Topological protection of photonic path entanglement: supplementary material

Mikael C. Rechtsman ${ }^{1 *}$, Yaakov Lumer ${ }^{2}$, Yonatan Plotnik ${ }^{2}$, Armando Perez-Leija ${ }^{3}$, Alexander Szameit ${ }^{3}$, and Mordechai Segev ${ }^{2}$
${ }^{1}$ Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
${ }^{2}$ Department of Physics, Technion - Israel Institute of Technology, Haifa 32000, Israel
${ }^{3}$ Institute of Applied Physics, Friedrich-Schiller-Universität, Jena, Germany
*Corresponding author: mcrworld@psu.edu

Published 23 August 2016

This document provides supplementary information to "Topological protection of photonic path entanglement," http://dx.doi.org/10.1364/optica.3.000925. We provide a detailed derivation of the evolution of photon correlations in waveguide arrays, as referred to in the main article. © 2016 Optical Society of America
http://dx.doi.org/10.1364/optica.3.000925.s001

We derive an expression for the photon correlation map Γ given the initial two-photon wavefunction, namely:

$$
\begin{equation*}
\Gamma_{r s}=\left|\left(U\left(B_{0}+B_{0}^{T}\right) U^{T}\right)_{r s}\right|^{2}, \tag{S1}
\end{equation*}
$$

where $\Gamma_{r s}$ is 2-photon correlation map (at waveguides r and s), U is the single-photon propagator from time 0 to t, and B_{0} a matrix representing wavefunction at time $t=0$.
We assume two photons injected into the system, and since photon number is conserved by our Hamiltonian, the wavefunction can always be written as:

$$
\begin{equation*}
|\psi(t)\rangle=\sum_{i j} B_{i j}(t) a_{i}^{\dagger} a_{j}^{\dagger}|0\rangle, \tag{S2}
\end{equation*}
$$

where a_{n}^{\dagger} is the creation operator for a photon in waveguide n. We denote $B_{i j}(t=0)=B_{0, i j}$. It should be noted that because of the bosonic commutation relations, $B_{i j}(t)$ can always be chosen to be a symmetric matrix.
The hopping coefficient between two waveguides n and m is $c_{n m}$, and therefore our Hamiltonian can be written as:

$$
\begin{equation*}
H=\sum_{n m} c_{n m} a_{n}^{\dagger} a_{m} \tag{S3}
\end{equation*}
$$

We now aim to write the Schrödinger equation $i \partial_{t}|\psi\rangle=H|\psi\rangle$ as an equation for the coefficients $B_{i j}(t)$. We evaluate $H|\psi\rangle$:

$$
\begin{align*}
& H|\psi\rangle=\sum_{n m} c_{n m} a_{n}^{\dagger} a_{m} \sum_{i j} B_{i j}(t) a_{i}^{\dagger} a_{j}^{\dagger}|0\rangle= \\
& \sum_{n m i j} c_{n m} B_{i j}(t) a_{n}^{\dagger} a_{m} a_{i}^{\dagger} a_{j}^{\dagger}|0\rangle=2 \sum_{n i j} c_{i n} B_{n j}(t) a_{i}^{\dagger} a_{j}^{\dagger}|0\rangle \tag{S4}
\end{align*}
$$

The last equality can be easily proven using the well-known commutation relations of the creation and annihilation operators, and remembering that B is a symmetric matrix. Using Eq. (S4), the Schrödinger equation is now written as:

$$
\begin{equation*}
i \partial_{t} \sum_{i j} B_{i j}(t) a_{i}^{\dagger} a_{j}^{\dagger}|0\rangle=2 \sum_{n i j} c_{i n} B_{n j}(t) a_{i}^{\dagger} a_{j}^{\dagger}|0\rangle . \tag{S5}
\end{equation*}
$$

Using the following identity, again easily proven using commutation relations:

$$
\begin{equation*}
\langle 0| a_{p} a_{q} a_{i}^{\dagger} a_{j}^{\dagger}|0\rangle=\delta_{i q} \delta_{j p}+\delta_{i p} \delta_{j q}, \tag{S6}
\end{equation*}
$$

we operate with $\langle 0| a_{p} a_{q}$ from the left on our Schrödinger equation (S5), and get for the left hand side of (S5):

$$
\begin{equation*}
i \partial_{t} \sum_{i j} B_{i j}(t)\langle 0| a_{p} a_{q} a_{i}^{\dagger} a_{j}^{\dagger}|0\rangle=2 i \partial_{t} B_{q p} \tag{S7}
\end{equation*}
$$

