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1 Derivation of the QPADM updates

We first demonstrate that problem (9) follows the standard ADMM form (3). Define
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where (r1,...,7T,)T = r. Then the constraints in (9) can be combined as a single

constraint Az + Bz = ¢. As a consequence, problem (9) can be written exactly as
(3) with f(z) = p-(r) + Px(B) and g(z) = 0.

Next, we show that the standard ADMM updates as in (4) applied to (9) results
in the updates (10) in the main article. Applying (4) to (9) with A, B, ¢, z, 2
defined above, and separating the dual variable u corresponding to the constraint
Ax + Bz =c as
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where each 1, corresponds to the constraint 8, — 8 and each wu;, corresponds to the
constraint —r, — X8, = —y,, we have
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Notice that the B-update and the r,-updates, and the M By,-updates are all sepa-
rable. Then the updating rules (10) in the main article follow immediately. The
closed-form solutions of the B,-updates in (10) in the main article follow from the
quadratic form of the objective functions as seen in the second update above.



2 Additional simulation results

2.1 Simulation results for the MCP penalty with M =1

In Tables 1-3 of the main article, the performance of the QPADM for model (16)
with SCAD penalty were shown. In the following, we show the performance of the
QPADM with the MCP penalty.

Method  Quantile Size P1 P2 AE Time (Sec)

QPADM 7=0.3 5.80(1.56) 100% 94% 0.048(0.023) 1.65(0.31)
7=05 4.31(0.64) 100% 0%  0.036(0.022) 1.54(0.29)
7=07 6.80(1.42) 100% 93% 0.043(0.024) 1.67(0.33)

QICD 7=03 7.56(3.82) 100% 92% 0.050(0.026) 0.99(1.13)
=05 4.24(0.59) 100% 0%  0.040(0.020) 1.51(1.30)
7=0.7 6.80(3.62) 100% 93% 0.049(0.026) 1.46(1.59)

Table 4: Comparison of QPADM and QICD with n = 300, p = 1, 000.

Method  Quantile Size P1 P2 AE Time (Sec)

QPADM 7=10.3 5.00(0.00) 100% 100% 0.0040(0.0016) 45.09(1.55)
7=0.5 4.00(0.00) 100% 0% 0.0042(0.0019) 47.16(1.68)
7=0.7 5.00(0.00) 100% 100% 0.0037(0.0017) 44.81(1.57)

QICD =03 5.02(0.14) 100% 100% 0.0031(0.0016) 99.37(11.46)
T=05 4.16(0.37) 100% 0%  0.0033(0.0015) 121.47(16.35)
7=0.7 508025 100% 100% 0.0032(0.0014) 118.35(16.17)

Table 5: Comparison of QPADM and QICD with n = 30,000, p = 1, 000.

Method  Quantile Size P1 P2 AE Time (Sec)
QPADM 7 =03 5.00(0.00) 100% 100% 0.0032(0.0011) 3.43(0.56)
7=05 4.000.00) 100% 0%  0.0031(0.0011) 3.54(0.67)
=07 5.0000.00) 100% 100% 0.0030(0.0015) 3.42(0.58)
QICD  7=0.3 506(0.24) 100% 100% 0.0027(0.0011) 12.21(3.33)
7=05 4.08(0.27) 100% 0%  0.0026(0.0011) 22.33(11.71)
7=0.7 5.02(0.15) 100% 100% 0.0026(0.0009) 25.45(19.00)

Table 6: Comparison of QPADM and QICD with n = 30000, p = 100.

3 Parallel QPADM: more results

The main article only showed the performance of parallel QPADM for the SCAD

penalty with quantile level 7 = 0.3, while the simulation were done with 7
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0.3, 0.5, 0.7 for both the SCAD and MCP penalties. We include the remaining
results in Figures 2 - 6.
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Figure 2: Comparison of QPADM with SCAD penalty for different M values at
7=0.5.



Figure 3: Comparison of QPADM with SCAD penalty for different M values at

7=0.7.

Figure 4: Comparison of QPADM with MCP penalty for different M values at 7=0.3.
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Figure 5: Comparison of QPADM with MCP penalty for different M values at 7=0.5.
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Figure 6: Comparison of QPADM with MCP penalty for different M values at 7=0.7.
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