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Proof of Proposition 1

Proposition 1. A graph can be obtained by gluing paths together at one vertex sequentially if
and only if the graph is a tree.

Proof. We first show that a graph that can be obtained by gluing paths at one vertex sequentially
is a tree. It is apparent that any graph that is obtained by gluing paths at one vertex sequentially
is connected. This statement follows from a simple inductive proof on the number of paths that
we glue together. Hence, we only need to prove that any graph that is obtained by gluing
paths at one vertex sequentially is acyclic. We assume by contradiction that gluing paths
P1, P2, . . . , Pk at one vertex sequentially gives a graph G that contains a cycle denoted by C.
Then {P1, P2, . . . , Pk} ∩ C is a set of subpaths and vertices, and cycle C can be obtained by
gluing these subpaths at one pair of endvertices (of different subpaths) sequentially. However,
this contradicts the fact that gluing two paths at their common endvertex always gives a path.
Figure 1 is an example that illustrates the argument.

Conversely, we now show that any tree can be obtained by gluing paths at one vertex
sequentially. A tree with one vertex is simply a vertex, and it can be obtained trivially by
gluing two 0-paths together. For the inductive step, let n be any positive integer, and suppose
that the claim holds for all trees on n or fewer vertices. Consider any tree T with n + 1 ≥ 2
vertices. Recall that any tree with at least two vertices has at least two leaves [1]. Let vertex
v be a leaf of T (i.e. dT (v) = 1), and let e be the only edge for which v is an endvertex. By
hypothesis, T is connected, so any two distinct vertices x, y ∈ V (T − e) ⊂ V (T ) are connected
by a path in T , say P . The vertex v is not an endvertex of P and dT (v) = 1, so vertex v and
edge e cannot be on P . Hence, P is a path in T − e. Since T − e ⊂ T and T is acyclic, it
follows that T − e is also acyclic. The graph T − e is also connected, so T − e is a tree. But
|T − e| = n, so by the induction hypothesis T −e can be obtained by gluing paths at one vertex
sequentially. But e is a 1-path, and T can be obtained by gluing e and T − e at the only vertex
that is adjacent to v. Hence, T can be obtained by gluing paths at one vertex sequentially. By
induction, any tree can be obtained by gluing paths at one vertex sequentially.
∗e-mail: xmeng@mit.edu
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Figure 1: Subfigure (i) is an example of a graph that contains a cycle. If Subfigure (i) could be
obtained by gluing paths at one vertex sequentially, as shown in Subfigure (ii), then the cycle
could be obtained by gluing subpaths at one vertex sequentially. However, this contradicts the
fact that gluing two paths at their common endvertex always gives a path.

Proof of Proposition 2

Proposition 2. A graph can be obtained by gluing cycles together at one vertex sequentially if
and only if the graph satisfies all of the following conditions:

(i) the graph is connected,

(ii) every vertex has an even degree, and

(iii) any two distinct cycles have at most one common vertex.

Proof. We first show that a graph that can be obtained by gluing cycles at one vertex sequen-
tially satisfies conditions (i)–(iii) by induction on the number of cycles that we use to construct
such a graph.

For the base case, consider any cycle. A cycle is connected and every vertex has degree 2.
Condition (iii) is trivially true.

For the inductive step, let k be any positive integer and we assume that gluing k or fewer
cycles at one vertex sequentially gives a graph that satisfies conditions (i)–(iii). Let G be a
graph that is obtained by gluing k cycles at one vertex sequentially. Let C be an arbitrary
cycle. Pick any vertex of G and C, say u, and glue G and C at vertex u. We name the new
graph G̃. We check that conditions (i)–(iii) hold for G̃.

(i) Since C and G are connected graphs, it follows that G̃ is connected.

(ii) We have dG̃(u) = dG(u) + dC(u) = dG(u) + 2. For all v ∈ V (G) \ {u}, dG̃(u) = dG(u).
But every vertex in G has an even degree (in G) and, for all w ∈ V (C) \ {u}, we have
dG̃(w) = dC(w) = 2. Thus every vertex in G̃ has an even degree (in G̃).

