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Abstract

This thesis primarily investigates the number Rk,n of reduced k × n Latin rectangles. Specifi-
cally, we find many congruences that involve Rk,n with the aim of improving our understand-
ing of Rk,n.

In general, the problem of finding Rk,n is difficult and furthermore, the literature contains
many published errors. Modern enumeration algorithms, such as that of McKay and Wanless,
require lengthy computations and storage of a large amount of data. Consequently, even into
the future, the possibility of obtaining an erroneous result remains, for example, through a
hardware or bookkeeping error. In this thesis we find many congruences satisfied by Rk,n so
that future researchers will be able to check that their purported value of Rk,n satisfies these
congruences.

We extend the methodology developed in this thesis to encompass the number of certain
graph factorisations, the number of orthomorphisms and partial orthomorphisms and the size
of certain subsets of Latin hypercuboids. Consequently we find new congruences satisfied
by all these numbers. Additionally, we give new sufficient conditions for when a partial
orthomorphism admits a completion to an orthomorphism. In a 1997 paper, Drisko suggested
some ideas for future research in the study of the Alon-Tarsi Conjecture, which we show to
be futile.

We find a new bound on the maximum size of an autotopism group of a Latin square
which enables us to find new divisors of Rn,n for large n. A similar method gives a bound on
the maximum number of k × k subsquares in a Latin square, for general k. Finally, we find
new strong necessary conditions for when an isotopism can be an autotopism of some Latin
square.

Keywords: Latin squares, Latin rectangles, Latin cubes, Latin hypercubes, Latin hyper-
cuboids, even Latin squares, odd Latin squares, Alon-Tarsi Conjecture, graph decomposi-
tions, orthomorphisms, partial orthomorphisms, compound orthomorphisms, compatible or-
thomorphisms, polynomial orthomorphisms, isotopisms, isomorphisms, autotopisms, auto-
morphisms, subsquares.
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CHAPTER 1

Introduction

1.1 The problem
It is reported [186] that on March 8, 1779, Leonhard Euler [97, 99] introduced a “new kind
of magic square” to the St. Petersburg Academy which he called a quarré latin or a Latin
square, that is, a square matrix such that every row and every column contains every symbol
exactly once. Although, this cannot be the birthplace of such a simple concept as a Latin
square1, Euler’s work certainly helped spur mathematical interest in Latin squares. Euler’s
title suggests he believed that the scientific study of Latin squares was new and in his papers
Euler does not make any references to any prior work in the subject.

“ It may be surprising that the study of these squares provides an
environment rich in important results, in unsolved problems, as
well as practical applications. Moreover the results touch on and
even influence a variety of mathematical areas both within and
outside the general rubric of combinatorics. Such fields include
algebra, finite geometries, coding theory, combinatorial design
theory, and statistics. ”— L M [203]

The name “Latin square” originated from Euler using the Latin alphabet, a, b, c, . . ., to de-
note symbols in his new kind of magic square. Since Euler, several different symbol sets have
been used for Latin squares. In this thesis we will usually use either Zn or [n] = {1, 2, . . . , n}
for the symbol set and we will index the rows and columns of Latin squares by the same set.
We also define N = {1, 2, . . .}. An n × n Latin square is called a Latin square of order n.
Instead of “order” some authors prefer the term “side,” notably [61, 251].

We will study the number Ln of n × n Latin squares with some fixed symbol set of cardi-
nality n. For instance, if n = 2 and the symbol set is Z2, then Ln = 2 counting the two Latin

1For example, Kendall [182] claimed that Dudeney [87] referenced work of Claude Gasper Bachet, circa
1624, discussing a problem on Latin squares.
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squares of order 2 (
0 1
1 0

)
and

(
1 0
0 1

)
.

Most past evaluations of Ln involved, or were related to, Latin rectangles. A Latin rect-
angle is a k × n array containing exactly n distinct symbols such that each row and each
column contains only distinct symbols. A Latin square is therefore a k × n Latin rectangle
with k = n. Importantly, the number of symbols in a Latin rectangle is also the number of
columns. Therefore if we take a Latin square and “chop off” some rows, we get a Latin rect-
angle. One of the most important theorems in the study of Latin squares comes from M. Hall
Jr [148] (see also [149]), using a result by P. Hall [151].

Theorem 1.1.1. Any k × n Latin rectangle can be extended to a Latin square of order n.

Theorem 1.1.1 implies that every k × n Latin rectangle can be obtained from some Latin
square by “chopping off” the last n − k rows.

For now we will take the symbol set of a Latin rectangle to be Zn, while the rows will
be indexed by {0, 1, . . . , k − 1} ⊆ Zn. A k × n Latin rectangle is called normalised if the first
row is (0, 1, . . . , n − 1), and reduced if the first row is (0, 1, . . . , n − 1) and the first column is
(0, 1, . . . , k − 1)T . If the symbol set is not Zn, but does have a total order on it, then “reduced”
and “normalised” can be defined analogously.

The use of the term “reduced” goes back at least to MacMahon [209], and was adopted,
for example, by Fisher and Yates [119], Denés and Keedwell [71, 74] and Laywine and
Mullen [203]. Euler [97] instead used the term quarrés réguliers or “regular square.” Some
authors use “normalised” [223], “standardized” [96], “standard” or “in standard form” [251]
in place of what we call “reduced.” Similarly, our definition of “normalised” also has some
alternative names; for example “standardised” [79], “in the standard form” [27], “semi-
normalised” [340] and “reduced” [46, 64, 269], which can be confusing. Some authors avoid
this problem by not assigning names to reduced or normalised Latin squares, for example
[54, 137, 273, 315].

