in the vicinity

of a turning point m ∼ m1,2, since in that limit the transfer matrix
eigenvector normalizations (S8) become

D+
m ∼ D−m ∼ (µ+

m − µ−m)−1/2 = (a2
m − 4)−1/4 (S13)

and Eq. (S9) subsequently reduces to the discrete WKB solutions
(S36). We therefore identify the complex coefficients A, . . . , G
in the modulated Bloch wave solution (S9) with the analogous
coefficients in the discrete WKB solution (S36). Applying an
asymptotic matching procedure to the discrete WKB solution
coefficients, and hence the modulated Bloch wave coefficients
A, B, F, and G, then allows for patching of the modulated Bloch
waves (S9) across the stopband region.

Asymptotic matching of the discrete WKB solutions is per-
formed in Section 3, and the resulting connection formulae
across an xm ≈ 1 (or more generally, am < −2) stopband
m ∈ [m1, m2] are given by A

B

 =

 α β

β? α?

 F

G

 (S14)

where we have introduced the variables

α(λ) = ei[m2(λ)−m1(λ)]π
[

eγ(λ) +
1
4

e−γ(λ)
]

(S15)

β(λ) = −ie−i[m2(λ)+m1(λ)]π
[

eγ(λ) − 1
4

e−γ(λ)
]

(S16)

γ(λ) =
∫ m2(λ)

m1(λ)
cosh−1

[
− am(λ)

2

]
dm (S17)

The parameter γ is analogous to the tunneling exponent in the
Gamow theory of alpha decay [11], in which the probability T
of He2+ emission from an atomic nucleus satisfies T ∼ e−2γ.
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In the present case, γ(λ) (S17) characterizes how deeply light
of wavelength λ penetrates an am < −2 stopband of a chirped
photonic crystal.

The terminating absorber condition E−N = 0 assumed in
our model gives a linear relation between the coefficients F
and G in the modulated Bloch wave solution (S9) and thus

a linear relation between the coefficients A and B via the
discrete WKB matching formulae (S14). This linear relation
fixes A/B and hence the field ratio r = E−0 /E+

0 through
the modulated Bloch wave solution (S9). The reflectance
R = |r|2 of ACPCs calculated in this way is given by

R (λ) = R̃ (λ) + 2ρ

√
R̃ (λ)

[
1− R̃ (λ)

] { sin (2π`0/λ)

sin [2π (1 + Ξ) `0/λ]
sin 2φ0 −

sin (2π`N/λ)

sin [2π (1 + Ξ) `N/λ]
sin 2φN

}
+O

(
ρ2
)

(S18)

where we have again introduced the zeroth-order WKB re-
flectance

R̃ (λ) = 1− exp [−2γ(λ)] . (S19)

as well as the phase angles

φ0 (λ) =
∫ m1(λ)

0
cos−1

[
am (λ)

2

]
dm−m1 (λ)π (S20)

φN (λ) =
∫ N

m2(λ)
cos−1

[
am (λ)

2

]
dm + m2 (λ)π (S21)

2. TIGHT-BINDING ANALOGY

In this section, we make an analogy between the electric fields
E±m in an adiabatically chirped photonic crystal and the zero
energy eigenmodes of a one-dimensional chain, described quan-
tum mechanically by a tight-binding Hamiltonian. Naively ap-
plying the continuous WKB method to the quantum chain yields
results consistent with those of the discrete WKB analysis near
turning points and offers insight into the functional form of E±m
and our matching formulae. By taking a continuum limit of the
quantum chain tight-binding Hamiltonian, we also make con-
crete the analogy between the reflection of light from a photonic
stopband and quantum scattering from a potential barrier.

We note that the recurrence relation (S12) is precisely the
equation one would obtain by seeking the zero energy eigen-
modes Em of a Hamiltonian H given by

H =



a1 −1

−1 a2
. . .

