
ONLINE APPENDIX to the article

“Causal Relations between Knowledge-Intensive

Business Services and Regional Employment Growth”

A1. Methodology details

In Equation (1) in the paper, i.e. in the structural representation of the model, all the

information about past shocks is not explicitly shown, but is instead embodied in the

values yt−1, yt−2, . . . , yt−p. In economic terms, that means: if the growth of KIBS and of

the rest of the economy in the past are known, it is not necessary to reconstruct the whole

history of previous exogenous shocks (i.e. why in the past the system evolved in that way)

in order to understand what will happen to the economy this year, but only the new shocks

εt need to be known. Of course, the economic situation of one year ago or two years ago

resulted in turn from other previous exogenous shocks. Under a stability condition (see

Luetkepohl, 2009), the same model of Equation (1) in the paper is presented here as a

moving average (Wold, 1938):

yt = Ψ0εt + Ψ1εt−1 + ...+ Ψ∞εt−∞ (A1)
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where the economic situation of today is explicitly shown to depend on the whole

history of exogenous shocks occurred in the past. Ψ are the parameters connecting shocks

and variables of interest, i.e. the ‘impulse responses’ to be estimated in order to assess

the consequences that exogenous shocks (e.g., future policies) have over time.

The representation in Eq. (A1) is easy to obtain when knowing the ‘structural’ form

of the model as in Eq. (1) in the paper. However, estimating the ‘structural’ form is not

straightforward, because of the presence of contemporaneous effects as indicated by the

parameter B in Eq. (1) in the paper; instead, a vector autoregression in the ‘reduced

form’

yt = A1yt−1 + ...+ Apyt−p + ut (A2)

can be easily estimated (Stock and Watson, 2001). The reduced form (Eq. A2)

would be structural only if there were no contemporaneous causal relations among the

variables of interest, i.e. assuming that the matrix B in Eq. (1) in the paper is composed

only of zeroes. If this is not the case, estimating the reduced form of Eq. (A2) cannot

help to define the effects of an exogenous event (Sargent, 1979; Sims, 1986).

Indeed, there are many values of the parameters of Eq. (1) in the paper that are

consistent with estimates of Eq. (A2), and additional assumptions are needed to identify a

preferred set of values. This ‘identifiability’ problem has driven the research on structural

vector autoregressions over the last three decades (see Stock and Watson, 2001, for

a short summary and Hashimzade and Thornton, 2013, for a detailed survey). The

main strands of research have focused on searching for plausible additional assumptions

drawn from economic theory. The assumptions might concern the causal ordering, that

is the short-term spillovers of the shocks (in the case at hand, for instance, deciding a
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priori that KIBS affects the rest of the economy within one year, but not vice versa) or

the long-term effects of the shocks (in the case at hand, for instance, deciding a priori

that a shock to KIBS does not influence regional growth in the long run, while a shock

to the rest of the economy does). However, as argued in Section 2 of the paper, there are

no clear theoretical predictions about the direction of the contemporaneous or long-term

relations between the growth of KIBS and of the rest of the economy.

Recent developments in the econometric research on structural vector autoregressions,

coupled with recent empirical findings about regional dynamics, allow to avoid imposing

strong a priori causal ordering. These developments, brought to the attention of the

economic research community by Moneta et al. (2013), are based upon a deeper inves-

tigation of what the assumption of independence of the exogenous shocks (εt in Eq. (1)

in the paper entails.

Retrieving the structural form (Eq. (1) in the paper) from the estimated reduced form

(Eq. (A2)) means also retrieving the current and past exogenous shocks (εt, εt−1 etc.) from

the current and past residuals of the reduced-form estimation residuals (ut, ut−1 etc.). In

algebraic terms, this is equivalent to finding a rotation of the residual matrix which can be

a possible structural shock matrix, i.e. a rotation of the residual matrix that is consistent

with the assumptions about structural shocks. Traditionally, a way to consider a rotation

of the residuals as a candidate for being the matrix of structural shocks is checking the

correlation of its elements. However, the independence assumed for the model’s shocks

is a more restrictive concept than uncorrelatedness (lack of correlation is a necessary

but not sufficient condition for independence). Therefore, the number of rotations, of

the reduced-form residuals, which are characterized by independence is lower than the

number of rotations which are characterized by uncorrelatedness. A deeper investigation

of the independence property of the shocks allows to decrease the number of matrices

that are potential candidates for representing the structural shocks (εt, εt−1 etc.), and
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thus to decrease the number of additional assumptions needed to choose among those

candidates. Finding the rotations that have the independence property is known, in the

signal processing literature, as ‘independent component analysis’: if all exogenous shocks,

or all shocks but one, are not only assumed to be independent but also non-Gaussian,

then it is possible to retrieve them from an observable rotation of them, that is, in the

case here, from the reduced-form estimation residuals (Comon, 1994; Hyvärinen and

Oja, 2000).