The number of k×n normalised Latin rectangles L = (li j) satisfying l00 < l10 < · · · < l(k−1)0

is the number of k × n Latin rectangles with the first row and column in order. For k < n this
is not, in general, the number of reduced k × n Latin rectangles. In [314] this type of Latin
rectangle was called “reduced.” A notion of “very reduced” was considered by Moser [236],
which was later generalised to “i − j reduced” by Mullen [239] and Hamilton and Mullen
[152].

A Latin square L = (li j) is called unipotent if lii is independent of i ∈ Zn and idempotent
if lii = i for all i ∈ Zn. In particular, a reduced unipotent Latin square satisfies lii = 0 for all
i ∈ Zn.

Let

• Lk,n denote the number of k × n Latin rectangles,

• Kk,n denote the number of k × n normalised Latin rectangles and

• Rk,n denote the number of reduced k × n Latin rectangles.

In the case of Latin squares, the numbers Ln,n, Kn,n and Rn,n will be replaced by Ln, Kn and
Rn, respectively.
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Some values of Rn and Rk,n are listed in Figures 1.1 and 1.2, which have been found
over many years by numerous authors. We will see that it is easy to find Lk,n and Kk,n given
knowledge of Rk,n using (1.1). The enumeration of Latin squares and rectangles is discussed
in more detail in Section 1.3. We observe the following commentary.

“ One of the major unsolved problems in the theory of Latin squares
is the determination of the number Ln of distinct Latin squares of
order n. ”— B  R [36]

“ The determination of Rn (and thus of Ln)... appears to be ex-
tremely difficult. ”— A [7]

“ Not much is known about Lk,n ... for large k, n. ”— A, P  S [12]

“ Suppose that someone wished to write down all Latin squares of
order 15. Then... that person would have to inscribe millions of
Latin squares on each and every atom in the universe! ”— L M [203]

This raises the question: what can we say about Rn and Rk,n? Actually, surprisingly little
is known about divisors of Rn and Rk,n. After inspecting the value of Rn for n 6 9 (see
Figure 1.1), Alter [7] was inspired to ask the following three interesting questions concerning
the divisibility of Rn.

Question 1.1.2. Do increasing powers of 2 divide Rn?

Question 1.1.3. What is the highest power of 2 that will divide Rn?

Question 1.1.4. Does 3 divide Rn for all n > 6?

These questions remained unanswered for thirty years until McKay and Wanless [225]
proved the following theorem.

Theorem 1.1.5. Rn is divisible by bn/2c! for all n > 1. If n is odd and bn/2c + 1 is composite
then (bn/2c + 1)! divides Rn.
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Theorem 1.1.5 answers the first and third of Alter’s questions. In fact, it shows that for
all d > 2 the greatest a such that da divides Rn increases at least linearly with n. Alter’s
second question remains open. Figure 2.1 on page 39 lists the prime factorisation of Rk,n

for 2 6 k < n 6 11, which also displays surprisingly many small divisors. While Alter’s
questions motivate us to find divisors of Rn (and Rk,n), it would also be of interest to prove
that Rk,n is indivisible by a certain number. This leads us to our major goal in this thesis.

*Major goal: Find new congruences satisfied by Rk,n.

Aside from Theorem 1.1.5, we begin our study of congruences for Rk,n with an almost
clean slate. The only other published congruences for Rk,n, that the author is aware of, are the
recurrence congruences for R3,n, given by Riordan [269] and Carlitz [46]. By the end of the
thesis, these results will be just the tip of the iceberg.

For general k and n, currently there is no “easy” way of finding Rk,n. There are plenty of
interesting, but impractical, formulae for Rk,n, as listed in Section 1.3.1. Although, according
to Wilf’s [330] classification, finding Rk,n is p-solved when k is fixed, that is, there exists an
algorithm that returns the value of Rk,n in O(nconstant) time, for example (1.16). Estimates for
Rn were given by McKay and Rogoyski [223], Zhang and Ma [344] and Kuznetsov [200] (see
Figure 1.3).

We will now identify an application for the congruences of Rn and Rk,n derived in this
thesis. McKay, Meynert and Myrvold [222] surveyed the “sorry history” of the enumeration
of Rn and related numbers, where they noted numerous published errors (for example [122,
168, 211]). Norton [251] gave an incomplete enumeration of the Latin squares of order
7, having found 16927968 reduced Latin squares of order 7 (the total number is 16942080
[275]). In Figure 3.4 on page 76, amongst other congruences for Rn, we will prove that 5
divides R7, but since 5 does not divide 16927968, we can deduce that R7 , 16927968 without
finding the Latin squares that Norton missed.

“ It is the purpose of this paper to present an extensive – possibly
an exhaustive – study of 7 × 7 Latin and higher squares. ”— N [251]

Here, higher squares refers not to Latin squares of order greater than 7, but to Graeco-Latin
squares [71, Ch. 5], so Norton indeed acknowledged the possibility that his enumeration was
incomplete.

The results of this thesis will similarly provide the future researcher with a congruence2

for Rn that can be used to check their results. For instance, the value of R12 is currently un-
known. In Chapter 3 we find that R12 ≡ 50400 (mod 55440). When a future mathematician
claims R12 = x, for some number x, we can at least check that x ≡ 50400 (mod 55440). It is
unlikely (although not impossible) that an erroneous computation would satisfy this congru-
ence.

