

Single-crystal diamond low-dissipation cavity optomechanics: supplementary material

MATTHEW MITCHELL^{1,2}, BEHZAD KHANALILOO^{1,2}, DAVID P. LAKE^{1,2}, TAMIKO MASUDA¹, J.P. HADDEN¹, AND PAUL E. BARCLAY^{1,2,*}

Published 26 August 2016

This document provides supplementary information to "Single-crystal diamond low-dissipation cavity optomechanics," http://dx.doi.org/10.1364/optica.3.000963. First, we briefly describe the model used to extract the temperature shift of the cavity and finite element COM-SOL simulations are used to predict the temperature increase observed in these devices. Secondly, we describe the model used to determine the laser detuning from cavity resonance for a bistable lineshape. We then discuss the calibration of the mechanical noise spectrum, which was utilized to determine the maximum oscillation amplitude as a function of input power. Lastly, we compare the $Q_m \cdot f_m$ product of our device to the current state of the art for optomechanical devices operating in ambient, vacuum, and cryogenic conditions, where we demonstrate the largest $Q_m \cdot f_m$ product to date in ambient conditions . © 2016 Optical Society of America

http://dx.doi.org/10.1364/optica.3.000963.s001

1. THERMAL SHIFT AND BISTABILITY

Here we outline the process for extracting the power dependent detuning, Δ . This process follows Carmon et al. [1], beginning with the expression for the shifted cavity resonance wavelength as a function of temperature, in thermal equilibrium

$$\lambda_o'(\Delta T) = \lambda_o + \Delta \lambda_o \,, \tag{S1} \label{eq:S1}$$

$$= \lambda_{\rm o} \left[1 + \left(\eta_{\epsilon} \epsilon + \eta_{\rm T} \frac{1}{n} \frac{dn}{d{\rm T}} \right) \Delta {\rm T} \right] , \qquad (S2)$$

$$= \lambda_0 \left[1 + a\Delta T \right]. \tag{S3}$$

This expression is obtained by considering thermal expansion of the cavity, determined by the thermal expansion coefficient ϵ , and the thermo-optic effect, which shifts the refractive index n with temperature T. Here $\eta_{\rm T}$ and η_{ϵ} are geometric factors accounting for the optical mode overlap with the changing n and volume, respectively. Lumped constant a describes the net thermo-optic dispersion of the cavity mode. Using the room temperature single–crystal diamond values of $\epsilon \sim 1 \times 10^{-6}$ and $dn/dT \sim 1 \times 10^{-5}$ we can estimate the change in temperature of the cavity as

$$\Delta T = \left[\frac{\lambda'_{o}(\Delta T)}{\lambda_{o}} - 1 \right] \cdot \frac{1}{a}.$$
 (S4)

The shift of $\Delta \lambda_0 \sim 400$ pm, as seen in Fig. 2(a) of the main text, corresponds to a change in device temperature $\Delta T \sim 50$ K. In this device the diamond forming the ~ 100 nm diameter pedestal has a significantly smaller thermal conductivity than that of bulk diamond (K $\sim 1500 \, \mathrm{Wm}^{-1} \mathrm{K}^{-1}$), reaching values $< 100 \,\mathrm{Wm^{-1}K^{-1}}$ for nanowires $< 100 \,\mathrm{nm}$ in diameter [2]. In order to confirm that the cavity temperature shift predicted by Eq. (S4) was reasonable for our system we performed finite element COMSOL simulations to estimate ΔT , including the modified thermal conductivity for the pedestal, as shown in Fig. S1 for varying pedestal widths. Fig. S1 indicates that for a pedestal width of ~ 100 nm, and corresponding diamond thermal conductivity of $\sim 300 \, \text{Wm}^{-1} \text{K}^{-1}$ a shift of 50 K is expected when $P_{\rm abs} \sim 170 \,\mu{\rm W}$, where $P_{\rm abs}$ is the total power absorbed by the cavity. This corresponds to an optical absorption rate, $\gamma_{\rm abs} \times 2\pi \sim 312$ MHz, which is $\sim 10\%$ of the total cavity decay rate, $\gamma_{\rm tot}$. A linear relationship between ΔT and $P_{\rm abs}$ is observed for the pedestal thicknesses studied here.