−1
. . . −1
. . . aN−1 −1

−1 aN


. (S22)

We can view the matrix H as a tight-binding Hamiltonian of a
finite, one-dimensional quantum chain with nearest-neighbor
hopping elements [12].

Let us first begin with the simple case that am = a is constant.
In this case, we can write the exact eigenmode solution as a
discrete plane wave Em = e±iκm with wavevector κ. Substitution
into our recurrence relation (S12) then tells us that

eiκ + e−iκ = a (S23)

which implies that our wavevector κ is given by

κ =


cos−1 (a/2) , a ∈ [−2, 2]
i cosh−1 (a/2) , a > 2
i cosh−1 (a/2) + π, a < −2

. (S24)

The general eigenmode solution Em in the constant am = a case
is then just a linear superposition

Em = Aeiκm + Be−iκm (S25)

of the discrete plane waves of wavevectors±κ. When a ∈ [−2, 2]
and κ is real, the zero energy eigenmode components Em are
oscillatory in the bilayer/chain site index m. Conversely, when
|a| > 2 and κ is imaginary, the components Em are the sum of
growing and decaying exponentials in the index m.

In the more general case that am varies slowly with bi-
layer/chain site index m, we can write the continuous WKB
solution to the above eigenmode problem as [11]

Em ∝
1√
κm

e±i
∫ m

κkdk. (S26)

Substituting this expression into our recursion relation gives, to
lowest order in the variation of κm with respect to m, the same
consistency equation as before

eiκm + e−iκm = am (S27)

which implies (variable) wavevector solutions

κm =


cos−1 (am/2) , am ∈ [−2, 2]
i cosh−1 (am/2) , am > 2
i cosh−1 (am/2) + π, am < −2

. (S28)

Again, the magnitude of am tells us whether the the eigenmode
components Em are oscillatory or exponential in the index m.

Comparing the continuum WKB result (S26) with the form of
Em obtained via the discrete WKB method (S36), we see that the
two differ only by the m-dependence of the passband magnitude
|Em| of the electric field/zero energy eigenmode. In particular,

|Em| =
{[

cos−1 (am/2)
]−1/2 (S26)(

4− a2
m
)−1/4 (S36)

(S29)

in passband regions |am| < 2. However, these two forms are con-
sistent to lowest order in (am ± 2), i.e. near turning points, which
is precisely the regime in which the difference equation (S12) is
applied in Section 3 to match the modulated Bloch waves (S9).
This explains the strong similarity (exact agreement) between
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the standard WKB connection formulae [11] and the discrete
WKB matching formulae across an odd (even) stopband and
given in Section 3.

We can gain further intuition from this tight-binding analogy
by rewriting the tight-binding Hamiltonian H in the continuum
limit as

H → − d2

dz2 + [a (z)− 2] =
(
−i

d
dz

)2
+ V (z) (S30)

where m→ z represents the continuous coordinate parametriz-
ing the depth in the multilayer and/or length along the quantum
chain, and we have introduced the potential

V (z) = a (z)− 2. (S31)

Examining the continuum quantum chain potential V (z) re-
veals why one obtains evanescent solutions when a (z) > 2; in
this case the potential (S31) is positive, and therefore the zero
energy modes we seek are classically forbidden by energy con-
servation. In quantum mechanics, however, such classically

forbidden solutions to HE (z) = 0 are allowed, but are exponen-
tially damped in z due to quantum tunneling [11].

An identical analogy can be made for odd a (z) < −2 stop-
bands by transforming the recurrence (S12) in Em to the recur-
rence

− Ẽm+1 + ãm Ẽm − Ẽm−1 = 0 (S32)

in the transformed variable Ẽm = (−1)mEm, where have defined
ã(z) = −a(z). Repeating the same analysis as before, we arrive
at the odd stopband potential

Ṽ (z) = ã (z)− 2 = −a(z)− 2 (S33)

which is plotted in the main text.
We therefore conclude that stopbands in adiabatically chirped

photonic crystals are analogous to the classically forbidden re-
gions on a one-dimensional tight-binding quantum chain, with
light scattering from the former corresponding to quantum tun-
neling through the latter.