2If we have more than one congruence for Rk,n, they can be combined into a single congruence using the
Chinese Remainder Theorem.
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“ With the increasing use of computers in mathematics, the correct-
ness of such “proofs” is very difficult to determine. ”— K, L  T [191]

McKay and Wanless [225], who found R11, also listed all of the values of Rk,11, which
were discovered by a similar algorithm. Congruences for Rk,n would therefore also be of
assistance in checking the validity of an enumeration of Rn.

We will find that Rk,n is related to the numbers of several other interesting combinatorial
objects. This enables us to find analogous results which will also be included in this thesis. In
particular, we will find that the methodology developed in the study of Rk,n will be applicable
to other enumeration problems in combinatorics.

*Goal: Find divisors of the numbers of related combinatorial objects.

Before we dive in, the reader should be aware of the following texts devoted to the study
of Latin squares. The first book devoted to Latin squares was by Denés and Keedwell [71]
which has a sequel [74]. A book by Laywine and Mullen [203] contains many applications of
Latin squares. Much data on Latin squares can be found in the CRC handbook [61]. Bosák
[26] also published a book on Latin squares in Slovak.

1.2 Tools of the trade
The three numbers Lk,n, Kk,n and Rk,n are related by the following theorem.

Theorem 1.2.1.
Lk,n = n!Kk,n =

n!(n − 1)!
(n − k)!

Rk,n (1.1)

and in particular
Ln = n!Kn = n!(n − 1)!Rn. (1.2)

Proof. From every k×n Latin rectangle L, by permuting the columns of L, we can construct n!
distinct k×n Latin rectangles of which exactly one is normalised. Consequently Lk,n = n!Kk,n.
Now we wish to show that Kk,n = (n − 1)!Rk,n/(n − k)!. Let C be the set of k × n normalised
Latin rectangles and letD be the set of reduced k × n Latin rectangles. We want to show that
|D|(n − 1)! = |C|(n − k)!.

Let G be the group of permutations of Zn that fix 0. First, observe that for any L ∈ D and
any permutation α ∈ G, we can construct a k× n normalised Latin rectangle by (a) permuting
the symbols of L according to α and then (b) permuting the columns of L according to α. For
this proof, we will let Lα denote the k × n normalised Latin rectangle obtained in this way.
We formally introduce this concept in Section 1.2.1.

We cannot rule out the possibility that Lα = Lβ while α , β, so to find a relation between
|C| and |D| we construct a bipartite multigraph H with vertex bipartition{

(M, 1) : M ∈ C
}
∪

{
(L, 2) : L ∈ D

}
in the following way. For every L ∈ D and α ∈ G we add an edge between (Lα, 1) and (L, 2).
Thus there are precisely |D|(n − 1)! edges in H, counting multiedges with their multiplicity.
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Now consider the degree of a vertex (M, 1) where M = (mi j) ∈ C. There is an edge
between (M, 1) and some (L, 2) for each α ∈ G such that α(mi0) = i for all 0 6 i 6 k − 1.
Therefore every (M, 1) has degree (n − k)! and so the total number of edges is |C|(n − k)! =

|D|(n − 1)!. �

Attention in this thesis will be primarily upon Rk,n (and Rn) since any divisibility property
of Rk,n transfers to the numbers Lk,n and Kk,n by (1.1). Figure 1.1 lists the known values of Rn

along with a list of relevant references. McKay and Wanless [225] listed the values of Rk,n

for 2 6 k < n 6 11, which we reproduce in Figure 1.2; note that Rn = Rn−1,n and R1,n = 1
so these values are omitted. It is clear that much research has been put into the enumeration
of Rn for many years and some surveys of its history were provided by Denés and Keedwell
[71, Sec. 4.3], McKay and Wanless [225] and McKay, Meynert and Myrvold [222]. It is
possible that Clausen found R6 as early as 1842 (see [187] for a discussion). The value of R12

is currently unknown, but the estimate R12 ≈ 1.62 · 1044 was given by McKay and Rogoyski
[223]. Zhang and Ma [344] and Kuznetsov [200] later gave estimates for Rn, which agree
with the estimates in [223]. These estimates are tabulated in Figure 1.3.

n Rn Year References

1 1
2 1
3 1
4 4
5 56 1782 [54, 97, 211]
6 9408 1890 [119, 122, 168, 278, 280, 310]
7 16942080 1948 [122, 132, 251, 274, 275, 279, 336]
8 535281401856 1967 [11, 191, 240, 326]
9 377597570964258816 1975 [16, 240]

10 7580721483160132811489280 1995 [223]
11 5363937773277371298119673540771840 2005 [225]

F 1.1: The value of Rn for 1 6 n 6 11.

1.2.1 Isotopisms and parastrophy
Let In = Sn × Sn × Sn where Sn is the symmetric group acting on Zn. Then In acts on the
set of Latin squares L = (li j) in the following way. For each θ = (α, β, γ) ∈ In we define
θ(L) to be the Latin square formed by permuting the rows of L according to α, permuting the
columns of L according to β and permuting the symbols of L according to γ. In other words,
θ(L) = (l′i j) is the Latin square defined by

l′i j = γ
(
lα−1(i)β−1( j)

)
(1.3)

for all i, j ∈ Zn. If L is a k × n Latin rectangle and α fixes {0, 1, . . . , k − 1} setwise then θ(L)
is a well-defined k × n Latin rectangle. The mapping θ is called an isotopism. The group of
all isotopisms In is called the isotopism group. The identity permutation will be denoted ε.
Any isotopism other than (ε, ε, ε) is non-trivial.
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n, k Rk,n