Can it be assumed, in the context of this study, that the exogenous shocks are non-

Gaussian? The data set used here is the same as the one for which Duschl and Bren-

ner (2013a) have observed a non-Gaussian (almost Laplacian) distribution of regional

industry-specific employment growth rates (the data will be described in the next section).

This finding can be connected to previous studies which found heavier-than-Gaussian tails

in the empirical distributions of firm (sales and employment) growth rates (Stanley

et al., 1996; Bottazzi et al., 2011), of industry (value added) growth rates (Castaldi

and Sapio, 2008) and of country (aggregate output) growth rates (Fagiolo et al., 2008).

Non-Gaussian distributions might in principle result from a stochastic process governed

by Gaussian shocks (Brock, 1999). However, when the dependent variable of a linear

model is characterized by a fat-tailed distribution (resembling a Laplace, or Exponential

Power distribution), it is common practice to assume that the shocks are drawn from a

similar distribution, and consequently to estimate the model by Least Absolute Deviation

(LAD) regressions rather than by ordinary least squares (see e.g. Coad, 2010; Coad

and Broekel, 2012). Non-Gaussianity of errors can thus be considered a reasonable

assumption also for a model explaining industry growth rates at regional level.

Apart from shock independence and of non-Gaussianity, the VAR-LiNGAM in Hyväri-

nen et al. (2008) and Moneta et al. (2013) assumes no contemporaneous feedback among

the variables (the ‘acyclicality’ assumption). Acyclicality imposes that positive shocks on
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one variable immediately affect the other variable but not the other way around. The

acyclicality is assumed only for the same time period in which the shock hits the economy,

and the acyclic ordering is supposed to be constant over time: the immediate inter-sectoral

propagation of the shock always goes in the same direction. However, the non-immediate

propagation, that is the inter-sectoral spillover happening with a time lag equal or higher

than one, is not restricted: the effect of any shock occurred in a given year (no matter

whether the shock originated in the KIBS sectors or in other industries) can in principle

propagate over the whole economy during the following years, and possibly generates cy-

cles of growth across different sectors. Section of this appendix discusses the limitations

brought by such assumption on this study. Further details about the VARLiNGAM es-

timation algorithm can be found in Hyvärinen et al. (2008). Pioneering applications

of the model to economic fields have involved macroeconomics (Moneta et al., 2013),

happiness economics (Coad and Binder, 2014), energy economics (Ferkingstad et al.,

2011), firm dynamics (Moneta et al., 2013; Coad et al., 2012), and regional dynamics

(Duschl and Brenner, 2013b).

A2. Limitations of the methodological approach

Our decision of imposing contemporaneous acyclicality brings some limitations to the

accuracy of the models. It implies that no short-run relationships of opposite directions

can be represented. Two of the hypotheses consider short-run effects: Hypothesis H3

points at positive impact of KIBS on other services also in the short-run, through the local

multiplier effect, while hypothesis H4 is mainly based on arguments about outsourcing

which causes a negative, short-run relationship between KIBS and the rest of the economy.

If the “short-run” indicated a time horizon longer than one year, then the model would be

fully able to define all the causal directions, and possible feedbacks, between the variables

of interest: the model would be able to disentangle all the causal relations implied by
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the two hypotheses. If, instead, more than one causal relation were translating into

observable effects already within one year, then the model would attempt to bring all

these “immediate” influences into one clear order.

While hypothesis H3 has a clear causal direction, hypothesis H4 contains two possible

causal directions. Hence, this latter hypothesis is most difficult to reconcile with the

acyclicality assumption. In this context the reader has to keep in mind that hypothesis

H4 is not based on a causal effect but on a simple relationship: Outsourcing causes a shift

of employment from other parts of the economy to KIBS. This binds the growth dynamics

of KIBS and other parts of the economy to each other, with the causal effect coming from

the outsourcing process and implying both dynamics. With this model it is imposed that

there has to be a causal relationship between the growth in KIBS employment and other

employment. Hence, the results in this context should be interpreted with care.

Allowing for contemporaneous causal cycles would be a desirable feature for this model.