3. DERIVATION OF DISCRETE WKB CONNECTION FORMULAE

In this section, we first derive the discrete WKB connection formulae across an even, i.e. am > 2, stopband and then apply a
transformation to the recurrence (S12) to obtain the analogous connection formulae across an odd, am < −2, stopband. These results
connect scattering states E±m across a classically forbidden region and augment the discrete WKB matching procedure used by Braun [6]
to derive the quantization rules for bound states.

Since both E+
m and E−m (approximately) satisfy the same recursion relation

E±m+1 = amE±m − E±m−1 (S34)

near a turning point m ∼ m1,2, it suffices to consider just E+
m . Approximate discrete WKB expressions for the field E+

m can be obtained
by assuming a solution to the above recurrence relation of the form

E+
m = exp

{
i
[
Φ0

m + Φ1
m + Φ2

m + · · ·
]}

(S35)

where the unknown functions Φj
m are labeled according to their rate of change with respect to the index m, so that Φ̇j

m = O
(

m−j
)

,

Φ̈j
m = O

(
m−j−1

)
, and so on. Substituting the discrete WKB ansatz (S35) into the recurrence relation (S34) and solving for the

unknown functions Φj
m up to order O

(
m−1) yields [6, 9]:

E+
m =



1
4
√

4− a2
m

[
A exp

{
i
∫ m1

m cos−1
( ak

2

)
dk
}
+ B exp

{
−i
∫ m1

m cos−1
( ak

2

)
dk
} ]

(m < m1)

1
4
√

a2
m − 4

[
C exp

{∫ m
m1

cosh−1
( ak

2

)
dk
}
+ D exp

{
−
∫ m

m1
cosh−1

( ak
2

)
dk
} ]

(m1 < m < m2)

1
4
√

4− a2
m

[
F exp

{
−i
∫ m

m2
cos−1

( ak
2

)
dk
}
+ G exp

{
i
∫ m

m2
cos−1

( ak
2

)
dk
} ]

(m2 < m)

(S36)

Our goal is to match these solutions across the stopband, i.e. find a linear relationship between the coefficients A, B and F, G.
Performing this matching procedure will require analysis of approximate solutions to original recurrence (S12) in the vicinity of each
turning turning point, which we obtain by linearizing am near m1 and m2.

A. Even Stopband Connection Formulae
Suppose we have an am > 2 stopband for m ∈ [m1, m2] (where m1, m2 are not necessarily integers), surrounded on either side by
propagation bands |am| < 2.

A.1. Matching Across Even m = m1 Turning Point

When linearized near m1, the recurrence (S12) takes the form

E+
m+1 = [2 + α1 (m−m1)] E+

m − E+
m−1 (for m near m1) (S37)
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for some α1 > 0 determined by am, or equivalently

E+
m+1 =

2ν

x
E+

m − E+
m−1 (for m near m1) (S38)

where we have defined ν ≡ x + (m−m1) and x ≡ 2/α1. In terms of the variables ν and x, the solution to this recurrence is a linear
combination of the Bessel functions E+

m = aJν (x) + bYν (x). Now, the asymptotic expansions of the Bessel functions Jν(x) and Yν(x)
for large argument x (consistent with small α1 and hence slow chirp) and large order ν (consistent with m far from m1) depend on the
relative magnitude of x and ν. In each case, the asymptotic expansions are given by (see [13], 9.3.2 and 9.3.3):

Jν (x) ≈


√

2
π

(
x2 − ν2)−1/4 cos

[
−ν cos−1

( ν

x

)
+
√

x2 − ν2 − π

4

]
(ν < x)√

1
2π

(
ν2 − x2)−1/4 exp

[
−ν cosh−1

( ν

x

)
+
√

ν2 − x2
]