¹Department of Physics and Astronomy and Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada

²National Institute for Nanotechnology, Edmonton, AB, T6G 2M9, Canada

^{*} Corresponding author: pbarclay@ucalgary.ca

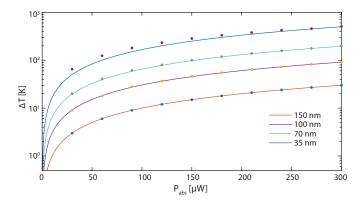


Fig. S1. Simulated change in temperature, ΔT of a $\sim 5 \, \mu m$ diameter microdisk as a function of absorbed power, P_{abs} for varying pedestal widths. Here the total heat flow to the device is given by P_{abs}/V , where V is the volume defined by the outer edge of the microdisk, with $V \sim 2 \, \mu m^3$. Each line represents a linear line of best fit to ΔT as a function of P_{abs} .

To convert (S3) to a form that depends on the experimentally measured, normalized cavity transmission \overline{T} , we treat the microdisk as being in thermal equilibrium with its environment such that

$$\dot{q}_{\rm in} = rac{\gamma_{
m abs}}{\gamma_{
m tot}} P_d$$
 , (S5)

where $\dot{q}_{\rm in}$, and P_d are the heat flow and power dropped into the cavity, respectively. Furthermore, we assume that

$$\dot{q}_{\mathrm{out}} = K\Delta T$$
, (S6)

where *K* is the thermal conductivity between the cavity mode volume and the surrounding [1]. In thermal equilibrium the heat flow into the cavity will be equal to the heat flow out of the cavity, which allows us to write the equilibrium temperature as

$$\Delta T = \frac{\gamma_{\text{abs}}}{\gamma_{\text{tot}}} \frac{P_d}{K}.$$
 (S7)

Next we observe that since $P_d = (1 - \overline{T})P_i$ where P_i is the fiber taper waveguide input power, we can write

$$\Delta T = \frac{\gamma_{\text{abs}}}{\gamma_{\text{tot}}} \frac{(1 - \overline{T})P_i}{K} , \qquad (S8)$$

and the expected cavity mode shift in terms of the resonance contrast

$$\lambda_{\rm o}'(\Delta {\rm T}) = \lambda_{\rm o} \left[1 + a \Delta {\rm T} \right] \,, \tag{S9} \label{eq:S9}$$

$$= \lambda_{\rm o} \left[1 + \left(\frac{a}{K} \frac{\gamma_{\rm abs}}{\gamma_{\rm tot}} P_i \right) (1 - \overline{T}) \right] , \qquad \text{(S10)}$$

$$= \lambda_{\rm o} \left[1 + d(1 - \overline{T}) \right]. \tag{S11}$$

This gives the laser-cavity wavelength detuning, Δ_{λ} as

$$\Delta_{\lambda} = \lambda_{\rm s} - \lambda_{\rm o}',\tag{S12}$$

$$= \lambda_{\rm S} - \lambda_{\rm O} - d(1 - \overline{T}). \tag{S13}$$

where $d = \frac{a}{K} \frac{\gamma_{abs}}{\gamma_{tot}} P_i$ is used as a free parameter in fitting our cavity transmission profile. The laser detuning Δ can then be calculated for any bistable lineshape.

