Supporting Information

Directional Fluid Gating By Janus Membranes With Heterogeneous Wetting Properties For

Selective Oil-Water Separation

Prashant Gupta^a, Balasubramanian K.^{*,a}

^a Nano Surface Texturing Lab, Department of Materials Engineering, DIAT(DU), Ministry of Defence, Girinagar, Pune-411025, India

*Corresponding Author: <u>meetkbs@gmail.com</u>, Tel: +91-020-24304207, Fax: +91-020-24388835.

Cost Analysis

we have explored various products (both at research stage as well as in market) designed for oil-spill cleanups. The compared study is provided in the table below:

Table 1. Cost comparison of variou	s commercially available and	I reported Janus membranes
	is commercially available and	reported janus memoranes

Market/Research	Fabrication	Cost	Properties
	Technique		
Argonne National	Sequential	Cost details are not	Superhydrophobic/
Laboratory	infiltration	available in public domain	Superoleophilic
(Reusable	synthesis		
Sponge) ^{1,2}			
HygraTek (Hygro-	Dip-coating and	Approximately 1\$ per	Superhydrophobic/
Responsive	Spin-coating	sq.ft. (Depends on the type	Superoleophilic,
Membranes) ^{3,4}	followed by	of membrane coated and	Anti-fouling
	Nitrogen	can be expensive for	
	Drying.	ceramic membranes).	
UniSA Ventures	Coating	Details of the price are not	Hydrophilic/
(Oil-water		available	Superoleophobic
separation			
hydrophillic			
membranes) ⁵			
Pham et al.	Dip-Coating	Price details not available	Superhydrophobic/
(Superhydrophobic	followed by	in public domain	Superoleophillic
Silanized	oven drying		
Melamine			
Sponges) ⁶			

Superhydrophobic/	Dip-Coating	Commercial details are not	Superhydrophobic/
Superoleophillic	followed by	available in public domain	Superoleophilic
Sponge ⁷	oven drying		
Superhydrophobic	Vapour Phase	Details of cost is not	Superhydrophobic/
Cotton fabric ⁸	deposition	provided by X. Zhou et al.	Superoleophilic,
	followed by		Durable in harsh
	oven drying		atmospheric
			conditions.
Polyester materials	Chemical	Commercial details are not	Superhydrophobic
with superwetting	vapour	provided by J. Zhang et al.	/Superoleophilic
nanofilaments9	deposition	in Advanced functional	
		materials	
This Work	Meyer rod	Depends upon the	Superhydrophobic/
	Coating follwed	Substrate coated.	Superoleophilic,
	by oven drying		Icephobic, Flame-
			retardant, Durable in
			harsh atmospheric
			conditions.

Most of the commercial products and the reported literatures cited above are designed for oil-spill clean-ups, either awaiting for provisional patents or haven't provided details regarding the cost of their products. However, our product exhibits multifunctional properties, such as icephoicity, flame retardancy and durability in harsh atmospheric conditions compared to the other reported membranes. Moreover, our coating can be utilized to transform even a waste cotton fabric to an advantageous Janus membrane having multifunctional properties for oil-water separation. The coating process can be explored to scale-up continuous productionization by Gravure printing (Roller and Blade/Knife).

References:

- 1. https://www.anl.gov/articles/argonne-invents-reusable-sponge-soaks-oil-couldrevolutionize-oil-spill-and-diesel-cleanup
- Barry, E., Mane, A., Libera, J., Elam, J. W., & Darling, S. (2017). Advanced Oil Sorbents Using Sequential Infiltration Synthesis. *Journal of Materials Chemistry A*.
- 3. http://hygratek.com/technology
- 4. Kota, A. K., Kwon, G., Choi, W., Mabry, J. M., & Tuteja, A. (2012). Hygro-responsive membranes for effective oil–water separation. *Nature communications*, *3*, 1025.
- http://www.itek.com.au/portfolio/sustainability/item/oil-water-separationmembranes.html
- Pham, V. H., & Dickerson, J. H. (2014). Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials. ACS applied materials & interfaces, 6(16), 14181-14188.
- Wang, C. F., & Lin, S. J. (2013). Robust superhydrophobic/superoleophilic sponge for effective continuous absorption and expulsion of oil pollutants from water. ACS applied materials & interfaces, 5(18), 8861-8864.
- Zhou, X., Zhang, Z., Xu, X., Guo, F., Zhu, X., Men, X., & Ge, B. (2013). Robust and durable superhydrophobic cotton fabrics for oil/water separation. *ACS applied materials* & *interfaces*, 5(15), 7208-7214.
- Zhang, J., & Seeger, S. (2011). Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. *Advanced Functional Materials*, 21(24), 4699-4704.

FE-SEM Micrograph of Janus Membrane:

The average cylinder radius and average intercylinder spacing of Janus membrane was calculated using low magnification FE-SEM micrograph via ImageJ software as illustrated in Figure S1.

Average Cylinder Radius = $220 \mu m$

Average Inter Cylinder Spacing = $550 \mu m$.

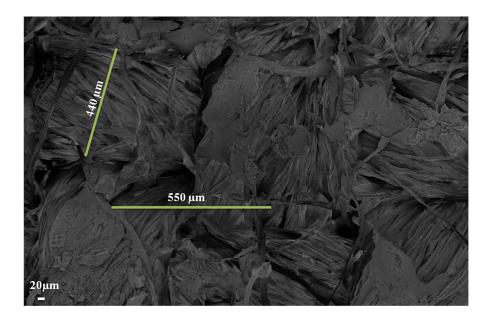


Figure S1. FE-SEM micrigraph of Janus membrane

Water/Organic Solvent Separation Analysis:

Figure S2. Absorption capacity of Janus membrane versus recycle numbers for n-

Hexane/water mixture.

