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This document provides supplementary information to “Opto-mechanical inter-core cross-talk in multi-core 
fibers,” https://doi.org/10.1364/optica.4.000289. The following provides a mathematical analysis of the inter-
core, cross-phase modulation that is induced by guided acoustic waves Brillouin scattering in a multi-core fiber. 
First, expressions are derived for phase modulation of probe waves propagating in different cores, due to radial 
acoustic modes that are driven by pump light at the inner central core. The modulation spectra consist of a series of 
narrowband resonances. Calculations are carried out for the geometry of a commercially-available, seven-core 
fiber. The calculated, normalized spectra are in excellent agreement with measurements of the same fiber, 
reported in the Main Text. The analysis is then extended to pump light which propagates in an outer, off-axis core. 
Due to the removal of radial symmetry, high-order torsional-radial modes of the cylindrical cross-section, which 
cannot be addressed in standard single-mode fibers, are stimulated as well. Pump light in an outer core stimulates 
hundreds of individual modes, and gives rise to broad, quasi-continuous inter-core phase modulation spectra up to 
1 GHz frequency. Corresponding measurements of Brillouin scattering due to high-order guided torsional-radial 
acoustic modes are reported in the Main Text. The strength of opto-mechanical cross-talk is quantified in terms of 
equivalent nonlinear coefficients, which depend on the choices of acoustic modes, pump and probe cores, the probe 
state of polarization, and frequency. The nonlinear coefficients may be as high as 1.9 [W×km]-1, and their 
magnitudes are comparable to that of intra-core Kerr nonlinearity in the same fiber. The magnitude of the effect is 
also supported by experiment. © 2017 Optical Society of America 

https://doi.org/10.1364/optica.4.000289.s001

1. Inter-core opto-mechanical cross-phase
modulation driven by pump waves at the central core 
Consider a pump pulse of instantaneous power ( )P t , where t
stands for time, that is propagating in the central core of a multi-
core fiber. The Fourier transform of ( )P t  is denoted by ( )P Ω , 
where Ω  is a radio-frequency variable. (Throughout this analysis, 
the overhanging ~ sign represents frequency-domain variables.) 
The normalized transverse profile of the optical mode of the 
central core of the fiber is ( ) ( )1

TE r , with r  the radial coordinate.  
Acoustic modes are driven by an electro-strictive force per unit 

volume that is induced by the pump pulse. In general, the driving 
force vector consists of radial and azimuthal components that 
depend on both r  and the azimuthal coordinate ϕ  [1]. However, 

in our experiment we deliberately scramble the polarization of 
pump pulses, so that ϕ -dependent terms average out. The 
remaining radial force term is given by [1]: 
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Here n  is the refractive index of silica, c  is the speed of light in 
vacuum, and the parameters 1,2a  are drawn from elements of the 

photo-elastic tensor P  of silica [1]: ( )4
1 11 12a n P P= − −  and 

4
2 12a n P= − , where 11P  = 0.121 and 12P  = 0.27. 
 The electro-strictive force stimulates radial acoustic modes of 

the fiber, denoted by 0mR  where m  is an integer. The local Fourier 
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component of the material displacement vector in mode 0mR  and 
frequency Ω  may be expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ˆ,m m m
r rU r A u r rΩ = Ω



 , where r̂  is the radial unit 

vector, ( ) ( )m
rA Ω  denotes the Fourier component of modal 

displacement magnitude (in units of m2/Hz), and ( ) ( )m
ru r  is the 

normalized transverse profile:  
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Here a  is the cladding radius, and dv  = 5,996 m/s is the velocity 
of longitudinal sound waves in silica. The modal cut-off frequency 
is given by ( )m d mv a ξΩ = , where mξ  is the mth-order solution 
to the equation [2]:  
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In Eq. (S3), sv   = 3740 m/s is the shear velocity of sound waves 
in silica. Each mode 0mR  is also characterized by a linewidth mΓ , 
which is determined by the acoustic dissipation in silica, the 
mechanical impedance matching between silica and the polymer 
coating or other surrounding medium, and radius inhomogeneity 
and ellipticity of the cladding [3,4]. Throughout this entire analysis, 
we assume that the transverse profiles and dispersion relations of 
the acoustic modes are unaffected by the presence of the fiber 
cores.  