2. SELF OSCILLATIONS AND DISPLACEMENT AMPLI-TUDE

In the weak damping regime ($\gamma_m \ll \omega_m$) the oscillation amplitude of a thermally driven harmonic oscillator is given by the equipartition theorem [3] as

$$x_{\rm th} = \sqrt{\frac{k_{\rm B}T}{m_{\rm eff}\omega_{\rm m}^2}},$$
 (S14)

where k_B is the Boltzmann constant, T = 295 K is the bath temperature, and $m_{\rm eff} = 40$ pg and $\omega_{\rm m}/2\pi \sim 2$ GHz are the effective mass and mechanical frequency of the radial breathing mode studied here, respectively. This results in $x_{\rm th} = 24$ fm and a zero point fluctuation motion, $x_{\rm zpm} = 0.32$ fm.

While $S_P(f) \propto \langle x^2 \rangle$, where $\langle x^2 \rangle$ is the variance of the mechanical displacement, one must be more careful when calculating the mechanical energy. Strictly speaking $\langle x^2 \rangle$ is related to the single sided displacement spectral density $S_{xx}(\omega)$ by

$$\langle x^2 \rangle = \int_0^\infty S_{xx}(\omega) \frac{d\omega}{2\pi}.$$
 (S15)

This can be connected to the measured cavity transmission noise spectrum $S_P(\omega)$ through a cavity transfer function $H(\omega, \Delta)$, P_i , and g_{om} [4]

$$S_P(\omega) = g_{om}^2 P_i^2 S_{xx}(\omega) H(\omega, \Delta).$$
 (S16)

In this experiment we measure $S_P(\omega)$, and can compute the area under the curve, A, given by $A=\int_0^\infty S_P(\omega)\frac{d\omega}{2\pi}$. If we change P_i from P_{i_1} to P_{i_2} , keep Δ constant,and ignore the small ($\sim 0.02\%$) changes in $\omega_{\rm m}$, such that $H(\omega,\Delta;P_{i_1})=H(\omega,\Delta;P_{i_2})$, we can show that the ratio of the area under the curve corresponding to P_{i_1} and P_{i_2} given by A_1 and A_2 , respectively, is

$$\frac{A_1}{A_2} = \frac{P_{i_1}^2 \langle x_1^2 \rangle}{P_{i_2}^2 \langle x_2^2 \rangle}.$$
 (S17)

We can then calibrate high P_i measurements to the thermal case, where P_i is small enough for optomechanical backaction effects to be ignored. The displacement amplitude, $x_{\rm om}$, of the RBM in the self-oscillation regime can then be calculated as

$$x_{\rm om} = x_{\rm th} \sqrt{\frac{A_{\rm om}}{A_{\rm th}} \frac{P_T^2}{P_{\rm om}^2}},$$
 (S18)

where A_{om} and A_{th} are the area under the curve in the driven $(P_i = P_{om})$ and thermal $(P_i = P_T)$ states, respectively. Similarly, for the purpose of comparing mechanical spectra it is useful to calculate the normalized cavity transmission noise spectrum \tilde{S}_P , given by

$$\tilde{S}_P(\omega; P_i, \Delta) = S_P(\omega; P_i) \frac{P_i^2}{P_T^2} \bigg|_{\Lambda}$$
 (S19)

The maximum oscillation amplitude $x_{\rm om}$ is shown as a function of dropped optical power in Fig. 3(a), where the absolute maximum oscillation amplitude was found to be \sim 31 pm ($\sim x_{\rm th} \cdot 10^3$). Using finite element COMSOL simulations and by assuming that diamond behaves as a linear elastic material in the self oscillation regime, these amplitudes correspond to stress on the order of tens of MPa at the center of the microdisk.

3. COMPARISON OF $Q_{\mathbf{M}} \cdot f_{\mathbf{M}}$ PRODUCT

The device studied here demonstrates the largest $Q_m \cdot f_m$ product of an optomechanical device measured in ambient conditions to date. Figure S2 compares this value with a survey of some of the largest $Q_m \cdot f_m$ products observed in cavity optomechanical systems in ambient, cryogenic, and low pressure conditions. Note that higher $Q_m \cdot f_m$ products have been demonstrated compared to this work, but required either vacuum or low-temperature environments.