For the right hand side of (S5) we get:

$$
\begin{equation*}
\sum_{n i j} 2 c_{i n} B_{n j}(t)\langle 0| a_{p} a_{q} a_{i}^{\dagger} a_{j}^{\dagger}|0\rangle=2 \sum_{n}\left(c_{q n} B_{n p}(t)+c_{p n} B_{n q}(t)\right) \tag{S8}
\end{equation*}
$$

Our Schrödinger equation now takes the form:

$$
\begin{equation*}
i \partial_{t} B_{q p}=\sum_{n}\left(c_{q n} B_{n p}+c_{p n} B_{n q}\right) \tag{S9}
\end{equation*}
$$

Eq (S9) can also be written in matrix form:

$$
\begin{equation*}
i \partial_{t} B=C B+(C B)^{T} \tag{S10}
\end{equation*}
$$

With $C_{m n}=c_{m n}$.

The solution to equation (S10) can easily be shown to be

$$
\begin{equation*}
B(t)=e^{-i C t} B(0) e^{-i C^{T} t} \tag{S11}
\end{equation*}
$$

We write $U(t)=e^{-i C t}$, and recognize that the matrix $U(t)$ is the propagator of the Schrödinger equation for a single particle.

It is now possible to write the state at time t in the following form:

$$
\begin{equation*}
|\psi(t)\rangle=\sum_{i j} B_{0, i j}\left(U^{T} a^{\dagger}\right)_{i}\left(U^{T} a^{\dagger}\right)_{j}|0\rangle \tag{S12}
\end{equation*}
$$

We now wish to evaluate the 2-photon correlation map of the state after propagating time t. That is, we wish to evaluate:

$$
\begin{equation*}
\Gamma_{r s}=\langle\psi(t)| a_{r}^{+} a_{s}^{+} a_{s} a_{r}|\psi(t)\rangle \tag{S13}
\end{equation*}
$$

We start by writing the bra and ket form of Eq (S13) in a more explicit manner:

$$
\begin{equation*}
|\psi(t)\rangle=\sum_{i j p q} B_{0 ;}\left(U_{i p}^{T} a_{p}^{+}\right)\left(U_{j q}^{T} a_{q}^{+}\right)|0\rangle,\langle\psi|=\langle 0| \sum_{i^{\prime} j^{\prime} m n} B_{0, j^{\prime}}^{*}\left(U_{i^{\prime} m}^{\dagger} a_{m}\right)\left(U_{j^{\prime} n}^{\dagger} a_{n}\right) \tag{S14}
\end{equation*}
$$

We now write the correlation at time t :

$$
\Gamma_{r s}=\langle\psi(t)| a_{r}^{+} a_{s}^{+} a_{s} a_{r}|\psi(t)\rangle=\sum_{\substack{i j p q \\ i j_{j} m n}} B_{0 ; j}^{*} U_{i^{\prime} m}^{\dagger} U_{j^{\prime} n}^{\dagger} B_{0 ; j} U_{i p}^{T} U_{j q}^{T}\langle 0| a_{m} a_{n} a_{r}^{+} a_{s}^{+} a_{s} a_{r} a_{p}^{+} a_{q}^{+}|0\rangle
$$

We use the identity (again, easily proven using commutation relations):

$$
\begin{equation*}
\langle 0| a_{m} a_{n} a_{r}^{+} a_{s}^{+} a_{s} a_{r} a_{p}^{+} a_{q}^{+}|0\rangle=\delta_{r m} \delta_{n s} \delta_{p s} \delta_{r q}+\delta_{r m} \delta_{n s} \delta_{p r} \delta_{s q}+\delta_{r n} \delta_{m s} \delta_{p s} \delta_{r q}+\delta_{r m} \delta_{m s} \delta_{p r} \delta_{s q} \tag{S15}
\end{equation*}
$$

By using the fact that B_{0} is a symmetric matrix we get that the correlation is:

$$
\begin{equation*}
\Gamma_{r s}=4\left|\left(U B_{0} U^{T}\right)_{r s}\right|^{2} \tag{S16}
\end{equation*}
$$