The frequency-domain, modal displacement magnitude may be 
found by solving the elastic wave equation, subject to the driving 
force of Eq. (S1) [1]. The solution is of the form:  
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Here 0ρ  is the density of silica, and we approximate mΩ ≈ Ω  in 
the term outside the squared brackets in the final expression. The 
electro-strictive transverse overlap integral, which affects the 
stimulation of 0mR , is defined as follows:  
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The stimulation of the acoustic wave is resonant around the 
modal cut-off frequency mΩ . The Fourier component of the 

acoustic displacement ( ) ( )m
rA Ω  is related to ( )P Ω  through 

multiplication by a narrowband, electro-strictive transfer function 
that is of Lorentzian line-shape. In cases of practical interest 

1m m m±Ω −Ω >> Γ  for all m . Therefore, only a single radial 
mode (at most) may be stimulated at each Ω . 

The acoustic disturbances induce perturbations of magnitude 
( ) ( ),m rδ Ωε  to the local dielectric tensor. Only transverse 

components of optical fields are considered in this analysis, hence 
( ) ( ),m rδ Ωε  is regarded as a 2×2 tensor. Changes are given by the 

product of the photo-elastic tensor P  and the tensor of local 
acoustic strain magnitude ( ) ( ),m r ΩS . For radial acoustic modes, 
the normal strain components in the radial and azimuthal 
directions are given by the following two expressions, respectively: 
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and there is no shear strain [1]. The photo-elastic corrections to the 
radial and azimuthal elements of the local dielectric tensor equal: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2, , , ,m m m
rr rrr a a S r a S rϕϕδε Ω = + Ω + Ω 

  (S8) 
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The acoustic modification to the effective dielectric constant seen 

by the probe wave as a whole, 
( ) ( )m

δ Ωε , is obtained by the 
transverse overlap integral between the local perturbation tensor 

( ) ( ),m rδ Ωε  and the profile of the probe optical mode. (The 
overhanging bar sign denotes transverse spatial averaging, 
weighted by the modal profile of the probe wave.) The results 
depend on the choice of core in which the probe wave is 
propagating, and possibly on its state of polarization as well. When 
the probe wave is propagating at the inner core of the multi-core 

fiber, alongside the pump pulse, the tensor 
( ) ( )m

δ Ωε  becomes 
diagonal for any choice of Cartesian axes, with diagonal values:  
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Here we defined the photo-elastic overlap integral [1]: 
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Since 
( ) ( ) 2m

nδε Ω << , we may well approximate the 
modification to the effective index of the probe wave according to: 

( ) ( ) ( ) ( ) ( )2
m m

n nδ δεΩ ≈ Ω , leading to: 

2
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When the probe wave is propagating in an outer core, and the 
separation between cores is much larger than the mode field 
diameter (MFD) in the outer core, we may distinguish between 
two orthogonal, linear states of polarization of the probe wave. Let 
us denote the normalized transverse profile of the probe wave as 

( ) ( )2 ,TE r ϕ . The radial unit vector r̂ , throughout the extent of 
( ) ( )2 ,TE r ϕ , is closely aligned with the unit vector 1e  that connects 

between the centers of the inner and outer cores. The azimuthal 
unit ϕ̂  vector is closely aligned with the orthogonal unit vector 2e . 
Hence, at the basis 1,2e  we may identify: 

( ) ( ) ( ) ( )11, ,m m
rrS r S rΩ ≈ Ω   and ( ) ( ) ( ) ( )22, ,m mS r S rϕϕ Ω ≈ Ω  . These 

considerations suggest two principal axes of birefringence for 
opto-mechanical index perturbations in the outer core. The two 
corresponding expressions of the dielectric constant perturbation, 