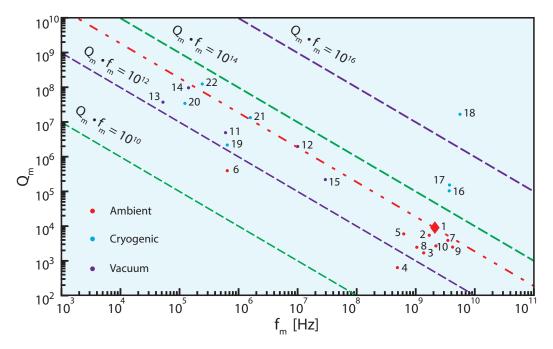


Fig. S2. Comparison of high $Q_m \cdot f_m$ product products for a variety of optomechanical systems, as listed in Table S1.

Table S1. Survey of highest $Q_m \cdot f_m$ products observed in cavity optomechanical systems to date, corresponding to those shown in Fig. S2.

No.	Author/Reference	Material	Structure
1	Mitchell et al. (This Work)	Diamond	Microdisk
2	Lu et al. [5]	SiC	Microdisk
3	Nguyen et al. [6]	GaAs	Microdisk
4	Mitchell et al. [7]	GaP	Microdisk
5	Liu et al. [8]	Si_3N_4	Microdisk
6	Fong et al. [9]	Si_3N_4	Beam & Waveguide
7	Grutter et al. [10]	Si_3N_4	Optomechanical Crystal
8	Xiong et al. [11]	AlN	Suspended Ring Resonator
9	Bochmann et al. [12]	AlN	Optomechanical Crystal
10	Eichenfield et al. [13]	Si	Optomechanical Crystal
11	Bui et al. [14]	Si ₃ N ₄	Membrane Photonic Crystal + Fabry Pérot Cavity
12	Wilson et al. [15]	Si_3N_4	Membrane + Fabry Pérot Cavity
13	Reinhardt et al. [16]	Si_3N_4	Membrane + Fabry Pérot Cavity
14	Norte et al. [17]	Si_3N_4	Membrane Photonic Crystal + Fabry Pérot Cavity
15	Zhang et al. [18]	Si_3N_4	Tuning Fork + Microdisk
16	Chan et al.[19]	Si	Optomechanical Crystal + Phononic Shield
17	Krause et al. [20]	Si	Optomechanical Crystal + Phononic Shield
18	Meenehan et al. [21]	Si	Optomechanical Crystal + Phononic Shield
19	Fong et al. [9]	Si_3N_4	Beam + On-chip Interferometer
20	Yuan et al. [22]	Si_3N_4	Membrane + Superconducting Microwave Cavity
21	Purdy et al. [23]	Si_3N_4	Membrane + Fabry Pérot Cavity
22	Yuan et al. [24]	Si_3N_4	Membrane + Superconducting Microwave Cavity