(ν > x)
(S39)

Yν (x) ≈


√

2
π

(
x2 − ν2)−1/4 sin

[
−ν cos−1

( ν

x

)
+
√

x2 − ν2 − π

4

]
(ν < x)

−
√

2
π

(
ν2 − x2)−1/4 exp

[
ν cosh−1

( ν

x

)
−
√

ν2 − x2
]

(ν > x)
(S40)

We can then express these Bessel function expansions in terms of the original variables m, m1, and α by noting
(
ν2 − x2) = (a2

m − 4
)

/α2
1

in the linearized region and applying the change of variable k→ k + m1 − x to obtain

ν cos−1
( ν

x

)
−
√

x2 − ν2 =
∫ x

ν
cos−1

(
k
x

)
dk =

∫ m1

m
cos−1

( ak
2

)
dk (S41)

ν cosh−1
( ν

x

)
−
√

ν2 − x2 =
∫ ν

x
cosh−1

(
k
x

)
dk =

∫ m

m1

cosh−1
( ak

2

)
dk (S42)

Combining these results, the Bessel function asymptotic expansions can be rewritten as

Jν (x) ≈


√

2α1
π

(
4− a2

m
)−1/4 cos

[
−
∫ m1

m cos−1
( ak

2

)
dk− π

4

]
(m < m1)√

α1
2π

(
a2

m − 4
)−1/4 exp

[
−
∫ m

m1
cosh−1

( ak
2

)
dk
]

(m > m1)
(S43)

Yν (x) ≈


√

2α1
π

(
4− a2

m
)−1/4 sin

[
−
∫ m1

m cos−1
( ak

2

)
dk− π

4

]
(m < m1)

−
√

2α1
π

(
a2

m − 4
)−1/4 exp

[∫ m
m1

cosh−1
( ak

2

)
dk
]

(m > m1)

(S44)

so that the linear combination of Bessel functions E+
m = aJν (x) + bYν (x) therefore becomes

E+
m =


1

4
√

4− a2
m

[√
α1
2π

(
aeiπ/4 − be−iπ/4

)
exp

{
i
∫ m1

m cos−1
( ak

2

)
dk
}
+ C.C.

]
(m < m1)

1
4
√

a2
m − 4

[
−b
√

2α1
π

exp
{∫ m

m1
cosh−1

( ak
2

)
dk
}
+ a
√

α1
2π

exp
{
−
∫ m

m1
cosh−1

( ak
2

)
dk
}]

(m > m1)

(S45)

as our asymptotic solution for the field E+
m near the turning point m1. Comparing this result with the relevant regions of our discrete

WKB solution (S36) and eliminating the intermediate coefficients a and b yields

A = e−iπ/4
(

C
2
+ iD

)
(S46)

B = e+iπ/4
(

C
2
− iD

)
These are the matching relations across the m = m1 turning point.

A.2. Matching Across Even m = m2 Turning Point

We define the even stopband tunneling parameter

γ =
∫ m2

m1

cosh−1
( am

2

)
dm. (S47)

Using γ, we can then rewrite the discrete WKB solution (S36) as

E+
m =



1
4
√

4− a2
m

[
A exp

{
i
∫ m1

m cos−1
( ak

2

)
dk
}
+ B exp

{
−i
∫ m1

m cos−1
( ak

2

)
dk
} ]

(m < m1)

1
4
√

a2
m − 4

[
De−γ exp

{∫ m2
m cosh−1

( ak
2

)
dk
}
+ Ceγ exp

{
−
∫ m2

m cosh−1
( ak

2

)
dk
} ]

(m1 < m < m2)

1
4
√

4− a2
m

[
F exp

{
−i
∫ m

m2
cos−1

( ak
2

)
dk
}
+ G exp

{
i
∫ m

m2
cos−1

( ak
2

)
dk
} ]

(m2 < m)

