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This document provides supplementary information to “Quantum-enhanced interferometry 
with weak thermal light,” https://doi.org/10.1364/optica.4.000487. The mathematical model behind 
photon subtraction, a discussion on the photon distribution, an explanation about 
common-path interferometers, and information on the photon counting scheme are presented 
below. © 2017 Optical Society of America
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1. PHOTON SUBTRACTION

In the following we present a detailed calculation of the effect
of the subtraction on the quantum state of a photon that leaves
a Mach-Zehnder interferometer. The two input ports of the
interferometer (a, b) are fed by a thermal state and the vacuum
state respectively (See Fig. S1). Let us first derive the the reduced
density matrix at the two output ports (c, d). A schematic version
of the model is given in Fig. S1 The output ports are related to
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Fig. S1. Conceptual representation of a thermal interferometry
experiment to observe the enhancement of signal and signal-
to-noise ratio as result of photon subtraction.

the input ports through a unitary transformation:

ĉ =
1
2

{
iyâ− xb̂

}
d̂ =

1
2

{
iyb̂ + xâ

}
(S1)

where x = 1− eiϕ, and y = eiϕ + 1. The input state is given by

ρ̂0 = ∑
n

n̄n

(1 + n̄)n+1 |n〉a a〈n| ⊗ |0〉b b〈0|. (S2)

The reduced density matrix of the state at port c can be derived
by taking a partial trace on d:

ρ̂0c = Trd[ρ̂0] =
∞

∑
m=0

d〈m|ρ̂0|m〉d (S3)

To evaluate this density matrix we need to calculate the follow-
ing quantity

Am,n = d〈m| ⊗ c〈n|ρ̂0|n〉c ⊗ |m〉d

=
1

m!n! d〈0| ⊗ c〈0|dmcn ρ̂0c†nd†m|0〉c ⊗ |0〉d (S4)
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Note that |0〉c ⊗ |0〉d = |0〉a ⊗ |0〉b, and we can expand this
expression to evaluate it;

Am,n =
1

m!n!4m+n a〈0| ⊗ b〈0|(−xb̂ + iyâ)n

(iyb̂ + xâ)m ρ̂
(a)
th ⊗ |0〉b b〈0|(−iyb̂† + xâ†)m

(−xb̂† − iyâ†)n|0〉a ⊗ |0〉b

=
|x|2m|y|2n

m!n!4m+n a〈0|ân+m ρ̂
(a)
th â†(n+m)|0〉a

=
|x|2m|y|2n

m!n!4m+n ∑
i

n̄i| a〈0|ân+m|i〉a|2
(1 + n̄)i+1

=
|x|2m|y|2n(m + n)!

m!n!4m+n
n̄m+n

(1 + n̄)m+n+1 (S5)

Using this result one can calculate the diagonal elements of the
reduced density matrix.

c〈n|ρ̂c|n〉c = ∑
m
Am,n

=
|y|2nn̄n

4n(1 + n̄)n+1 ∑
m

(n+m
m

) ( n̄|x|2
4(1 + n̄)

)m

=
|y|2nn̄n

4n(1 + n̄)1+n (
1

1− n̄|x|2
4(1+n̄)

)n+1

=
|y|2nn̄n

4n
1

(1 + n̄|y|2
4 )n+1

(S6)

Furthermore one can readily confirm that 〈i|ρ̂c|j〉 vanishes if
i 6= j. Thus the density matrix at port ĉ can be written as

ρ̂c = ∑
n

(n̄ cos2 ϕ
2 )

n

(1 + n̄ cos2 ϕ
2 )

n+1
|n〉c c〈n| (S7)

which a thermal state with the reduced occupation number and
standard deviation of

n̄c = Tr[ĉ† ĉρ̂c] = n̄ cos2 ϕ

2
, σc =

√
n̄2

c + n̄c (S8)

Similarly one can show that the reduced density matrix at port
d̂ is a thermal state with the reduced occupation number and
standard deviation of

n̄d = Tr[d̂† d̂ρ̂0] = n̄ sin2 ϕ

2
, σd =

√
n̄2

d + n̄d (S9)

Next we study the effect of photon subtraction on the reduced
density matrices at output ports. Subtracting a photon in port ĉ
can be described by the following operation:

ρ̂0 → ρ̂1 =
ĉρ̂0 ĉ†

Tr[ĉρ̂0 ĉ†]
. (S10)

By taking partial trace one can then find the reduced density
matrix at each of the output ports.

ρ̂1c = Trd[ρ̂1].

First we note that

d〈m| ⊗ c〈n|ρ̂1|n〉c ⊗ |m〉d =
n + 1

n̄c
Am,n+1 (S11)

Thus the diagonal elements of the reduced density matrix can
be found as following

c〈n|ρ̂c|n〉c =
n + 1

n̄c
∑
m
Am,n+1 =

(n + 1)n̄n
c

(1 + n̄c)n+2 (S12)
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Fig. S2. (a) Photon distribution for the thermal light distribu-
tion that we used in the experiment. (b) Photon number dis-
tribution for the photon-subtracted thermal light. (c) Photon
number distribution for the two-photon-subtracted thermal
light. The dark bars represent the experimental results and the
bright bars are the corresponding theory predictions.