( ) ( )11
m

δε Ω  and 
( ) ( )22
m

δε Ω , are of the same form of Eq. (S10). 
However, the photo-elastic overlap integral of Eq. (S11) is replaced 
by either of the following two expressions:  

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2
,1

1 2 2
0 0

22

d
d

, d d

m ma
m r r

PE

T

u r u r
Q a a a

r r

E r r r

π

ϕ ϕ

 
= + + × 

  

×

∫ ∫
 (S13) 

 
for the 1e  axis, and:  
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for the 2e  axis. Lastly, the Fourier components of cross-phase 
modulation (XPM) to the probe wave are given by the product of 

the index perturbation 
( ) ( )m

nδ Ω , the vacuum wavenumber of 

the probe wave 0k  and the length of the fiber L : 
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In Eq. (S15) 1,2i = . This expression also appears as Eq. (1) in 
the Main Text. Here we have defined the equivalent opto-
mechanical nonlinear coefficient, in units of [W×km]-1, following 
[5]: 
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Note that the opto-mechanical nonlinear coefficient may be of 
positive or negative sign. As seen in Eq. (S15), ( ),m i

OMγ  holds a similar 

role to that of the Kerr effect nonlinear coefficient Kerrγ , and the 

two may be compared. The coefficient ( ),m i
OMγ  is mode-specific and 

core-specific, depends on the geometry of the fiber, and may also 
vary with the state of polarization of the probe wave as discussed 
above. For 2m ≥ , ( ) ( ),2 ,1m m

OM OMγ γ> . The instantaneous phase 

perturbation of the probe wave, ( ) ( )i
OM tδφ , may be obtained by the 

inverse Fourier transform of Eq. (S15) and summation over m .  

The power spectral density ( ) ( ), 2m i
OMδφ Ω  of inter-core XPM due 

to guided acoustic waves Brillouin scattering in a commercial 
seven-core fiber was calculated numerically, using the above 
expressions. The obtained normalized spectra are in excellent 
agreement with corresponding experimental measurements (see 
Fig. 3(d) of Main Text). The largest nonlinear coefficient for a probe 
wave in an outer core was obtained for mode 08R , at the 
resonance frequency 8Ω  = 2π⋅369.2 MHz. Calculations suggest 

( )8,1
OMγ  = 0.9 ± 0.1 [W×km]-1 and ( )8,2

OMγ  = 1.9 ± 0.1 [W×km]-1. 

Uncertainty is due to tolerance in MFD specifications. These values 
are comparable with Kerrγ = 4 [W×km]-1 in the same fiber. 

2. Modelling of guided acoustic wave Brillouin 
scattering within a Sagnac loop  
Opto-mechanical, inter-core XPM was experimentally measured in 
a seven-core fiber that was placed in a Sagnac interferometer loop 
(see Main Text, [4,6]). The probe wave propagated along the loop 
in both directions, whereas the pump pulses propagated in the 
clockwise (CW) direction only. Due to the wave-vector matching 
characteristics of guided acoustic wave Brillouin scattering, the 
CW-propagating probe wave was subjected to linear birefringence 
in the fiber as well as opto-mechanical XPM, whereas the counter-
clockwise (CCW) probe wave was affected by birefringence only 
[4,6].   

The experimental procedure is modelled by dividing the fiber to 
N  segments of equal lengths dz L N= . Calculations are 

formulated at the orthogonal basis 1,2e . Let us denote the input 

Jones vector of the probe wave as inA


. The Jones matrix describing 
the propagation of the probe in the CW direction along segment 

1j N=  , in the absence of pump, is noted by jT . Each such 
matrix represents linear birefringence with randomly-drawn 
magnitude and principal axes. The statistics of the local 
birefringence magnitude are defined by a beat length bL  [7], and 
the local axes of birefringence evolve according to a coupling 
length cL  [7]. The polarization transformation of a polarization 
controller, located at the input end of the loop in the CW direction, 
is represented by Jones matrix PCT . The output Jones vector of the 
CW-propagating probe wave, in the absence of pump, is therefore 
given by:  
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CW j PC in

j

A A
=
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The factor of 1 2  represents the two paths through the loop 
input/output coupler.  