3, 2 1

4, 2 3
3 4

5, 2 11
3 46
4 56

6, 2 53
3 1064
4 6552
5 9408

7, 2 309
3 35792
4 1293216
5 11270400
6 16942080

8, 2 2119
3 1673792
4 420909504
5 27206658048
6 335390189568
7 535281401856

n, k Rk,n

9, 2 16687
3 103443808
4 207624560256
5 112681643083776
6 12952605404381184
7 224382967916691456
8 377597570964258816

10, 2 148329
3 8154999232
4 147174521059584
5 746988383076286464
6 870735405591003709440
7 177144296983054185922560
8 4292039421591854273003520
9 7580721483160132811489280

11, 2 1468457
3 798030483328
4 143968880078466048
5 7533492323047902093312
6 96299552373292505158778880
7 240123216475173515502173552640
8 86108204357787266780858343751680
9 2905990310033882693113989027594240

10 5363937773277371298119673540771840

F 1.2: The value of Rk,n for 2 6 k < n 6 11 [223, 225].
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McKay, Rogoyski Zhang, Ma Kuznetsov
n Rn ≈ Rn ≈ Rn ≈ confidence interval %err.

12 1.62·1044 1.622·1044 1.612·1044 (1.596·1044, 1.629·1044) 1
13 2.51·1056 2.514·1056 2.489·1056 (2.465·1056, 2.515·1056) 1
14 2.33·1070 2.332·1070 2.323·1070 (2.300·1070, 2.347·1070) 1
15 1.5·1086 1.516·1086 1.516·1086 (1.499·1086, 1.531·1086) 1
16 7.898·10103 8.081·10103 (7.920·10103, 8.242·10103) 2
17 3.768·10123 3.717·10123 (3.642·10123, 3.791·10123) 2
18 1.869·10145 1.828·10145 (1.773·10145, 1.883·10145) 3
19 1.073·10169 1.103·10169 (1.059·10169, 1.147·10169) 4
20 7.991·10194 7.647·10194 (7.264·10194, 8.028·10194) 5
50 3.06·102123

100 1.78·1011396

F 1.3: Estimates for Rn.

Let L and L′ be Latin rectangles. If there exists an isotopism θ such that θ(L) = L′ then L
and L′ are said to be isotopic. The set of all Latin rectangles isotopic to L is called the isotopy
class of L. If θ(L) = L, then θ is said to be an autotopism of L. Hence (1.3) implies that, if
L = (li j) and θ = (α, β, γ) is an autotopism of L, then

γ(li j) = lα(i)β( j) (1.4)

for all i, j ∈ Zn.
If θ = (α, β, γ) is an isotopism such that α = β = γ, then θ is said to be an isomorphism.

The group of all isomorphisms is called the isomorphism group. The set of all Latin squares
isomorphic to L is called the isomorphism class of L. Not all isomorphism classes of Latin
squares contain a reduced Latin square, for example, Figure 1.7 gives a representative from
each of the 5 isomorphism classes of Latin squares of order 3, while there is only one reduced
Latin square of order 3. If θ is an isomorphism and an autotopism of L then θ is said to be an
automorphism of L. Motivation for studying automorphisms of Latin squares stems from the
algebraic theory of quasigroups – that is, the algebraic structure defined when a Latin square
is viewed as a multiplication table. We introduce quasigroups in Section 1.2.2.

Given a Latin square L = (li j) of order n we can construct a set of n2 ordered triplets

O =
{
(i, j, li j) : i, j ∈ Zn

}
called the orthogonal array of L. Conversely, any set O of n2 triplets (i, j, li j) ∈ Zn × Zn × Zn,
such that distinct triplets differ in at least two coordinates, gives rise to a Latin square
L = (li j). Any element of the orthogonal array O of L is called an entry of L. There are
six, not necessarily distinct, Latin squares that can be constructed from L by uniformly per-
muting the coordinates of each entry in O and each is called a parastrophe of L. We use
λ ∈ {ε, (rc), (rs), (cs), (rcs), (rsc)} to permute the coordinates of each entry in O, where r, c
and s correspond to the first, second and third coordinates, respectively. We use Lλ to denote
the parastrophe of L induced by λ. For example, L(rc) is the matrix transpose of L. We use
Lλ to denote the λ-parastrophe of L and call {ε, (rc), (rs), (cs), (rcs), (rsc)} under composition
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the parastrophy group. For k × n Latin rectangles L with k < n, we can similarly construct a
set of kn entries O from L. However, it is only sensible to consider the (cs)-parastrophe of L.

Typically, “conjugate” is used in place of “parastrophe” [71]. In this thesis we are unable
to use the term “conjugate,” due to likely confusion with the well-established notion of con-
jugation in group theory. In Section 4.3 we will see that group-theoretic conjugation plays an
important role in the study of autotopisms. Norton [251], for example, used the term “adju-
gate,” but this terminology is rarely adopted in modern times. The term “adjugate” also has a
use in linear algebra.

The main class of L is the set of all Latin squares that are isotopic to some parastrophe
of L. If L and L′ are within the same main class, then they are said to be paratopic. A
map that combines both isotopism and parastrophy is called a paratopism. The group of all
paratopisms is called the paratopism group. If τ is a paratopism such that τ(L) = L then τ is
said to be an autoparatopism of L.

In this thesis we define a symmetric Latin square L as one that satisfies L = L(rc), that is,
L is its own matrix transpose. A totally symmetric Latin square L satisfies L = L(rc) = L(rs) =

L(cs) = L(rcs) = L(rsc). Some authors define a “symmetry” to be any non-trivial autoparatopism,
for example [225].

