Supporting Information

Mechanistic Study of Copper-Catalyzed Decarboxylative C-N Cross-Coupling with Hypervalent Iodine Oxidant

Yi-Nuo Yang, Ju-Long Jiang,^{*} Jing Shi^{*}

Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China,

Hefei 230026, China.

Emails: shijing@ustc.edu.cn; chemjiang1988@gmail.com

Table of Contents

Gibbs free energy of all pathways	S2
Free Cu(I) & Cu(II) species in solution (Ref 24)	S6
Energy change of the disproportionation process (Ref 23)	S7
Complete transformations of Path 1	S8
Complete transformations of Path 2	S9
Potential energy scan of I-O bond in Int13	.S10
Potential energy scan of Cu-N(DMAP) bond in Int18	

Another concerted metalation deprotonation process in Figure 2	S12
The formation of ⁺ HDMAP	S13
An alternative oxidative mechanism of carboxylate	S14
Electronic energies and thermal corrections of related intermediates and the	ansition
states	815

Gibbs free energy of all pathways:

Gibbs free energy of Scheme 3 in article:

Gibbs free energy of Path 1 (Figure 1 in article):

Figure S1. Gibbs free energy for Path 1 (kcal/mol)

Gibbs free energy of Path 2 (Scheme 4 in article):

Gibbs free energy of Path 3 (Figure 2 in article):

Figure S2. Gibbs free energy for Path 3 (kcal/mol)

Gibbs free energy of Path 4 (Figure 4 in article):

Figure S3. Gibbs free energy for Path 4 (kcal/mol)

Gibbs free energy and corrected Gibbs free energy used in the article have all been calculated here as reference (as shown in **Figure S1-3**, **Scheme S1-2**). According to these calculation, ⁺HDMAP-assisted RCOO-I bond heterolytic cleavage (in Path3) is the most favorable pathway for the I-O cleavage. This conclusion is in accordance with the enthalpy calculation results used in the article. However, due to overestimation of entropy in solution, the Gibbs energy change in the I-O bond dissociation step (process of $A \rightarrow B+C$) is much lower than the enthalpy change.

Free Cu(I) & Cu(II) species in solution (Ref 24)

ΔH _{sol} (ΔG _{sol}) (ΔG _{corr-sol})	[TfO-Cu ^I L] ← → +6.9 (+5.7) (+6.7)	[Cu ^I L ₂] 0.0 (0.0) (0.0)	<>	[Cu ^I L ₃] +0.03 (+9.8) (+13.0)
L=DMAP	[TfO-Cu ^{II} L ₃] +0.01 (-3.7) (-1.0)	► [Cu ^{ll} L ₄] 0.0 (0.0) (0.0)	<>	[Cu ^{II} L ₃] +13.7 (-1.1) (-1.3)

Scheme S3. Equilibrium of different Cu(I) & Cu(II) catalysts in solution

We investigated the free Cu(I) and Cu(II) species mentioned in **Scheme 2** at the beginning of our research. For both Cu(I) and Cu(II) catalysts, DMAP is a better ligand than OTf in solution. In addition, Cu(I)L₂ and Cu(II)L₄ are the most thermodynamically stable species respectively for Cu(I) and Cu(II) catalysts. Therefore, Cu(I)L₂ and Cu(II)L₄ were taken into consideration in **Scheme 3**.

Energy change of the disproportionation process (Ref 23)

```
Scheme S4. The disproportionation process of Cu(OTf)<sub>2</sub>
```


According to reference [23], the active Cu(I) can be initially produced either through the disproportionation of Cu(II) or via the reduction of Cu(II) by a nucleophile. To validate the disproportionation process from Cu(OTf)₂ to Cu(I)L₂, extra calculations were performed in **Scheme S4**. Cu(OTf)₂ was first coordinated by two DMAP ligand to generate a more stable Cu(II)(OTf)₂L₂, and the latter one could then disproportionate into Cu(I) and Cu(III) species with a reasonable enthalpy change of +23.9kcal/mol.

Complete transformations of Path 1

The complete transformations of Path 1 have been shown in **Figure S4**. We also considered the possibility proposed in our previous experimental work (*J. Am. Chem. Soc.* **2016**, 138, 9714-9719) (as shown in red part). Calculation results shows that the SET process between Cu(I) species and

oxygen radical species is even more unfavorable.

Complete transformations of Path 2

Figure S5. Enthalpy profile for Path 2

Potential energy scan of I-O bond in Int13

Figure S6. The potential energy scan of I-O bond in Int13.

Potential energy scan of Cu-N(DMAP) bond in Int18

Figure S7. The potential energy scan of Cu-N(DMAP) bond in Int18.

Another concerted metalation deprotonation process in Figure 2

Scheme S5. Another concerted metalation deprotonation process

In this work, another concerted metalation deprotonation transition state like **TS-CMD** in Scheme S5 was also considered. However, the optimized structure of the proposed CMD transition state **TS-CMD** always converged at **TS19-9**. This might be ascribed to the significant steric hindrance and distortion in **TS-CMD**. Therefore, the stepwise deprotonation process proposed in the manuscript is more reliable.