(iii) Consider any two distinct cycles C1 and C2 in G̃. If C1 = C or C2 = C, then C1

and C2 have at most one common vertex by the construction of G̃. Otherwise, we have
C1, C2 ⊂ G, and |V (C1) ∩ V (C2)| ≤ 1 by hypothesis. Hence, any pair of distinct cycles
in G̃ has at most one common vertex.

By induction, any graph that can be obtained by gluing cycles at one vertex sequentially
satisfies conditions (i)–(iii).

We now prove the converse by induction on the number of cycles in a graph that satisfies
conditions (i)–(iii).

For the base case, we consider a graph H that contains exactly one cycle C̃ and satisfies
conditions (i)–(iii). We assume for a contradiction that H is not a cycle. Then H − C̃ is a
forest (i.e. an acyclic graph). Every vertex of H − C̃ has degree of the same parity as it does
in H. Every component (i.e. maximal connected subgraph) of H − C̃ is a tree on at least two
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vertices, so every component has two leaves. But every leaf has degree 1 by definition. This
contradicts our assumption that every vertex in H has an even degree.

For the inductive step, let k be any positive integer, and suppose that any graph that has
exactly k or fewer cycles and satisfies conditions (i)–(iii) can be obtained by gluing cycles at
one vertex sequentially. Let Ĥ be a graph that satisfies conditions (i)–(iii) and contains exactly
k + 1 cycles. Pick any cycle Ĉ ⊆ Ĥ. Without loss of generality, suppose that Ĥ − Ĉ consists
of components O1, O2, . . . , Or for some positive integer r. We check that each component Oi
(1 ≤ i ≤ r) satisfies conditions (i)–(iii).

(i) Every component Oi is connected by definition.

(ii) For every x ∈ V (Oi) \ V (Ĉ), dOi(x) = dĤ(x). For every y ∈ V (Oi) ∩ V (Ĉ), dOi(y) =

dĤ(y) − 2. But every vertex in Ĥ has an even degree. Thus every vertex in Oi has an
even degree (in Oi).

(iii) Since Ĥ satisfies condition (iii) and Oi ⊆ Ĥ, condition (iii) also holds for Oi.

But Oi ⊆ Ĥ and it has fewer cycles than Ĥ. By hypothesis, Oi can be obtained by gluing
cycles at one vertex sequentially.

Since Ĥ is connected, every component of Ĥ − Ĉ shares at least one common vertex with
cycle Ĉ. We assume for a contradiction that a component Oj (1 ≤ j ≤ r) has at least two
vertices that are also on Ĉ. Suppose that Ĉ = z1z2 . . . zs for some integer s ≥ 3. Pick
1 ≤ p < q ≤ s such that zp, zq ∈ Oj and q − p ∈ Z>0 is a minimal number. Since Oj is
connected, there exists a zp–zq path (i.e. a path with endvertices zp and zq) in Oj , say P .
Cycle Ĉ contains two zp–zq paths. If the two paths are of different lengths, then let P̂ be the
shorter one and we have V (P̂ ) ∩ V (Oj) = {zp, zq}. If the two zp–zq paths are of the same
length, then V (Ĉ) ∩ V (Oj) = {zp, zq} and pick either of the zp–zq paths as P̂ . In either case,
V (P )∩V (P̂ ) = {zp, zq}. By our definition of removing subgraphs from a graph, component Oj
has at least 3 vertices. Since edge zpzq /∈ Oj , there must exist some z ∈ V (Oj) \ {zp, zq} such
that z ∈ V (P ). Thus P has length at least 2. But P̂ has length at least 1, and E(P )∩E(P̂ ) = ∅.
Therefore, P ∪ P̂ has length at least 3. Hence, P ∪ P̂ is a cycle in Ĥ that is different from Ĉ
and {zp, zq} ⊆ V (P ∪ P̂ ) ∩ V (Ĉ). This constradicts our assumption that any pair of distinct
cycles in Ĥ has at most one common vertex.

Hence, every component Oi (1 ≤ i ≤ r) has exactly one common vertex with cycle Ĉ. But
every component Oi can be obtained by gluing cycles at one vertex sequentially. Hence, Ĥ can
be obtained by gluing cycles at one vertex sequentially. By induction, any graph that satisfies
conditions (i)–(iii) can be obtained by gluing cycles at one vertex sequentially.