We consider a pump that is modulated by a sine wave at the 
frequency of an acoustic resonance, so that: 
( ) ( )p mP P δΩ = ⋅ Ω −Ω  with pP  the modulation magnitude in 

3



[W]. The pump wave introduces modulation of the CW probe 
wave, at frequency mΩ . In order to determine the magnitude of 
probe modulation, we calculate the following, modified output 
Jones vector for the CW direction of propagation:  
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 where:  
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The pump power is chosen so that ( ), 1,m i
OM pP Lγ <<  1,2i = . The 

CCW-propagating probe wave is unaffected by the pump. It passes 
through the same set of polarization transformations in reverse 
order, and in the opposite direction:  
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Here the superscript T denotes the transpose operation.  
The probe power at the loop output is oscillating at mΩ  about a 

bias value 
2

02ref ref ref
eff CCW CWP nc A A Ae= +
 

, with a magnitude that 

is given by  ( ) ( )( )2 2

02m mref ref ref
eff CCW CW CCW CWP nc A A A A Aδ e= + − +

δδδδ  

. 

Here effA  is the effective area of the probe optical mode, and 0ε  is 

the vacuum permittivity. For each realization { }jT , both PCT  and 

inA


 are varied over hundreds of arbitrary states in attempt to 

maximize ( )mPδ . The strongest oscillation of probe output 

power is achieved when the states of polarization of ref
CCWA


 and 
ref
CWA


 are parallel, and the difference between the phase delays 
acquired in the CW and CCW directions without pump is 2π . In 

these conditions 
2

1 1
02 22ref

eff in inP nc A A Pe= ⋅ ≡


. The 

adjustments of the input state of polarization and of the controller 
inside the loop replicate the experimental procedure. An estimate 
of the inter-core, opto-mechanical nonlinear coefficient for the 
particular fiber realization can be obtained according to:  
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P P L

δ
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Since the CW probe wave accumulates XPM over the entire 
length L , and the probe wave polarization varies at random as a 
function of position z , the estimated nonlinear coefficient above 
represents an averaged value, denoted here as 

z
. Equation 

(S21) is equivalent to Eq. (5) of the Main Text, which is used in the 
interpretation of experimental data. An intermediate value of  

( )m
OM z
γ  between ( ),1m

OMγ  and  ( ),2m
OMγ  can be expected.  

Calculations were carried out for pump wave modulation at 
frequency 8Ω , over hundreds of arbitrary fiber realizations. The 

obtained nonlinear coefficients were ( )8
OM z
γ  = 1.4 ± 0.2 

[W×km]-1, in agreement with expectations. The uncertainty 
represents the standard deviation among the results obtained for 

many fiber realizations. The results showed little sensitivity to the 
specific choices of beat length bL  or coupling length cL , provided 
that both are shorter than the 30 meters-long fiber. Note that the 
coiling of a multi-core fiber over tens-of-cm radii induces strain in 
off-axis cores, giving rise to comparatively large birefringence and 
an estimated beat length shorter than 1 meter. The corresponding 
experimentally measured value of the nonlinear coefficient is 

( )8
OM z
γ  = 1.3 ± 0.2 [W×km]-1 (see Main Text). Hence the analysis 

supports not only the spectral shape of inter-core, opto-mechanical 
XPM by radial acoustic modes, but also its absolute magnitude.     