(S48)
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This reformulation is useful for matching near m = m2, since the discrete WKB solution in the stopband is now expressed as a function
of right turning point m2. The recurrence (S12) linearized near m = m2 takes the form

E+
m+1 = [2− α2 (m−m2)] E+

m − E+
m−1 (for m near m2) (S49)

or equivalently,

Ẽ+
m+1 =

2ν

x
Ẽ+

m − Ẽ+
m−1 (S50)

where we have defined ν ≡ x− (m−m2) and x ≡ 2/α2. In terms of the variables ν and x, the solution to this recurrence is a linear
combination of the Bessel functions E+

m = aJν (x) + bYν (x), just as in the m = m1 case. In particular, the mapping from the m = m1
case is exact under the switch m↔ m1 (so as to obtain the modified m-dependence of ν) and subsequent replacements m1, α1 → m2, α2.
Applying this transformation to the linear combination of asymptotic Bessel functions (S45) gives

E+
m =


1

4
√

4− a2
m

[√
α2
2π

(
aeiπ/4 − be−iπ/4

)
exp

{
i
∫ m

m2
cos−1

( ak
2

)
dk
}
+ C.C.

]
(m2 < m)

1
4
√

a2
m − 4

[
−b
√

2α2
π

exp
{∫ m2

m cosh−1
( ak

2

)
dk
}
+ a
√

α2
2π

exp
{
−
∫ m2

m cosh−1
( ak

2

)
dk
}]

(m2 > m)

(S51)

as the asymptotic solution for the field E+
m near the turning point m2. Comparing this result with the relevant regions of our discrete

WKB solution (S48) and eliminating the intermediate coefficients a and b yields

F = e−iπ/4
(

Ceγ +
iD
2

e−γ

)
(S52)

G = e+iπ/4
(

Ceγ − iD
2

e−γ

)
These are the matching relations across the m = m2 turning point.

A.3. Matching Across Entire Even Stopband

Eliminating the coefficients C and D in the matching relations (S46) and (S52) finally gives

A =

(
eγ +

1
4

e−γ

)
F + i

(
eγ − 1

4
e−γ

)
G (S53)

B = −i
(

eγ − 1
4

e−γ

)
F +

(
eγ +

1
4

e−γ

)
G

These are the discrete WKB connection formulae across an entire am > 2 stopband and are identical to the connection formulae across
a potential barrier in the standard, continuous WKB approximation [11].

B. Odd Stopband Connection Formulae
Now consider an am < −2 stopband for m ∈ [m1, m2] (where m1, m2 are not necessarily integers), surrounded on either side by
propagation bands |am| < 2. We can transform the solution E+

m in this odd stopband region, given again by Eq. (S36), to a solution in
the region near an even stopband by taking

am → ãm ≡ −am (S54)

E+
m → Ẽ+

m ≡ (−1)m E+
m

which leaves the recursion relation (S12) unchanged. This transformation can be achieved by multiplying (S36) by (−1)m and using
the identities cos−1 (am/2) = π − cos−1 (ãm/2) and (−1)m e±imπ = 1. Effecting this transformation yields

Ẽ+
m =


1

4
√

4− ã2
m

[
Ã exp

{
i
∫ m1

m cos−1
(

ãk
2

)
dk
}
+ B̃ exp

{
−i
∫ m1

m cos−1
(

ãk
2

)
dk
} ]

(m < m1)

1
4
√

4− ã2
m

[
F̃ exp

{
−i
∫ m

m2
cos−1

(
ãk
2

)
dk
}
+ G̃ exp

{
i
∫ m

m2
cos−1

(
ãk
2

)
dk
}]

(m2 < m)

(S55)

where we have defined

Ã = e−im1π B (S56)

B̃ = e+im1π A

F̃ = e−im2πG

G̃ = e+im2π F
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Since the transformed variable ãm describes an even ãm ≡ −am > 2 stopband, we can apply the even stopband connection formulae
(S53) to the transformed discrete WKB solution (S55) and match the transformed coefficients Ã, . . . , G̃. Applying this even stopband
matching and subsequently transforming back to the original coefficients A, . . . , G finally gives