Several other subgroups of the paratopism group are of importance. For instance, McKay,
Meynert and Myrvold [222] considered the type of L, which is the set of all Latin squares that
are either isotopic to L or isotopic to L(rc). We will call the group combining isotopism with
(rc)-parastrophy the type group. Another example are isotopisms of the form θ = (α, β, ε),
which are called principal isotopisms. Principal isotopisms have been studied, for example,
by Ganfornina [126].

Let L be a Latin square. We make the following definitions.

• The group of all automorphisms of L is called the automorphism group of L, denoted
Aut(L).

• The group of all autotopisms of L is called the autotopism group of L, denoted Atop(L).

• The group of all autoparatopisms of L is called the autoparatopism group of L, denoted
Apar(L).

We depict some of the subgroup structure of the paratopism group in Figure 1.4, with arrows
denoting subgroups. The first row of groups vary only with n, the second row of groups vary
with the Latin square L (which is of order n) and the third row of groups are independent of
both L and n.

McKay, Meynert and Myrvold [222] gave a construction from L of three graphs, G1, G2

and G3, with automorphism groups that are isomorphic to Apar(L), Atop(L) and Aut(L), re-
spectively. We write GAP [127] code that constructs G1 and G2 for use with GRAPE [295] and
nauty [220] in Appendix A.1. The LOOPS [242, 243] package for GAP implements a com-
pletely different algorithm for finding the automorphism group of a Latin square. Actually,
LOOPS is a package designed for the study of quasigroups (see Section 1.2.2).

For orders 1 6 n 6 10, the number of (a) main classes, (b) types, (c) isotopy classes,
(d) isomorphism classes and (e) isomorphism classes containing a reduced Latin square was
given by McKay, Meynert and Myrvold [222], who acknowledged several earlier enumera-
tions. Hulpke, Kaski and Östergård [164] reported these numbers for order 11. These values
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paratopism
group

� S 3
n o S3

type group
� S 3

n o S2

isotopism
group � S 3

3

isomorphism
group � Sn

autoparatopism
group Apar(L)

parastrophy
group � S3

autotopism
group Atop(L)

automorphism
group Aut(L)

trivial group

F 1.4: Some important subgroups of the paratopism group, where L is a Latin square of
order n.

are listed in Figures 1.5 and 1.6, along with lists of relevant references. None of these num-
bers alone provide sufficient information to find Ln.

n Main classes Types Isotopy classes

1 1 1 1
2 1 1 1
3 1 1 1
4 2 2 2
5 2 2 2
6 12 17 22
7 147 324 564
8 283657 842227 1676267
9 19270853541 57810418543 115618721533

10 34817397894749939 104452188344901572 208904371354363006
11 2036029552582883134196099 6108088657705958932053657 12216177315369229261482540

References: [11, 33, 34, 119, 164, 191, 222, 251, 265, 274, 278, 280, 326]

F 1.5: The number of main classes, types and isotopy classes of Latin squares of order
n.

The following theorem, by McKay and Wanless [225], implies that asymptotically almost
all Latin squares of order n have a trivial autoparatopism group. Additionally, Theorem 1.2.2
implies that the number of isomorphism classes, isotopy classes and main classes of Latin
squares of order n are asymptotic to Ln/n!, Ln/n!3 and Ln/(6n!3), respectively.

Theorem 1.2.2. The proportion of Latin squares of order n which have a non-trivial au-
toparatopism group is no more than

n−3n2/8+o(n2).

Wanless and Ihrig [325] and Ihrig and Ihrig [165] studied when a Latin square is isotopic
to a symmetric Latin square.
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1.2.2 Equivalence
Quasigroups

A quasigroup (Q,⊕) of order n is a set Q of cardinality n together with a binary operation ⊕,
such that for all g, h ∈ Q, the equations x ⊕ g = h and g ⊕ y = h have unique solutions with
x, y ∈ Q. If (Q,⊕) possesses an identity element e, that is e satisfies e ⊕ g = g = g ⊕ e for all
g ∈ Q, then Q is called a loop.

If (Q,⊕) is a quasigroup and / is a total order on Q, then we call (Q,⊕, /) an ordered
quasigroup. The Cayley table of an ordered quasigroup (Q,⊕, /) is the matrix L = (li j) such
that li j = i ⊕ j, where the rows and columns of L are indexed by Q in the order defined by /.
In fact, L must be a Latin square and moreover, Latin squares are precisely the Cayley tables
of ordered quasigroups on a set Q with a total order /. Hence Ln is the number of ordered
quasigroups on a set Q of cardinality n with total order /. If (Q,⊕, /) is an ordered loop such
that the identity e is the minimum under /, then its Cayley table is a reduced Latin square.
Hence Rn is the number of ordered loops on a set Q of cardinality n with identity e ∈ Q and
total order / with minimum e.

If we do not assume that Q possesses a predefined ordering, we call (Q,⊕) an unordered
quasigroup, for emphasis. We define a Cayley table of an unordered quasigroup (Q,⊕) to
be the Cayley table of (Q,⊕, /) for any total order / on Q. Therefore, while an ordered
quasigroup possesses a unique Cayley table, an unordered quasigroup may possess many.

For any permutation α of Q, we may define a quasigroup (Q, ?) by α(i) ? α( j) = α(i ⊕ j)
for all i, j ∈ Q. We say that (Q, ?) is isomorphic to (Q,⊕) and call the set of quasigroups
isomorphic to (Q,⊕) the isomorphism class of (Q,⊕). Let / be any total order on Q. Let
L and L′ be the unique Cayley tables of the ordered quasigroups (Q,⊕, /) and (Q, ?, /), re-
spectively. Then θ(L) = L′ where θ = (α, α, α) by (1.3), that is, L is isomorphic to L′. It
follows that an isomorphism class of Latin squares is precisely the set of Cayley tables of an
unordered quasigroup. In fact, the definition of isomorphism amongst Latin squares stems
from isomorphism amongst quasigroups.