3. Inter-core opto-mechanical cross-phase 
modulation driven by pump waves at outer cores 
Optical pump waves propagating at a central radially-symmetric 
core may only stimulate two classes of guided acoustic modes: the 
radial modes 0mR  discussed above, and torsional-radial modes 

2mTR  that exhibit two-fold azimuthal symmetry [2]. Brillouin 
scattering due to the latter category averages out when the 
polarization of the pump wave is scrambled. When both pump and 
probe waves propagate in outer, off-axis cores, guided acoustic 
waves Brillouin scattering may take place through more general 
torsional-radial modes pmTR  as well, where 1m ≥  and 0p ≥  are 
integers. Stimulated scattering involving these modes takes place 
even when the state of polarization of the pump wave in an outer 
core is scrambled. In this section, the previous analysis of guided 
acoustic wave Brillouin scattering in multi-core fibers is extended 
to include pmTR  modes. For simplicity, we continue to assume 
hereunder the scrambling of pump polarization, so that the 
electro-strictive driving force retains its shape of Eq. (S1), with the 
proper transverse offset: 
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Here r  is the transverse position vector, r  denotes again the 
radial coordinate, and ( ) ( )1

TE r stands for the transverse profile of 
an optical mode, defined with its center at the origin. Also in Eq. 
(S22), 0r

  is the location of the center of an outer core, f̂  is a unit 
vector in the direction of 0r r−  , and: 
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In order to calculate the cutoff frequencies and transverse 
profiles of modes pmTR , let us define the quantities ( ) sa vΨ ≡ Ω  

and ( ) da vΦ ≡ Ω , the operator ( ) ( ) ( )1p p pJ Jξ ξ ξ ξ−Θ ≡ , 

and the matrix ( )p ΩM  [8,9]:  
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The cutoff frequency of mode pmTR , noted as pmΩ , is given by 
the mth-order solution to the equation [8,9]:  

 ( )det 0p Ω =M  (S25) 

Two orthogonal solutions exist for the normalized transverse 
displacement vectors ( ) ( )pmu r 

 of mode pmTR . These are 

determined by a pair of coefficients: ,pm pmD C . The calculation of 
these coefficients is provided in detail in [10]. The radial and 
azimuthal components of the first solution for ( ) ( )pmu r 

 are given 
by [10,11]:  

 

( ) ( )

( )

'

cos

pm pmpm
r pm pm p

d d

pm
pm p

s

u r B D J r
v v

p C J r p
r v

ϕ

 Ω Ω 
= +  

  
Ω 

+  
 

d

 (S26) 

 and:  
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respectively. In Eq. (S26) and Eq. (S27), pmB  is a normalization 

constant, chosen so that: ( ) ( )
2

1pmu r ds =∫∫
dd  . Integration is 

carried out over the cladding cross-section, and ds  is an area 
element. In the second orthogonal solution for ( ) ( )pmu r 

, the 

azimuthal dependence of ( ) ( )pm
ru r  in Eq. (S26) is replaced with 

( )sin pϕ , and that of ( ) ( )pmu rϕ


 in Eq. (S27) is changed to 

( )cos pϕ . The following analysis, from this point onwards, must 

be repeated twice for each pmTR , once for each azimuthal 
orientation. The two contributions to the overall process should be 
added together.   

The material displacement vector is given by  
( ) ( ) ( ) ( ) ( ),pm pm pm

rU r A u rΩ = Ω


  

 , with the following modal 
displacement magnitude:  

 

( ) ( ) ( ) ( ) ( )

( )
( )

0

1
2

.
2

pm pm

pm pm

pm pm

A G r u r ds
nc

P
j

r
Ω = ⋅ ×

G Ω

Ω
×

− Ω−Ω G

∫∫
d

ddd 





 

(S28) 

Here pmΓ  is the linewidth of mode pmTR . For brevity, we define 
next the electro-strictive overlap integral:  

 ( ) ( ) ( ) ( ) ,pm pm
ESQ G r u r ds≡ ⋅∫∫

d

ddd    (S29) 

and the modal frequency response:  

 ( ) ( )
1 ,

2pm
pm pm

H
j

Ω ≡
− Ω−Ω Γ

 (S30) 

so that the material displacement vector may be written as:  

