Simulations of Morphology Evolution in Polymer Blends during Light Self-Trapping

Saeid Biria<sup>1</sup>, Ian D. Hosein<sup>1</sup>\*

1. Syracuse University, Department of Biomedical and Chemical Engineering, Syracuse, NY, 13244





Figure S1. Phase diagrams for polymer blends with different N<sub>2</sub>. Spinodal curves are plotted for different values of N<sub>1</sub> to indicate the rise and expansion of the curve over the course of photopolymerization. Black circle shows the temperature-composition coordinate ( $\varphi = 0.5$ ) at room temperature (298 K). Colors of the spinodal curves presented values of N<sub>1</sub> of 1 (magenta), 10 (blue), 100 (green), and 1000 (red).

## Results for Other Blend Conditions



Figure S2. Time series of the evolution polymer 2 (C<sub>2</sub>). Parameters for data shown are:  $C_1 = 0.5$ ,  $\chi = 0.5$ ,  $k_p = 1$ , and  $N_2 = 50$ .



Figure S3. Spatial distribution of polymer 1 (C<sub>1</sub>) mapped over rate constant ( $k_p$ ) and blend interaction parameter ( $\chi$ ). N<sub>2</sub> = 1.



Figure S4. Spatial profile of the optical beam mapped over rate constant ( $k_p$ ) and interaction parameter ( $\chi$ ).  $N_2 = 1$ .



Figure S5. Spatial distribution of polymer component (C<sub>1</sub>) mapped over rate constant ( $k_p$ ) and interaction parameter ( $\chi$ ). N<sub>2</sub> = 5.



Figure S 6 Spatial profile of the optical beam mapped over rate constant ( $k_p$ ) and interaction parameter ( $\chi$ ).  $N_2 = 5$ .



Figure S7. Spatial profile of the optical beam mapped over rate constant ( $k_p$ ) and interaction parameter ( $\chi$ ).  $N_2 = 50$ .



Figure S8. Spatial distribution of polymer component (C<sub>1</sub>) mapped over rate constant ( $k_p$ ) and blend interaction parameter ( $\chi$ ). N<sub>2</sub> = 500.



Figure S9. Spatial profile of the optical beam mapped over rate constant ( $k_p$ ) and interaction parameter ( $\chi$ ). N<sub>2</sub> = 500.



Figure S10. Spatial distribution of polymer component (C<sub>1</sub>) mapped over rate constant ( $k_p$ ) and blend interaction parameter ( $\chi$ ). N<sub>2</sub> = 5000.



Figure S11. Spatial profile of the optical beam mapped over rate constant ( $k_p$ ) and interaction parameter ( $\chi$ ). N<sub>2</sub> = 5000.



Figure S12. Spatial distribution of polymer component (C<sub>1</sub>) mapped over N<sub>2</sub> and blend interaction parameter ( $\chi$ ). k<sub>p</sub> = 1.  $\phi$  = 0.75.



Figure S13. Spatial distribution of polymer component (C<sub>1</sub>) mapped over N<sub>2</sub> and blend interaction parameter ( $\chi$ ). k<sub>p</sub> = 1.  $\phi$  = 0.25.



Figure S14. Spatial distribution of the optical beam for  $k_p = 1$ ,  $\phi = 0.25$ , and  $N_2 = 50$ .



Figure S15. Spatial distribution of the optical beam for  $k_p = 1$ ,  $\phi = 0.75$ , and  $N_2 = 50$ .



Figure S16. Spatial distribution of the optical beam and polymer 1, when the refractive index values of polymer 1 and 2 are switched.  $k_p = 1$ ,  $\phi = 0.25$ , and  $N_2 = 50$ .