The number of isomorphism classes of quasigroups is the number of isomorphism classes
of Latin squares of order n. Theorem 1.2.2 implies that the number of isomorphism classes
of quasigroups is asymptotic to Ln/n! = Kn. In each isomorphism class of quasigroups there
(a) might not be a loop, (b) might be one loop or (c) might be more than one loop. The number
of isomorphism classes of Latin squares that contain a reduced Latin square is the number of
isomorphism classes of quasigroups that contain a loop (the number of isomorphism classes
of loops). These numbers are listed for n 6 11 in Figure 1.6 sourced from [164, 222], along
with a list of relevant references.

In Figure 1.7 we reproduce the list, given by Bailey and Cameron [15], of isomorphism
class representatives of Latin squares of order 3. These Latin squares are not isomorphic, but
they are isotopic. In fact, there is only one isotopy class of Latin squares of order 3.

Some particularly active research areas in the theory of quasigroups involve so-called
Moufang loops [238] and Bol loops [25].

Graphs

In this section we identify some graph-theoretic objects that are equivalent to Latin squares
(see also [71, Sec. 9.1] and [203, Ch. 7]).
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n Loops Quasigroups

1 1 1
2 1 1
3 1 5
4 2 35
5 6 1411
6 109 1130531
7 23746 12198455835
8 106228849 2697818331680661
9 9365022303540 15224734061438247321497

10 20890436195945769617 2750892211809150446995735533513
11 1478157455158044452849321016 19464657391668924966791023043937578299025

References: [2, 29, 39, 71, 164, 222, 276, 280], Bower, Guérin and “QSCGZ” [222]

F 1.6: The number of isomorphism classes of loops of order n and the number of iso-
morphism classes of quasigroups of order n, for 1 6 n 6 11. 0 2 1

2 1 0
1 0 2

,
 0 1 2

1 2 0
2 0 1

,
 0 1 2

2 0 1
1 2 0

,
 0 2 1

1 0 2
2 1 0

,
 1 0 2

0 2 1
2 1 0


F 1.7: A Latin square from each isomorphism class of order 3.

Rook’s graph Let G = Gk,n be the graph with vertex set {(i, j) : 0 6 i 6 k − 1 and 0 6 j 6
n − 1} and edges between distinct (i, j) and (i′, j′) whenever i = i′ or j = j′. We will call G
a rook’s graph since edges represent legal moves by a rook on a k × n chess board. There
are other names for G, for example G is (a) the line graph of the complete bipartite graph
and (b) the graph Cartesian product of the complete graphs on k and n vertices. As usual we
assume k 6 n.

A k × n Latin rectangle L = (li j) corresponds to a proper vertex-colouring of G with
colour set Zn, with vertex (i, j) receiving colour li j. This observation was made by Athreya,
Pranesachar and Singhi [12]. Figure 1.8 is G3,4 with an example of a proper vertex-colouring
from the colour set Z4. Hence Lk,n is the number of proper vertex-colourings of G with
colour set Zn. Equivalently, Lk,n is the chromatic polynomial P(G, x) evaluated at x = n, the
chromatic number of G. In Figure 1.9 we list P(G, x) for some small values of k and n that
were computed by Kerri Morgan (private communication).

The number of k×n matrices with at most x distinct symbols in total and without repeated
symbols in each row and column, is enumerated by P(G, x). The enumeration of this type of
generalised Latin rectangle was also considered by Light Jr [207] and Nechvatal [245]. We
discuss generalisations of Latin squares in Section 2.5.

Latin square graphs Let L = (li j) be a Latin square of order n. Let H = H(L) be the graph
with vertex set {(i, j) : i, j ∈ Zn} and an edge between distinct (i, j) and (i′, j′) whenever i = i′

or j = j′ or li j = li′ j′ . The graph H is called a Latin square graph of order n.
We say a graph G is (v, a, b, c)-strongly regular if (a) G has v vertices, (b) every vertex has
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1 0 3 2

3 2 0 1

2 3 1 0

F 1.8: The graph G3,4 with a proper vertex-colouring from the colour set Z4.

k n P(Gk,n, x)

2 2 x(x − 1)(x2 − 3x + 3)
2 3 x(x − 1)(x − 2)(x3 − 6x2 + 14x − 13)
2 4 x(x − 1)(x − 2)(x − 3)(x4 − 10x3 + 41x2 − 84x + 73)
2 5 x(x − 1)(x − 2)(x − 3)(x − 4)(x5 − 15x4 + 95x3 − 325x2 + 609x − 501)

3 3 x(x − 1)(x − 2)(x6 − 15x5 + 100x4 − 381x3 + 877x2 − 1152x + 688)
3 4 x(x − 1)(x − 2)(x − 3)(x8 − 24x7 + 264x6 − 1746x5 + 7620x4 − 22512x3

+43939x2 − 51630x + 27808)
3 5 x(x − 1)(x − 2)(x − 3)(x − 4)(x10 − 35x9 + 570x8 − 5710x7 + 39098x6 − 191728x5

+683055x4 − 1746375x3 + 3063456x2 − 3321652x + 1684912)

4 4 x(x − 1)(x − 2)(x − 3)(x12 − 42x11 + 833x10 − 10338x9 + 89589x8 − 572046x7 + 2762671x6

−10172046x5 + 28328427x4 − 58124022x3 + 83236871x2 − 74505978x + 31430160)

F 1.9: P(Gk,n, x) for some small values of k and n.

a neighbours, (c) every pair of adjacent vertices has b common neighbours and (d) every pair
of non-adjacent vertices has c common neighbours. A Latin square graph is (n2, 3(n−1), n, 6)-
strongly regular. The following theorem was attributed to Bruck [38] (see also [37]) by Bailey
and Cameron [15, Pro. 3].