 ( ) ( )
( ) ( ) ( ) ( ) ( )

0

, .
2

pm
ES pmpm pm

pm pm

Q H P
U r u r

ncr
Ω Ω

Ω =
Γ Ω

 

  

  (S31) 

This expression is a generalization of Eq. (S4). The elements of 
the symmetric strain tensor associated with mode pmTR , in 
Cartesian transverse coordinates ,x y , are given by:  

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

0

0

, ,1,
2

1
2 2

,
2

pm pm
pm k l

kl

pm pm pm
ES pm k l

pm pm

pm
pmES

kl pm
pm pm

U r U r
S r

l k

Q H P u r u r
nc l k

Q
s r H P

nc

r

r

 ∂ Ω ∂ Ω
Ω = + 

∂ ∂  
 Ω Ω ∂ ∂

= + 
Ω Γ ∂ ∂  

= Ω Ω
Ω Γ

 

 





 







 

(S32) 

where , ,k l x y= , and:   

 ( ) ( )
( ) ( ) ( ) ( )1 .

2

pm pm
pm k l

kl

u r u r
s r

l k

 ∂ ∂
≡ + 

∂ ∂  

 

  (S33) 

In the absence of linear birefringence in the propagation of the 
probe wave [12,13], the photo-elastic perturbations to the 
elements of the local dielectric tensor due to mode pmTR  may be 
expressed as:   

 

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

11 12
4

12 11

44

11 12
4

12 11
0

44

, ,0
, 0 ,

0 0, 2 ,

0
0

2
0 0 2
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xx xx
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xy xy
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yy
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xy

r S rP P
r n P P S r

Pr S r

s rP P
Q H P

n P P s r
nc

P s r

δε

δε

δε

r

   Ω Ω     Ω = − Ω        Ω Ω       

 
Ω Ω  = ⋅−  Ω Γ  

 
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



δδ





δδ





δ



δ

δ

( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )0

,
2
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xxpm

ES pm pm
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xy
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Q H P

q r
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q r
r

 
 
 
 
  

 
 Ω Ω

=  
Ω Γ  
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δ


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(S34) 

where we have defined the elements of a tensor ( ) ( )pm rq 

: 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

11 12
4

12 11

44

0
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0 0 2

pm pm
xx xx

pm pm
yy yy

pm pm
xy xy

q r s rP P
q r n P P s r

Pq r s r

        ≡ −        
       

 

 

 

 (S35) 

The photo-elastic tensor elements used in the above relations 
are 11P  = 0.121, 12P  = 0.27, and ( )1

44 11 122P P P= − . The photo-
elastic perturbation to the dielectric tensor seen by the probe is 
calculated through the overlap integrals between the local 
dielectric modification and the transverse profile of the probe 
wave:  

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

22
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0

,
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,
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.
2
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Q H P
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dε dε
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Ω Ω
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Ω Γ

Ω Ω
=

Ω Γ

∫∫

∫∫
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 



dd



 (S36) 
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The elements of the photo-elastic overlap tensor ( )pm
PEQ , used in 

Eq. (S36), are defined by:  

 ( ) ( ) ( ) ( ) ( )
22

, .pm pm
PE kl kl TQ q r E r ds≡ ∫∫

dd   (S37) 

This definition provides a generalization of the photo-elastic 
overlap integrals ( )m

PEQ  of Eqs. (S11), (S14) and (S15) in section 1.  