Proof of Proposition 3

Proposition 3. A graph can be obtained by gluing paths and cycles together at one vertex
sequentially if and only if the graph satisfies both of the following conditions:

(i) the graph is connected, and

(ii) any two distinct cycles share at most one common vertex.

Proof. We first show that a graph that can be obtained by gluing paths and cycles at one vertex
sequentially satisfies conditions (i) and (ii) by induction on the number of paths and cycles that
we use to construct such a graph.

We have two base cases: a path and a cycle. In both cases, the graph is connected and
condition (ii) holds trivially.

For the inductive step, let m and n be any nonnegative integers such that m + n ≥ 1,
and suppose that any graph that is obtained by gluing m or fewer paths and n or fewer cycles
satisfies conditions (i) and (ii). Let G be any graph that is constructed by gluing m paths and
n cycles at one vertex sequentially. Let P be any path. We glue P and G at any vertex, say
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u, and name the new graph G̃. Since P and G are connected graphs, it follows that G̃ is also
connected. Since |V (P ) ∩ V (G)| = 1 and P is a path, no cycle in G̃ contains any edge on P .
Thus every cycle in G̃ is a subgraph of G. But any two distinct cycles in G have at most one
common vertex (in G). Hence, condition (ii) holds in G̃. Now let C be any cycle. Glue C
and G at any vertex, say v. Let Ĝ be the new graph. Since C and G are connected graphs, it
follows that Ĝ is also connected. Let C1 and C2 be any two distinct cycles in Ĝ. If C1 = C or
C2 = C, then V (C1)∩V (C2) ≤ 1 by the construction of Ĝ. Otherwise, since V (C)∩V (G) = 1,
we have E(C) ∩ E(G) = ∅, so {C1, C2} ⊆ G. Therefore, V (C1) ∩ V (C2) ≤ 1 by the induction
hypothesis.

By induction, any graph that is obtained by gluing paths and cycles at one vertex sequen-
tially satisfies conditions (i) and (ii).

We now prove the converse by induction on the number of cycles in a graph.
A connected graph that contains no cycles is a tree and satisfies condition (ii) trivially.

We have proved in Proposition 1 that any tree can be obtained by gluing paths at one vertex
sequentially.

For the inductive step, let k be any nonnegative integer, and suppose that any graph that
contains exactly k or fewer cycles and satisfies conditions (i) and (ii) can be obtained by gluing
paths and cycles at one vertex sequentially. LetH be a graph that satisfies conditions (i) and (ii)
and contains exactly k+ 1 cycles. Let C be any cycle in H. Without loss of generality, suppose
that H − C consists of components O1, O2, . . . , Or for some positive integer r. Components
are connected by definition. Every component Oi (1 ≤ i ≤ r) is a subgraph of H − C, so
Oi has fewer cycles than H and condition (ii) holds for Oi (1 ≤ i ≤ r). By hypothesis, Oi
can be obtained by gluing paths and cycles at one vertex sequentially. Following a similar
argument as in the proof for Proposition 2, we can prove that every component Oi has exactly
one common vertex with cycle C. Hence, H can be obtained by gluing paths and cycles at
one vertex sequentially. By induction, any graph that satisfies conditions (i) and (ii) can be
obtained by gluing paths and cycles at one vertex sequentially.

A graphic illustration of truncating infinite state spaces

Figure 2 illustrates how to truncate the infinite state space of two interconnected transcriptional
components to a finite subset when N = 3 and M = 2.

0
0

0
1

1
0

0
2

0
3

1
1

1
2

1
3

2
0

2
1

2
2

3
0

3
1

3
2

2
3

3
3

Ωf

Ωf
c

Figure 2: A graphic illustration of truncating the infinite state space of two interconnected
transcriptional components to a finite subset whenN = 3 andM = 2. The truncated finite state
space, Ωf, lies within the orange curve. We highlight in blue the first layer of the complement
infinite state space, Ωc

f . The transition edges between Ωf and Ωc
f are represented by dashed

arrows, the transition rates of which determine the probabilities of Ωf and Ωc
f at equilibrium.
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Proof of Proposition 4

Proposition 4. Consider the system of two interconnected transcriptional components that are
modelled by reactions as given in Equation (12), where κ > 0, δ > 0, κon > 0, and κoff > 0
are the corresponding reaction rate constants. Let P , Z, and C be the numbers of promoters
P, transcription factors Z, and P–Z complexes C, respectively. Let α = κκon

δκoff
, β = κ

δ , and
γ = Nα−1

α+1 , where N is a constant given by N = P + C due to the conservation of DNA. In
(i)–(iii), we set up and solve three design problems using the marginal stationary distributions
of Z and C.