REFERENCES

- 1. T. Carmon, L. Yang, and K. J. Vahala, "Dynamical thermal behavior and thermal self-stability of microcavities," Opt. Express **12**, 4742–4750 (2004).
- W. Li, N. Mingo, L. Lindsay, D. A. Broido, D. A. Stewart, and N. A. Katcho, "Thermal conductivity of diamond nanowires from first principles," Phys. Rev. B 85, 195436 (2012).
- 3. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, "Cavity optomechanics," Rev. Mod. Phys. 86, 1391–1452 (2014).
- 4. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, "Coherent mixing of mechanical excitations in nano-optomechanical structures," Nature Photon. 4, 236–242 (2010).
- 5. X. Lu, J. Y. Lee, and Q. Lin, "High-frequency and high-quality silicon carbide optomechanical microresonators," Sci. Rep. 5, 17005 (2015).
- 6. D. T. Nguyen, C. Baker, W. Hease, S. Sejil, P. Senellart, A. Lemaître, S. Ducci, G. Leo, and I. Favero, "Ultrahigh *Q*-frequency product for optomechanical disk resonators with a mechanical shield," Appl. Phys. Lett. **103**, 241112 (2013).
- M. Mitchell, A. C. Hryciw, and P. E. Barclay, "Cavity optomechanics in gallium phosphide microdisks," Appl. Phys. Lett. 104, 141104 (2014).
- 8. Y. Liu, M. Davanço, V. Aksyuk, and K. Srinivasan, "Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators," Phys. Rev. Lett. **110**, 223603 (2013).
- 9. K. Y. Fong, W. H. P. Pernice, and H. X. Tang, "Frequency and phase noise of ultrahigh *Q* silicon nitride nanomechanical resonators," Phys. Rev. B **85**, 161410 (2012).
- 10. K. E. Grutter, M. I. Davanço, and K. Srinivasan, "Slot-mode optomechanical crystals: a versatile platform for multimode optomechanics," Optica **2**, 994–1001 (2015).
- 11. C. Xiong, X. Sun, K. Y. Fong, and H. X. Tang, "Integrated high frequency aluminum nitride optomechanical resonators," Appl. Phys. Lett. **100**, 171111–171111 (2012).
- 12. J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, "Nanomechanical coupling between microwave and optical photons," Nature Phys. 9, 712–716 (2013).
- M. Eichenfield, J. Chan, R. Camacho, K. Vahala, and O. Painter, "Optomechanical crystals," Nature 462, 78–82 (2009).
- 14. C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, "High-reflectivity, high-*Q* micromechanical membranes via guided resonances for enhanced optomechanical coupling," Appl. Phys. Lett. **100**, 021110 (2012).
- 15. D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, "Cavity optomechanics with stoichiometric SiN films," Phys. Rev. Lett. **103**, 207204 (2009).
- 16. C. Reinhardt, T. Müller, A. Bourassa, and J. C. Sankey, "Ultralow-noise SiN trampoline resonators for sensing and optomechanics," arXiv:1511.01769 (2016).
- 17. R. A. Norte, J. P. Moura, and S. Gröblacher, "Mechanical resonators for quantum optomechanics experiments at room temperature," Phys. Rev. Lett. **116**, 147202 (2016).
- 18. R. Zhang, C. Ti, M. I. Davanço, Y. Ren, V. Aksyuk, Y. Liu, and K. Srinivasan, "Integrated tuning fork nanocavity optomechanical transducers with high $f_M Q_M$ product and stress-engineered frequency tuning," Appl. Phys. Lett. 107, 131110 (2015).

- 19. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, "Laser cooling of a nanomechanical oscillator into its quantum ground state," Nature **478**, 89–92 (2011).
- A. G. Krause, J. T. Hill, M. Ludwig, A. H. Safavi-Naeini, J. Chan, F. Marquardt, and O. Painter, "Nonlinear radiation pressure dynamics in an optomechanical crystal," Phys. Rev. Lett. 115, 233601 (2015).
- 21. S. M. Meenehan, J. D. Cohen, G. S. MacCabe, F. Marsili, M. D. Shaw, and O. Painter, "Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground state of motion," Phys. Rev. X 5, 041002 (2015).
- 22. M. Yuan, V. Singh, Y. M. Blanter, and G. A. Steele, "Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity," Nat. Commun. 6 (2015).
- 23. T. P. Purdy, R. W. Peterson, P.-L. Yu, and C. A. Regal, "Cavity optomechanics with Si_3N_4 membranes at cryogenic temperatures," New J. Phys. **14**, 115021 (2012).
- M. Yuan, M. A. Cohen, and G. A. Steele, "Silicon nitride membrane resonators at millikelvin temperatures with quality factors exceeding 10⁸," Appl. Phys. Lett. 107, 263501 (2015).