Let us denote the eigen-values of the tensor ( )pm
PEQ  as ( ),pm i

PEQ , 

1,2i = , and the corresponding eigen-vectors as ( )ˆ pm
ie . Scattering 

by the guided acoustic mode pmTR  introduces birefringence to the 

propagation of the probe wave, with principal axes ( )ˆ pm
ie  and 

respective index perturbations given by:  

 ( ) ( )
( ) ( ) ( ) ( ), ,

0

1 .
2 2

pm
ES pmpm i pm i

PE
pm pm

Q H P
n Q

n nc
δ

ρ
Ω Ω

Ω =
Ω Γ



  (S38) 

Note that the eigen-vectors ( )ˆ pm
ie may vary among modes. The 

XPM of a probe wave that is polarized along ( )ˆ pm
ie  due to mode 

pmTR  is given by:  

 ( ) ( ) ( ) ( ), ,
0 .pm i pm i

OM k n Lδφ δΩ = ⋅ Ω ⋅

  (S39) 

Two equivalent, mode-specific opto-mechanical nonlinear 
coefficients may be defined in a manner similar to Eq. (S16):  

 ( )
( ) ( ),

, 0
2

0

,
4

pm pm i
pm i ES PE

OM
pm pm

k Q Q
n c

γ
ρ

≡
Ω Γ

 (S40) 

so that:  

 ( ) ( ) ( ) ( ) ( ), , .pm i pm i
OM OM pmH P Lδφ γΩ = Ω Ω   (S41) 

Unlike the inter-core XPM due to radial acoustic modes 
discussed in section 1, large overlap is expected between the 
resonant spectra of scattering by different pmTR  modes. 
Therefore, phase modulation of the probe wave at a given Ω  may 
well be affected by multiple modes. Care must be taken in the 
summation of XPM due to different modes, since the respective 
principal axes of opto-mechanical birefringence are generally not 
the same. To work around this difficulty, we may define a 
frequency-dependent opto-mechanical tensor, which brings 
together the contributions of all modes at given Ω :  

 ( )
( )

( ) ( )

,
.

pm
pmES

OM pm PE
p m pm pm

Q
HΩ ≡ Ω

Γ Ω∑H Q  (S42) 

We note again that summation should also be carried out over 
the two azimuthal solutions for the material displacement vector 
of each pmTR  mode. One may then find the frequency-dependent, 

overall unit eigen-vectors ( ) ( )ˆ i
OMh Ω  and eigen-values ( ) ( )i

OMH Ω  of 

( )OM ΩH , 1,2i = . Opto-mechanical XPM to a probe wave 

polarized along ( ) ( )ˆ i
OMh Ω  can be expressed as:  

 ( ) ( ) ( ) ( ) ( )0
2

0

.
4

i i
OM OM

k L
H P

n c
δφ

ρ
Ω = Ω Ω    (S43) 

Frequency-dependent (rather than mode-dependent) nonlinear 
coefficients may be defined:  

 ( ) ( ) ( ) ( )0
2

0

.
4

i i
OM OM

k
H

n c
γ

ρ
Ω ≡ Ω

  (S44) 

The frequency-dependence of the opto-mechanical eigen-

vectors ( ) ( )ˆ i
OMh Ω  may lead to the depolarization of broadband 

probe waves. Last, the combined probe modulation due to 
multiple pump waves propagating in different cores may be 
calculated through the summation over contributions 
( ) ( )OMP Ω ΩH  , driven from all cores. The addition of terms may 

be constructive or destructive, depending on the eigen-values and 
eigen-vectors of the opto-mechanical tensors and on the radio-
frequency phase relations among the Fourier components of the 
multiple pump waves.  

The analysis above describes inter-core Brillouin scattering 
through guided torsional-radial acoustic modes when the fiber is 
free of linear birefringence. However, photo-elastic perturbations 
due to these modes become more complex when linear 
birefringence is present as well [11,12]. The local dielectric tensor 
is then further modified by an additional rotational term, which is 
determined by the anti-symmetric strain tensor [12,13]. Let us 
denote, without loss of generality, the x̂  and ŷ  directions as the 
principal axes of birefringence at the core in which the probe wave 
is propagating, and define the rotational part of the displacement 
gradient as [13]:  

 ( ) ( )
( ) ( ) ( ) ( ),,1, .