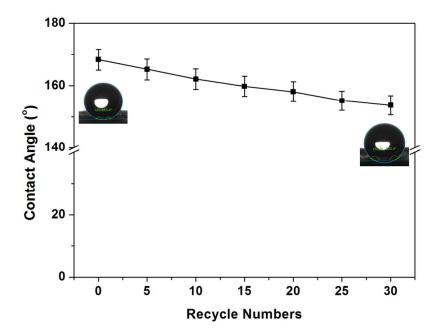
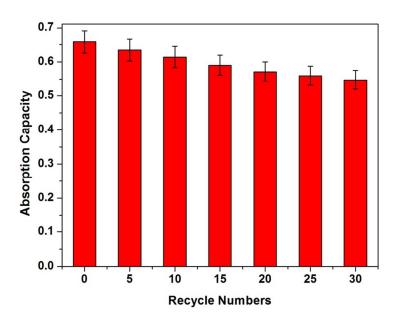



Figure S3. Contact Angle variation of Janus membrane versus recycle numbers for n-Hexane/water mixture.

Figure S4. Absorption capacity of Janus membrane versus recycle numbers for Benzene/water mixture.

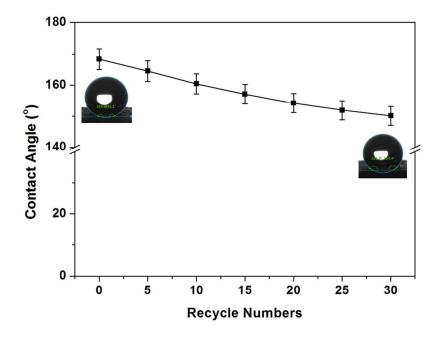
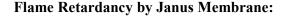



Figure S5. Contact Angle variation of Janus membrane versus recycle numbers for Benzene/water mixture.

Figure S2-S5 depicts the variation of absorption capacity and contact angle of Janus membrane with recycle numbers of water and organic solvent mixtures. Similar to oil/water mixture, the absorption capacity of Janus membrane slightly decreases with recycle numbers (from 0.43 to 0.33 in case of n-Hexane/water and from 0.65 to 0.54 in case of Benzene/water) and the contact angle of membrane also decreases with recycle numbers (from $168^{\circ} \pm 3^{\circ}$ to $152^{\circ} \pm 3^{\circ}$ in case of n-Hexane/water and from $168^{\circ} \pm 3^{\circ}$ to $151^{\circ} \pm 3^{\circ}$ in case of n-Hexane/water and from $168^{\circ} \pm 3^{\circ}$ to $151^{\circ} \pm 3^{\circ}$ in case of n-Hexane/water and from $168^{\circ} \pm 3^{\circ}$ to $151^{\circ} \pm 3^{\circ}$ in case of n-Hexane/water and from $168^{\circ} \pm 3^{\circ}$ to $151^{\circ} \pm 3^{\circ}$ in case of n-Hexane/water and from $168^{\circ} \pm 3^{\circ}$ to $151^{\circ} \pm 3^{\circ}$ in case of n-Hexane/water and from $168^{\circ} \pm 3^{\circ}$ to $151^{\circ} \pm 3^{\circ}$ in case of n-Hexane/water and from $168^{\circ} \pm 3^{\circ}$ to $151^{\circ} \pm 3^{\circ}$ in case of n-Hexane/water and from $168^{\circ} \pm 3^{\circ}$ to $151^{\circ} \pm 3^{\circ}$ in case of Benzenel/water) but the innate Superhydrophobic characteristic of Janus membrane is retained for atleast 30 cycles.

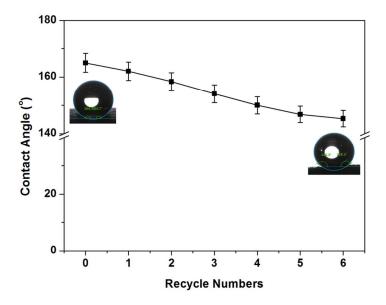


Figure S6. Variation of water contact angle of Janus membrane with combustion recycles

Figure S6 depicts the variation of wettability behavior of Janus membrane with each combustion cycles, which suggests that the intrnsic properties of Janus membranes is retained even after exposure to flame.

Stabile wettability of Janus membrane in extreme environments:

The developed Janus membrane retained its superhydrophobicity after exposure to UV irradiation of wavelength 254 nm for 72 hours, suggesting the UV-unresponsive behavior of the membrane as shown in Figure S7. Similar behavior was observed when exposed to an extremely hot environment of 150°C for 72 hours as depicted in Figure S8.

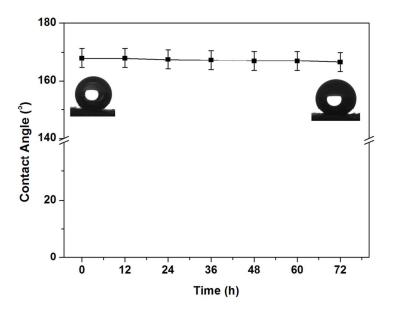


Figure S7. Variation of water contact angle of Janus membrane exposed to UV-radiation

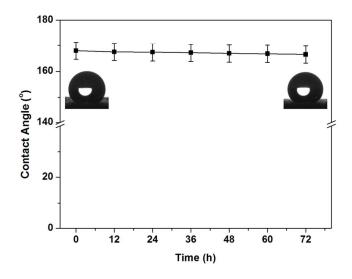


Figure S8. Variation of water contact angle of Janus membrane exposed to extremely hot

environment of 150°C.