One can readily confirm that the off-diagonal elements are all
zero and thus the reduced density matrix in port ĉ after the
subtraction are given by

ρ̂1c = ∑
n

(n + 1)n̄n
c

(1 + n̄c)n+2 |n〉c c〈n|. (S13)

The average occupation number and the standard deviation of
this distribution are

Tr[ĉ† ĉρ̂1] = 2n̄ cos2 ϕ

2
= 2n̄c

(Tr[(ĉ† ĉ)2ρ̂1]− Tr[ĉ† ĉρ̂1]
2)1/2 =

√
2σc (S14)

Note that the standard deviation increases only by a factor of√
2 whereas the signal is multiplied by a factor of 2, and thus

the signal-to-noise ratio is enhanced by a factor of
√

2. Similarly
one can show that the conditioned on subtracted events in mode
ĉ the average occupation number in port d̂ doubles and the
standard deviation is enhanced by a factor of

√
2 too.

Tr[d̂† d̂ρ̂1] = 2n̄ sin2 ϕ

2
= 2n̄d

(Tr[(d̂† d̂)2ρ̂1]− Tr[d̂† d̂ρ̂1]
2)1/2 =

√
2σd (S15)

We emphasize that this surprising result could be expected since,
in contrast with the input ports, the density matrix at the output
ports are correlated.

2. PHOTON DISTRIBUTION

When a beam of light that can be described by a coherent state
is passed through a rotating ground glass light is scattered in
a speckle pattern. If light from this scattering is coupled into
a single-mode fiber the emerging light possess thermal distri-
bution. In Fig. (S2 a) we plot this distribution and compare it
with the theory. For the sake of completeness we have also in-
cluded plots for the one-photon subtracted state and two-photon
subtracted states in Fig. (S2 b) and Fig. (S2 c)
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Fig. S3. A schematic representation of a common-path Mach-
Zehnder interferometer that induces a variable phase between
the two polarizations.

3. COMMON PATH MACH-ZEHNDER INTERFEROME-
TER

In a conventional Mach-Zehnder interferometer the first beam
splitter separates the beam into two parts. Each part takes a
separate path and and then we bring the two paths together
and recombine them using another beam splitter. The difference
between the accumulated phase of the paths determines the
intensity distribution at the two output ports. A challenging
aspect of an MZI is its stability; A slight instability in any of the
components would lead to phase instability and diminishes the
fringe visibility. To alleviate this problem one can replace the
two spatially separated paths by polarization, and uses wave
plates to induce a phase between the two polarizations. As such
one no longer needs to separate the two polarizations spatially,
and can considerably mitigate the instability of the system.

Below we present a detailed discussion on how this interfer-
ometer works. In Fig. S3 we present a schematic representation
of a common-path Mach-Zehnder interferometer. The polarizer
prepares the polarization state |H〉 which can be written as an
equally wighted coherent superposition of |D〉 and |A〉. Note
that here

|D〉 = |H〉+ |V〉√
2

,

|A〉 = |H〉 − |V〉√
2

. (S16)

Our aim is to induce a phase between the two components |D〉
and |A〉. Then we set a quarter wave-plate (QWP) in a 45◦ angle.
The QWP maps |D〉 → |R〉, and |A〉 → |L〉 where

|R〉 = |H〉+ i|V〉√
2

,

|L〉 = |H〉 − i|V〉√
2

. (S17)

Next we can use a half wave-plate that induces a variable phase
between the two components |R〉 and |L〉. Again a QWP can
be used to map |R〉 → |D〉 and |L〉 → |A〉, and finally we
use a polarizing beam splitter to separate the two polarizations
|D〉 and |A〉. By rotating the HWP we can change the induced
phase between the two polarizations |D〉 and |A〉 and we get
a one-to-one mapping between this setup and a conventional
Mach-Zehnder interferometer.

4. SURJECTIVE PHOTON COUNTING

We emphasize that the effect of the inherent quantum efficiency
of the detector can be modeled by combination of a beam splitter
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Fig. S4. The fidelity between the probability distribution of
thermal statistics and the probability distribution detected by
our photon counting scheme for thermal lights of different
values of average occupation number.

and a detector of quantum efficiency of 100%. That is a detector
that fires if at least one photon arrives. Thus for simplifying
our analysis we assume a detector with detection efficiency of
100%. For thermal light with average occupation number of n̄
the probability of incurring an N-photon event is given by

P(N) =
n̄N

(1 + n̄)N+1 . (S18)

In our surjective detection scheme this event may be registered
as a detection of a lower number of photons if more than one
photons arrive separated by less than the dead time of the detec-
tor. Assuming that the dead time of the detector time is ∼ 50 ns
and the coherence time of the source is ∼ 1µs in each coher-
ence time there are K = 20 time bins. In principle an N-photon
event can be registered as any of {1, 2, · · · , N}-photon events,
and since we work with very few photons we assume that al-
ways K > N. Then the probability distribution of number of
clicks if N photons arrive in a temporal mode can be cast as a
combinatorics problem and one uses Bayes’ theorem:

P(m) = ∑
N

P(N)P(m|N). (S19)

to find the modified probability distribution, P(m), that the
APDs register. In Fig. S4 we plot the fidelity between the prob-
ability distribution of the thermal statistics and the probability
distribution detected by the our surjective counting scheme. Fi-
delity is a measure of distance between any two probability
distributions. The fidelity of two probability distributions {qi}
and {pi} is defined by ∑i

√
piqi and its range between {0, 1} [1].

The high value of the fidelity confirms our initial intuition that
for low photon number, our counting scheme provides an excel-
lent approximation to the actual photon distribution. Finally it
should be noted that to compare with the experimental results
one can feed the probability distributions that are predicted by
the theory into an algorithm that counts for the surjective na-
ture of the counting mechanism before comparing them to the
experimental results.

REFERENCES

1. M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information, 10th Anniversary Edition (Cambridge
University Press, Cambridge, 2009).


	Photon subtraction
	Photon distribution
	Common path Mach-Zehnder interferometer
	Surjective photon counting