Theorem 1.2.3. If n > 24 then any (n2, 3(n−1), n, 6)-strongly regular graph is a Latin square
graph. Furthermore, if (a) L is a Latin square of order n > 5, (b) H is the Latin square graph
of L and (c) H′ is a graph isomorphic to H, then H′ is the Latin square graph of a Latin
square L′ paratopic to L.

It follows that, for n > 24, the number of isomorphism classes of (n2, 3(n − 1), n, 6)-
strongly regular graphs is the number of main classes of Latin squares of order n. The auto-
morphisms of Latin square graphs were studied by Phelps [259, 260].

Proper edge-colourings of the complete bipartite graph Let G be the complete bipartite
graph with vertex bipartition {u0, u1, . . . , un−1} ∪ {w0,w1, . . . ,wn−1}. Let C be a proper edge-
colouring of G with edge colour set Zn. The edges of colour s define a permutation of Zn

by i 7→ j whenever ui is adjacent to w j by an edge of colour s. So we can construct a Latin
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square L = L(C) = (li j) from C with li j = s whenever ui is adjacent to w j by an edge of colour
s. Hence Ln is the number of proper edge-colourings of G with edge colour set Zn.

The group Aut(G) × Sn acts on the set of proper edge-colourings of G; with (τ, γ) ∈
Aut(G) × Sn permuting the vertices of G according to τ and the edge colours according to
γ. In fact, Aut(G) × Sn is isomorphic to the type group (see Section 1.2.1). Let C be an
arbitrary edge-colouring of G. The orbit of C under Aut(G) × Sn corresponds to the type of
L(C). Therefore the number of non-isomorphic edge-colourings of G is the number of types
of Latin squares of order n.

A one-factor of a graph (in this case G) is a 1-regular spanning subgraph. A decom-
position of G is a set of subgraphs of G whose edge sets partition the edge set of G. In
particular, a one-factorisation of G is a decomposition of G into a set of one-factors. Given
a one-factorisation of G, we can construct n! proper edge-colourings by assigning a distinct
colour of Zn to each one-factor and then colouring each edge in G according to the colour
of one-factor to which it belongs. Consequently, Kn is the number of one-factorisations of
G. The number of non-isomorphic one-factorisations of G is the number of types of Latin
squares of order n.

Figure 1.10 depicts a one-factorisation of the complete bipartite graph on 10 vertices.
The first column of vertices is u0, u1, . . . , un−1 and the second is w0,w1, . . . ,wn−1, with both
in descending order. To illustrate the correspondence with Latin squares, the vertices ui are
marked j whenever ui is adjacent to w j. Note that Figure 1.10 identifies the Latin square
defined by lis = j, that is, L(C)(cs).

Denés and Keedwell [72, 73] and Laywine and Mullen [203] discussed one-factorisations
of the complete bipartite graph (see also [71] and [74]). Wanless and Ihrig [325] studied the
Latin squares formed from a certain construction of one-factorisations of G.

0 1 2 3 4

2 0 3 4 1

1 4 0 2 3

4 3 1 0 2

3 2 4 1 0

F 1.10: A one-factorisation of the complete bipartite graph on 10 vertices.

One-factorisations of the complete directed graph A set S of permutations of Zn is called
sharply transitive if for all i, s ∈ Zn there is a unique σ ∈ S such that σ(i) = s. It follows
that |S | = n. We define σ j ∈ S to be the permutation that maps 0 to j. We can construct a
normalised Latin square L = (li j) of order n from S by assigning li j = σ j(i). Moreover, if
ε ∈ S then L is a reduced Latin square. Hence Kn is the number of sharply transitive sets of
Zn and Rn is the number of sharply transitive sets S of Zn with ε ∈ S .
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A one-factorisation of a directed graph G is a decomposition of G into subgraphs in which
every vertex has in-degree and out-degree 1.

Let G be the loop-free complete directed graph on the vertex set Zn. Assume that ε ∈ S .
Each non-trivial σ ∈ S is equivalent to the subgraph of G with an edge from each i ∈ Zn

to σ(i). Together, the non-trivial σ ∈ S yield a one-factorisation of G. Conversely, given
a one-factorisation of G we may reverse this process to construct a sharply transitive set of
permutations S = {σ j} j∈Zn with σ0 = ε. Hence Rn is the number of one-factorisations of G.
This equivalence was noticed in [203, pp. 112–113].

Let G′ be the complete directed graph on n vertices, with a single loop on each vertex. A
one-factorisation of G′ corresponds to a sharply transitive set S = {σ j} j∈Zn , but this time we
do not necessarily have σ0 = ε. Consequently, Kn is the number of one-factorisations of G′.
This equivalence was also noticed in [203, pp. 111–112].

Triangle decompositions of the complete tripartite graph Let G be the complete tripar-
tite graph with vertex partition R∪C ∪ S with |R| = |C| = |S | = n. We will consider a triangle
of G to be any triplet in R × C × S . The orthogonal array of L therefore defines a decom-
position of G into triangles. Hence Ln is the number of decompositions of G into triangles.
Figure 1.11 gives an example of a triangulation of the complete tripartite graph on 6 vertices;
identically labelled vertices are identified.