2

pmpm
ypm x

xy

U rU r
W r

y x

 ∂ W∂ W
W ≡ − 

∂ ∂  









  (S45) 

The rotational displacement gradient vanishes for purely radial 
modes, however it is nonzero for torsional-radial acoustic modes. 
The birefringence-related term of the local photo-elastic 
perturbation to the dielectric tensor is given by [13]: 

 ( ) ( ) ( ) ( )
0 1

, , ,
1 0

pm pm
b xy xyr n n W rδ

 
W = ⋅∆ W  

 
ε δδ



  (S46) 

where xyn∆  is the difference between the effective refractive 
indices of probe light polarized along the two principal axes of 
linear birefringence. The overall photo-elastic perturbation tensor 
is given by ( ) ( ) ( ) ( ), ,pm pm

br rδ δΩ + Ωε εδδ

  . Complete calculations of 
the probe phase modulation due to torsional radial modes 
therefore mandate knowledge of the fiber linear birefringence. The 
analysis of this additional term is beyond the scope of the current 
work. Note that the birefringence-related term ( ) ( ),pm

b rδ Ωε δ

  is 

typically much smaller than ( ) ( ),pm rδ Ωε δ

  [13].  
Numerical analysis of stimulated Brillouin scattering by guided 

pmTR  acoustic modes was carried out following the above 
formalism, for the seven-core commercial fiber studied in this 
work. The analysis suggests that hundreds of different torsional-
radial modes contribute to inter-core phase modulation. 
Azimuthal orders 0 36p≤ ≤  were considered. The calculated 
XPM spectra become broad and quasi-continuous up to 
frequencies of 1 GHz, depending on the choices of cores. These 
spectra are markedly different from those of XPM driven by radial 
modes only, which consist of few discrete, sparse resonances with 
larger spectral separations. Equivalent nonlinear coefficients as 
high as 1.8 [W×km]-1 were calculated for 526 MHz frequency. 
Guided acoustic waves Brillouin scattering driven by pump light in 
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outer cores is therefore qualitatively different from a 
corresponding process that is stimulated by light at the inner core.    

Inter-core XPM due to pump light at an outer core was measured 
experimentally, using short pump pulses (see Main Text). A broad, 
quasi-continuous spectrum, consisted of a large number of modes, 
was observed in agreement with expectations. Opto-mechanical 
cross-talk was significant up to frequencies of 750 MHz, limited by 
the bandwidth of pump pulses. Several resonances observed in the 
measured XPM spectrum match the frequencies of specific 
acoustic mode groups. These results corroborate the qualitative 
predictions of the analysis, and provide a first observation of 
scattering involving general pmTR  modes in all-solid, cylindrical 
fiber. Multi-core fibers therefore exhibit richer opto-mechanical 
coupling phenomena that cannot be addressed in standard, single-
mode fibers. Continuous spectra, involving a large number of 
complex acoustic modes, were previously observed in a single-
core, photonic crystal fiber [14].  

Unlike the earlier discussion of 0mR  modes, the details of 
calculated and measured spectra of XPM by pmTR  modes do not 
fully agree. A possible explanation for the observed differences is 
due to the contribution of linear birefringence according to Eq. 
(S46), however this effect might not be substantial enough. 
Another potential cause for discrepancy is depolarization. The 
probe wave modulation is polarization-dependent, with principal 
axes that vary with frequency. Hence the visibility of interference 
between CW and CCW probe waves may become frequency-
dependent, and distort the measured spectra. Further, torsional-
radial modes of azimuthal orders p  > 36 might also contribute to 
inter-core cross-talk. Lastly, the doping profiles of the cores may 
modify the exact resonance frequencies and transverse profiles of 
high-order torsional-radial modes. Acoustic guiding in the core is 
known, for example, in backwards stimulated Brillouin scattering. 
This effect was not included in the analysis.  

The quantitative study of guided acoustic waves Brillouin 
scattering in multi-core fibers remains the subject of ongoing 
work. Nevertheless, broadband inter-core cross-talk that is 
mediated by a large number of high-order, guided acoustic modes 
was demonstrated in both analysis and experiment.  
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