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This document provides supplementary information to "Single-crystal diamond low-
dissipation cavity optomechanics," http://dx.doi.org/10.1364/optica.3.000963. First, we briefly 
describe the model used to extract the temperature shift of the cavity and finite element COM-
SOL simulations are used to predict the temperature increase observed in these devices. Sec-
ondly, we describe the model used to determine the laser detuning from cavity resonance for a 
bistable lineshape. We then discuss the calibration of the mechanical noise spectrum, which was 
utilized to determine the maximum oscillation amplitude as a function of input power. Lastly, 
we compare the Qm · fm product of our device to the current state of the art for optomechani-
cal devices operating in ambient, vacuum, and cryogenic conditions, where we demonstrate the 
largest Qm · fm product to date in ambient conditions . © 2016 Optical Society of America

http://dx.doi.org/10.1364/optica.3.000963.s001 

1. THERMAL SHIFT AND BISTABILITY

Here we outline the process for extracting the power dependent
detuning, ∆. This process follows Carmon et al. [1], beginning
with the expression for the shifted cavity resonance wavelength
as a function of temperature, in thermal equilibrium

λ′o(∆T) = λo + ∆λo , (S1)

= λo
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= λo [1 + a∆T] . (S3)

This expression is obtained by considering thermal expansion
of the cavity, determined by the thermal expansion coefficient
ε, and the thermo-optic effect, which shifts the refractive index
n with temperature T. Here ηT and ηε are geometric factors
accounting for the optical mode overlap with the changing n
and volume, respectively. Lumped constant a describes the net
thermo-optic dispersion of the cavity mode. Using the room
temperature single–crystal diamond values of ε ∼ 1× 10−6 and
dn/dT ∼ 1× 10−5 we can estimate the change in temperature
of the cavity as

∆T =

[
λ′o(∆T)

λo
− 1
]
· 1

a
. (S4)

The shift of ∆λo ∼ 400 pm, as seen in Fig. 2(a) of the main
text, corresponds to a change in device temperature ∆T ∼ 50
K. In this device the diamond forming the ∼ 100 nm diameter
pedestal has a significantly smaller thermal conductivity than
that of bulk diamond (K ∼ 1500 Wm−1K−1), reaching values
< 100 Wm−1K−1 for nanowires < 100 nm in diameter [2]. In
order to confirm that the cavity temperature shift predicted by
Eq. (S4) was reasonable for our system we performed finite
element COMSOL simulations to estimate ∆T, including the
modified thermal conductivity for the pedestal, as shown in
Fig. S1 for varying pedestal widths. Fig. S1 indicates that for a
pedestal width of ∼ 100 nm, and corresponding diamond ther-
mal conductivity of ∼ 300 Wm−1K−1 a shift of 50 K is expected
when Pabs ∼ 170 µW, where Pabs is the total power absorbed
by the cavity. This corresponds to an optical absorption rate,
γabs × 2π ∼ 312 MHz, which is ∼ 10% of the total cavity decay
rate, γtot. A linear relationship between ∆T and Pabs is observed
for the pedestal thicknesses studied here.
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Fig. S1. Simulated change in temperature, ∆T of a ∼ 5 µm
diameter microdisk as a function of absorbed power, Pabs
for varying pedestal widths. Here the total heat flow to the
device is given by Pabs/V, where V is the volume defined by
the outer edge of the microdisk, with V ∼ 2 µm3. Each line
represents a linear line of best fit to ∆T as a function of Pabs.

To convert (S3) to a form that depends on the experimentally
measured, normalized cavity transmission T, we treat the mi-
crodisk as being in thermal equilibrium with its environment
such that

q̇in =
γabs
γtot

Pd , (S5)

where q̇in, and Pd are the heat flow and power dropped into the
cavity, respectively. Furthermore, we assume that

q̇out = K∆T , (S6)

where K is the thermal conductivity between the cavity mode
volume and the surrounding [1]. In thermal equilibrium the
heat flow into the cavity will be equal to the heat flow out of the
cavity, which allows us to write the equilibrium temperature as

∆T =
γabs
γtot

Pd
K

. (S7)

Next we observe that since Pd = (1− T)Pi where Pi is the fiber
taper waveguide input power, we can write

∆T =
γabs
γtot

(1− T)Pi
K

, (S8)

and the expected cavity mode shift in terms of the resonance
contrast

λ′o(∆T) = λo [1 + a∆T] , (S9)
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This gives the laser-cavity wavelength detuning, ∆λ as

∆λ = λs − λ′o , (S12)

= λs − λo − d(1− T). (S13)

where d = a
K

γabs
γtot

Pi is used as a free parameter in fitting our
cavity transmission profile. The laser detuning ∆ can then be
calculated for any bistable lineshape.