Unfortunately, a problem of identification would arise: assuming the existence of contem-

poraneous cycles can expand dramatically the number of models (in the sense of com-

binations of causal estimates) that are consistent with the observable data. Lacerda

et al. (2008) have suggested a new algorithm based on different assumptions, in order

to restrict the number of directed causal graphs consistent with the data, while allowing

for contemporaneous cycles.1 However, the method by Lacerda et al. (2008) has never

been applied to the SVAR framework, and a first application would require econometric

reflexions far from the goals of this paper. On the other hand, employing completely dif-

ferent methodologies for causal modelling would entail more assumptions about the causal

structure linking the observed variables, and could mislead the data-driven inspiration of

this paper. For instance, using instrumental variables would imply assuming that there

are exogenous variables influencing directly only some of the endogenous variables (this

assumption would coexist with other, less evident, assumptions about the causal graph:
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see section 25.3.3 of Shalizi, 2015). Instead, whenever possible, the assumption of any

causal direction involving the two endogenous variables (the growth in KIBS and the

growth in the rest of the economy) should be avoided. Given the current state of the art

in statistics, the acyclicality assumption is preferred: only the prevailing causal influence

at impact is modeled (the data analysis will reveal which influence is prevailing), while

still allowing for all the possible causal directions after time lags. In doing so, it is possi-

ble to minimize the number of statistical assumptions based on prior economic theoretical

knowledge.

A3. Rescaling of the growth rates

To construct the six variables, the starting point is the regional employment level (denoted

by xt) associated to each of the variables. Then, the regional employment growth rates

gt are the log-differences of employment:

gt = log(xt) − log(xt−1) (A3)

The growth rates gt cannot be directly fed to the estimation algorithm, because of a

negative relation between the levels of the region-industry employment, and the variance

of their growth rates (Duschl and Brenner, 2013a). Such ‘variance scaling’ relation is

well-known in industrial dynamics: the lower is the firm size, the higher is the variance of

its growth rate (Stanley et al., 1996). This empirical law seems to hold also for regional

dynamics, and cannot be ignored when modeling growth rates, because the heteroscedas-

ticity generated by the law can bias the estimation (Bottazzi et al., 2014). Duschl

and Brenner (2013a) show that the problem can be circumvented by an appropriate

rescaling of the growth rates, based on the estimation of the variance scaling parameters.
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The same procedure is adopted(for details, see Duschl and Brenner, 2013a), and the

rescaled growth rates, used as variables of interest in the model are obtained (i.e. as the

elements of the vector denoted as yt in Eq. (1) in the paper, and Eq. A1 and A2 of this

Online Appendix). For each of the six sectoral aggregations, corresponding to the six

variables of interest, Table A1 below reports descriptive statistics of both the not rescaled

growth rates (gt) and the rescaled growth rates (yt).

Table A1: Descriptive statistics

Employment level Employment growth
Not rescaled (gt) Rescaled (yt)

Mean s.d. Mean s.d. Mean s.d.

All KIBS 6542.8 16524.2 -0.013 0.069 -0.012 0.069
Financial KIBS 3567.2 7994.8 -0.003 0.044 -0.003 0.044
Non-financial KIBS 2975.6 8920.8 0.006 0.203 0.001 0.184

All other (non-KIBS) sectors 92259.8 132782.4 -0.002 0.018 -0.002 0.017
Manufacturing 23547.4 29303.8 0.003 0.034 0.002 0.033
Other (non-KIBS) services 41396.2 72856.0 -0.002 0.030 -0.002 0.028

A4. Impulse Response Functions

For each model, results are presented in two forms. The tables presented in the paper

show the parameter estimates for the structural autoregressive form of the model, as in

Eq. (1). Figures 1 to 3 in this Online Appendix illustrate the evolution of the variables

of interest over time, following a shock applied to one of them.

The figures show as a solid line the accumulated response of the variable of interest to

a unit shock on the growth in the other variable of interest. The dashed lines in the figures
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delimit a 68% confidence interval. The 68% confidence interval is often used because of

its comparability with the Gaussian case. When the distribution of the estimation errors

is Gaussian, by adding (subtracting) exactly one standard deviation to (from) the mean

estimation, the upper (lower) bound of the 68% confidence interval is obtained.
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Figure A1: Cumulative impulse response functions. Left: KIBS growth response to a
unit shock on the growth in all the other sectors. Right: All the other sectors response
to a unit shock on KIBS growth. The dashed lines delimit the 68% confidence intervals.

Model 1: All KIBS vs. all other sectors.

Model 2: Financial KIBS vs. all other sectors.

Model 3: Non-financial KIBS vs. all other sectors.
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Figure A2: Cumulative impulse response functions. Left: KIBS growth response to
a unit shock on the growth in Manufacturing. Right: Manufacturing sectors response
to a unit shock on KIBS growth. The dashed lines delimit the 68% confidence intervals.

Model 4: All KIBS vs. Manufacturing.

Model 5: Financial KIBS vs. Manufacturing.

Model 6: Non-financial KIBS vs. Manufacturing.
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Figure A3: Cumulative impulse response functions. Left: KIBS growth response to a
unit shock on the growth in other service sectors. Right: Other service sectors response
to a unit shock on KIBS growth. The dashed lines delimit the 68% confidence intervals.

Model 7: All KIBS vs. other services.

Model 8: Financial KIBS vs. other services.

Model 9: Non-financial KIBS vs. other services.
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