The formation of ⁺HDMAP

Scheme S6. The formation of ⁺HDMAP in some equilibriums

The prontonated base (⁺HDMAP) is not only generated during the deprotonation process, but also gets formed in acid-base equilibriums (as shown in **Scheme S6**). As long as trace amount of ⁺HDMAP is formed and then participates in the first catalytic cycle of reaction, equivalent amount of ⁺HDMAP can be subsequently formed in deprotonation process (**Int19→Int9** in Figure 2) to drive the whole reaction moving forward.

An alternative oxidative mechanism of carboxylate

Scheme S7. Energy change of an alternative oxidative mechanism of RCOO-

Herein, we also considered the possibility of the decarboxylation of carboxylate. The carboxylate (Int1-H) can be formed in the presence of the base DMAP. Then, Cu(III)/Cu(II)/PhIO species were considered as the oxidant respectively to oxidize the carboxylate and the carboxyl radical (Int4) could then be generated. Comparing to the exothermic combination process (Int1 \rightarrow Int3, Δ H= -24.9 kcal/mol) proposed in the manuscript, the oxidation of carboxylate is obviously an endothermic process (Int1 \rightarrow Int1-H \rightarrow 4, Δ H^{\pm} > +20 kcal/mol), which is indeed unfavorable.

Electronic energies and thermal corrections of related intermediates and transition states

	Electronic Energy	Thermal Correction of	Thermal Correction of
	(Hartree)	Gibbs Free Energy	Enthalpy(Hartree)
		(Hartree)	
Intl	-763.0712973	0.197678	0.261169
Int1-(PhIO) ₂	-1399.602186	0.351131	0.464439
TS1-2	-1399.602007	0.349213	0.460962
Int2	-1399.603554	0.352561	0.464854
Int3	-1399.620326	0.35467	0.465459
Int3-t	-1399.575711	0.341817	0.464216
Int4	-762.3911035	0.183993	0.247671
TS4-5	-762.3908601	0.181611	0.245753
Int5	-573.7585121	0.172281	0.228911
Int6	-1153.419712	0.328785	0.408351
Int7-t	-1547.476407	0.414995	0.525379
Int8-t	-1152.78244816	0.313157	0.394406
Int9	-1152.81915325	0.321776	0.397132
TS9-TM	-1152.800038	0.318998	0.395507
TM	-573.2028513	0.1714	0.221013
Int10	-1782.476771	0.516133	0.653266
Int11	-1005.311194	0.267791	0.34815
Int12	-1005.525891	0.260887	0.347048
Int13	-1782.474697	0.516717	0.654075
1-H	-762.5866285	0.186414	0.248145

Table S1. Electronic energies and thermal corrections (in solution)

Int14	-636.9911977	0.146572	0.214846
Int15	-637.1775577	0.139915	0.213958
Int16	-1157.126639	0.283684	0.3787
TS16-4	-1157.111626	0.281786	0.373662
Int17	-1918.040256	0.63479	0.760503
Int18	-1535.63186154	0.487490	0.585861
Int19	-1535.629417	0.483697	0.583822
TS19-9	-1535.62966719	0.481138	0.579663
Int20	-1979.282701	0.503129	0.643983
Int20-t	-1979.267912	0.494853	0.643245
Int21	-1342.089015	0.338131	0.42737
Int22	-1724.50542961	0.486729	0.601945
Int23	-1342.087276	0.343992	0.428189
Int24-t	-1736.145674	0.430517	0.54507
TS24-25-t	-1736.13583096	0.430138	0.539217
Int25-t	-1341.425931	0.330296	0.41409
Int25-s	-1341.433148	0.333762	0.415261
TS25-26-t	-1341.407651	0.325019	0.410961
Int26-t	-1152.78469034	0.315546	0.394687
Cu(I)L ₂	-962.0533138	0.277861	0.35083
Cu(I)L ₃	-1344.432139	0.424619	0.524813
TfO-Cu(I)L	-1541.46605045	0.139574	0.212608
1-Cu(I)	-1342.73152445	0.347565	0.439745
Cu(II)L ₃	-1344.25678621	0.429995	0.525999
Cu(II)L ₄	-1726.65889272	0.586083	0.701459

TfO-Cu(II)L ₃	-2306.08195855	0.443218	0.562576
1-Cu(II)-a	-1724.93082431	0.503648	0.615487
1-Cu(II)-b	-1724.95201100	0.505465	0.616332
1-Cu(II)-c	-1342.52033317	0.359855	0.441771
1-Cu(II)-a-H	-1724.49767684	0.487555	0.601469
1-Cu(II)-d-H	-1724.49724236	0.488770	0.602473
L	-382.3768738	0.129148	0.171992
⁺ HL	-382.8414665	0.143985	0.185102
PhI	-243.1277969	0.058215	0.096832
(PhIO) ₂	-636.5083991	0.133793	0.202763
CO ₂	-188.6461058	-0.009272	0.015043
НОХ	-394.7309822	0.080961	0.127329
XO-radical	-394.0490045	0.068042	0.115101
XO-anion	-394.213323	0.067464	0.11421