B = e+im1π

[
e−im2π

(
eγ +

1
4

e−γ

)
G + ie+im2π

(
eγ − 1

4
e−γ

)
F
]

(S57)

A = e−im1π

[
−ie−im2π

(
eγ − 1

4
e−γ

)
G + e+im2π

(
eγ +

1
4

e−γ

)
F
]

where

γ =
∫ m2

m1

cosh−1
(

ãm

2

)
dm =

∫ m2

m1

cosh−1
(
− am

2

)
dm. (S58)

These are the discrete WKB connection formulae across an entire odd stopband and are precisely the relations contained in Eq. (S14).
Interestingly, odd stopbands have no analogy in the continuous WKB approximation, and the odd stopband connection formulae (S14)
are not identical to the even stopband/continuous WKB connection formulae (S53). In particular, the presence of additional turning
point phases exp (±im1,2π) in the odd stopband connection formulae (S57) has important consequences in quantum mechanical
applications [9].
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Fig. S1. A desgined reflectance spectrum with a sharp lower
cut-off and slow upper roll-off. The desired spectrum (red,
dashed) is put into the chirp differential equation (S59) with
nH = 1.54 and nL = 1.34, which is then solved numerically to
give the chirp function `m plotted in the inset (green). Finally,
the reflectance of the computed chirp `m is found numerically
via the transfer matrix method and plotted (blue). Good agree-
ment between the input and output spectra demonstrate the
accuracy of the design.

4. REVERSE-ENGINEERED SPECTRA VIA CHIRP DIF-
FERENTIAL EQUATION

In the main text, we show that a desired average reflectance
spectrum R̃ (λ) can be achieved via a chirped multilayer with
optical thickness chirp `m satisfying the differential equation

d`
dm

=
−4ρ2 sin2

(
π

1+Ξ

)
log
[
1− R̃

(
λ = 2 (1 + Ξ) `

)] `. (S59)

In this section we exhibit an additional, biologically-relevant
example of reflectance spectra reverse-engineered in this way.

In Fig. S1 we exhibit a chirped multilayer with a reflectance
spectrum having a sharp lower-wavelength cut-off and slow
upper-wavelength roll-off. Reflectors with such properties have
been found in beetle cuticles [14]. The designed reflectance

spectrum in Fig. S1 shows that such optical behavior can be
captured with chirped multilayer models.

5. TEM IMAGE ANALYSIS

In the main text, we compare the bilayer number N found in
several ACPCs in nature to our predicted minimal number of
bilayers Nγ∼1

exp/lin in the case of exponential and linear chirp. This
comparison requires an estimate of the optical thickness ratio

Ξ = (`L)m / (`H)m = nL (dL)m /nH (dH)m , (S60)

which we estimate for each biological ACPC via analysis of TEM
images given in the relevant reference. In this section we detail
the image analysis process, a sketch of which is shown in Fig. S2,
using the elytra of the golden Chrysina aurigans beetle [15] as an
example.

First, an anisotropic Gaussian filter is applied to the TEM
image along the assumed axis of the ACPC, which smooths the
image while highlighting the low- and high-index layers. Then
a curvature flow filter is applied in order further smooth the
image while preserving the edges between low- and high-index
layers. Finally we binarize the image, where the binarization
thresholds are determined locally in the image in order isolate
the the low- and high-index layers.

After binarization, we take a thin (few pixel high) horizontal
cross-section of the image, from which the layer thicknesses
(dL/H)m and hence local optical thickness ratios Ξm (S60) can
be determined. The value of Ξm for each bilayer m in the C.
aurigans TEM image is plotted in Fig. S3. The fixed ratio Ξ is
finally estimated by taking the average optical thickness ratio
Ξ = µΞ over all the ACPC bilayers m.
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