2. SELF OSCILLATIONS AND DISPLACEMENT AMPLI-
TUDE

In the weak damping regime (γm � ωm) the oscillation ampli-
tude of a thermally driven harmonic oscillator is given by the
equipartition theorem [3] as

xth =

√
kBT

meffω
2
m

, (S14)

where kB is the Boltzmann constant, T = 295 K is the bath temper-
ature, and meff = 40 pg and ωm/2π ∼ 2 GHz are the effective
mass and mechanical frequency of the radial breathing mode
studied here, respectively. This results in xth = 24 fm and a zero
point fluctuation motion, xzpm = 0.32 fm.

While SP( f ) ∝ 〈x2〉, where 〈x2〉 is the variance of the mechan-
ical displacement, one must be more careful when calculating
the mechanical energy. Strictly speaking 〈x2〉 is related to the
single sided displacement spectral density Sxx(ω) by

〈x2〉 =
∫ ∞

0
Sxx(ω)

dω

2π
. (S15)

This can be connected to the measured cavity transmission noise
spectrum SP(ω) through a cavity transfer function H(ω, ∆), Pi,
and gom [4]

SP(ω) = g2
omP2

i Sxx(ω)H(ω, ∆). (S16)

In this experiment we measure SP(ω), and can compute the area
under the curve, A, given by A =

∫ ∞
0 SP(ω) dω

2π . If we change Pi
from Pi1 to Pi2 , keep ∆ constant,and ignore the small (∼ 0.02%)
changes in ωm, such that H(ω, ∆; Pi1 ) = H(ω, ∆; Pi2 ), we can
show that the ratio of the area under the curve corresponding to
Pi1 and Pi2 given by A1 and A2, respectively, is

A1
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=
P2
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〈x2

1〉
P2

i2
〈x2

2〉
. (S17)

We can then calibrate high Pi measurements to the thermal case,
where Pi is small enough for optomechanical backaction effects
to be ignored. The displacement amplitude, xom, of the RBM in
the self-oscillation regime can then be calculated as

xom = xth

√
Aom

Ath

P2
T

P2
om

, (S18)

where Aom and Ath are the area under the curve in the driven
(Pi = Pom) and thermal (Pi = PT) states, respectively. Similarly,
for the purpose of comparing mechanical spectra it is useful to
calculate the normalized cavity transmission noise spectrum S̃P,
given by

S̃P(ω; Pi, ∆) = SP(ω; Pi)
P2

i
P2

T

∣∣∣∣∣
∆

. (S19)

The maximum oscillation amplitude xom is shown as a func-
tion of dropped optical power in Fig. 3(a), where the abso-
lute maximum oscillation amplitude was found to be ∼ 31 pm
(∼ xth · 103 ). Using finite element COMSOL simulations and by
assuming that diamond behaves as a linear elastic material in
the self oscillation regime, these amplitudes correspond to stress
on the order of tens of MPa at the center of the microdisk.
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3. COMPARISON OF QM · fM PRODUCT

The device studied here demonstrates the largest Qm · fm product of an optomechanical device measured in ambient conditions to
date. Figure S2 compares this value with a survey of some of the largest Qm · fm products observed in cavity optomechanical systems
in ambient, cryogenic, and low pressure conditions. Note that higher Qm · fm products have been demonstrated compared to this
work, but required either vacuum or low-temperature environments.
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Fig. S2. Comparison of high Qm · fm product products for a variety of optomechanical systems, as listed in Table S1.

Table S1. Survey of highest Qm · fm products observed in cavity optomechanical systems to date, corresponding to those shown
in Fig. S2.

No. Author/Reference Material Structure
1 Mitchell et al. (This Work) Diamond Microdisk
2 Lu et al. [5] SiC Microdisk
3 Nguyen et al. [6] GaAs Microdisk
4 Mitchell et al. [7] GaP Microdisk
5 Liu et al. [8] Si3N4 Microdisk
6 Fong et al. [9] Si3N4 Beam & Waveguide
7 Grutter et al. [10] Si3N4 Optomechanical Crystal
8 Xiong et al. [11] AlN Suspended Ring Resonator
9 Bochmann et al. [12] AlN Optomechanical Crystal
10 Eichenfield et al. [13] Si Optomechanical Crystal
11 Bui et al. [14] Si3N4 Membrane Photonic Crystal + Fabry Pérot Cavity
12 Wilson et al. [15] Si3N4 Membrane + Fabry Pérot Cavity
13 Reinhardt et al. [16] Si3N4 Membrane + Fabry Pérot Cavity
14 Norte et al. [17] Si3N4 Membrane Photonic Crystal + Fabry Pérot Cavity
15 Zhang et al. [18] Si3N4 Tuning Fork + Microdisk
16 Chan et al.[19] Si Optomechanical Crystal + Phononic Shield
17 Krause et al. [20] Si Optomechanical Crystal + Phononic Shield
18 Meenehan et al. [21] Si Optomechanical Crystal + Phononic Shield
19 Fong et al. [9] Si3N4 Beam + On-chip Interferometer
20 Yuan et al. [22] Si3N4 Membrane + Superconducting Microwave Cavity
21 Purdy et al. [23] Si3N4 Membrane + Fabry Pérot Cavity
22 Yuan et al. [24] Si3N4 Membrane + Superconducting Microwave Cavity
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