(i) Since the marginal stationary distribution of Z is Poisson distributed, its mean and vari-
ance are equal. The design problem of fixing the mean of Z at an objective value µz > 0
is feasible, and the solution is β = µz.

(ii) The design problem of setting the mean of C at an objective value µc ∈ (0, N) is feasible,
and the solution is α = µc

N−µc .

(iii) The design problem of choosing the variance of C to be an objective value σ2c > 0 is feasible

if and only if σ2c ≤ N
4 , and the solutions are α =

N−2σ2
c±
√
N2−4Nσ2

c

2σ2
c

.

Proof. The marginal stationary distribution of Z is Poisson distributed with mean and variance
equal to β. Setting the mean and variance of Z at µz > 0 is equivalent to specifying β = µz,
which is always feasible. The marginal stationary distribution of C is binomially distributed
with the number of trials and success probability in each trial being N and α

1+α , respectively.
Design problem (ii) corresponds to setting Nα

1+α = µc. A solution exists if and only if 0 < µc < N ,
in which case the solution is α = µc

N−µc . Design problem (iii) is equivalent to solving Nα
(1+α)2

= σ2c ,

leading to α =
N−2σ2

c±
√
N2−4Nσ2

c

2σ2
c

for 0 < σ2c ≤ N
4 .

Proof of Proposition 5

Proposition 5. Consider the system of two interconnected transcriptional components that are
modelled by the reactions in Equation (12). With the same notation as in Proposition 4, the
stationary distribution in Equation (17) has a unique global maximum if and only if N > 1,
β > 1, 0 < γ < N − 1, and β, γ /∈ Z. In this case, the maximum is at (c∗, z∗) = (bγc+ 1, bβc).
Proof. Let ‖·‖ denote the l1-norm on R2. For x ≥ 0, let bxc denote the integer part of x.
Since N is the total number of promoters P and complex molecules C, it is reasonable to
assume that N > 1. The sample space of the probability mass function given by Equation (17)
is Ω = {(c, z) | c = 0, 1, . . . , N and z ∈ Z≥0}. Let Ω∂ denote the boundary of Ω, namely,
Ω∂ = ({0, N} × Z≥0) ∪ ({0, 1, . . . , N} × 0). Equation (17) has a strict local maximum at
(c∗, z∗) ∈ Ω \Ω∂ if and only if, for all (c, z) ∈ Ω with ‖(c− c∗, z − z∗)‖ ≤ 1, we have Pr(c, z) <
Pr(c∗, z∗). Solving these inequalities simultaneously gives γ < c∗ < γ + 1 and β − 1 < z∗ < β.
Since (c∗, z∗) ∈ Ω \ Ω∂ , a unique solution exists if and only if N > 1, β > 1, 0 < γ < N − 1,
and β, γ /∈ Z. When these conditions hold, the unique strict local maximum on Ω \ Ω∂ is
at (c∗, z∗) = (bγc + 1, bβc). Moreover, basic algebra shows that, for all c = 0, 1, . . . , N , we
have Pr(c, z) < Pr(c, z + 1) for all z = 0, 1, . . . , z∗ − 1 and Pr(c, z) > Pr(c, z + 1) for all
integers z ≥ z∗. It is also straightforward to verify that Pr(c, z∗) < Pr(c+ 1, z∗) for all integers
c = 0, 1, . . . , c∗−1, and Pr(c, z∗) > Pr(c+1, z∗) for all integers c = c∗, c∗+1, . . . , N . Therefore,
the stationary distribution of the two-component transcriptional system has a unique global
maximum at (c∗, z∗) if and only if N > 1, β > 1, 0 < γ < N − 1, and β, γ /∈ Z.
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