Colbourn [60] used the problem of decomposing a tripartite graph into triangles to show
that the problem of partial Latin square completion is NP-complete.

c0 c1

r0 0 1 r0

r1 1 0 r1

c0 c1

F 1.11: A triangulation of the complete tripartite graph on 6 vertices.

Miscellany

3-nets and transversal designs A 3-net [15, 71, 157, 175] is an incidence structure with
n2 points and 3n lines such that (a) each line contains n points and each point lies on 3 lines,
(b) each pair of points lie on at most one line and (c) the lines can be partitioned into 3
families of n lines, each of which is a partition of the set of points, with each pair of lines
from distinct families intersecting at a unique point. A Latin square L forms a 3-net with
its orthogonal array as the set of points and lines corresponding to the rows, columns and
symbols of L. Condition (c) implies that L can be recovered from the 3-net [15].
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A transversal design is the dual of a 3-net. It has 3n points and n2 lines such that (a) each
line contains 3 points and each point lies on n lines, (b) each pair of points lie on at most one
line and (c) the points can be partitioned into 3 families of n points, with each pair of points
from different families lying on a unique line and each line containing one point from each
family.

Isomorphism amongst 3-nets and transversal designs corresponds to paratopism of Latin
squares. Therefore, the number of non-isomorphic 3-nets is the number of non-isomorphic
transversal designs, and is also the number of main classes of Latin squares.

Error-detecting codes We can write the orthogonal array of a Latin square L = (li j) as an
n2×3 array with each row equal to (i, j, li j) for some i, j ∈ Zn. It has the property that any pair
of distinct rows differs by at least two entries. Such an array is called a 1-error-detecting code
[71, p. 354]. The rows are referred to as codewords, the symbol set is called the alphabet and
the word length is 3, the number of columns. It is straightforward to construct an orthogonal
array of a Latin square from a 1-error-detecting code with these parameters. Hence Ln is the
number of 1-error-detecting codes with n2 codewords of word length 3 and alphabet of size
n.

Permutation cubes Let L be a Latin square. Then L corresponds to the n × n × n (0, 1)-
array M = (mi jk) with mi jk = 1 whenever li j = k. Equivalently M indicates the position of n2

mutually non-attacking rooks on an n × n × n chess board. Hence Ln is the number of such
arrays M and the number of arrangements of n2 mutually non-attacking rooks on an n× n× n
chess board.

1.2.3 Subrectangles and transversals
We will now discuss two useful objects that occur within some Latin squares – subsquares
and transversals. We will generally deal with both objects from a functional perspective, that
is, as a catalyst in the study of enumeration problems relating to Latin squares and rectangles.
However, in Section 4.2 we will find new bounds on the maximum number of subsquares in
a Latin square and some results in Chapter 3 will be applicable to transversals of the Cayley
table of Zn. There remain some interesting open problems in the study of both subsquares
and transversals and the interested reader should consult [74, Ch. 4] and [324], respectively.

Let L be an arbitrary Latin rectangle. If a submatrix M of L is also a Latin rectangle then
M is called a subrectangle of L, and if M is a Latin square then M is called a subsquare of
L. So a subrectangle is a Latin rectangle contained within a Latin rectangle and is different
to an arbitrary rectangular submatrix, which might not be a Latin rectangle. We stress that
subrectangles and subsquares do not need to consist of contiguous rows and columns. We
will not consider M to be a subrectangle if it consists of more rows than columns.

Every Latin square of order n contains (a) a subsquare of order 0, (b) n2 subsquares of
order 1 and (c) one subsquare of order n. A subsquare of order 2 is called an intercalate and
is the smallest non-trivial subsquare. The term “intercalate” is usually traced back to Norton
[251]. Most Latin squares have many intercalates [224].

Subsquares M of k× n Latin rectangles have the handy property that they can be replaced
by another subsquare of the same order and with the same symbol set to give another k × n
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Latin rectangle. This switch yields a distinct k × n Latin rectangle when the order of M is at
least 2. Subsquares are a simple example of a class of switches, called Latin trades, that are
possible within Latin squares [48].

We now list some more properties of subsquares. Lemmata 1.2.4 and 1.2.5 are well-
known and straightforward to prove. Lemma 1.2.7 arose in the proof of [222, Thm 1] and
Lemma 1.2.8 is a straightforward consequence of Lemma 1.2.7.

Lemma 1.2.4. Let M be a subsquare of order m of a k×n Latin rectangle L. Then m 6 bn/2c
or M is L itself.

Proof. Let M′ denote the m × (n − m) subrectangle of L formed by the rows of L in M and
columns of L outside of M. For M′ to exist we require n − m > m or n − m = 0. �

If M is a subsquare in a Latin square L of order n, then M is called a proper subsquare if
the order of M is not 0, 1 or n. By Lemma 1.2.4 this requires the order of M to be between 2
and bn/2c inclusive. Latin squares without proper subsquares exist for many orders [214].

Lemma 1.2.5. Suppose M and M′ are both subsquares of a Latin square L. Then the inter-
section of M and M′ is also a subsquare of L.

Proof. Let M∗ denote the submatrix formed by the intersection of M and M′. Assume that
M∗ is non-empty and M∗ , L, otherwise the lemma is trivial.

Let x be an arbitrary symbol in M∗. Then x occurs in each row of both subsquares M and
M′. However, x occurs exactly once in every row of L. Therefore every row in M∗ contains
x. Since x is arbitrary, every symbol in M∗ occurs in every row of M∗. That x is in every
column of M∗ follows similarly. �

Lemma 1.2.6. Let E be a set of entries of a Latin square L. There exists a unique smallest
subsquare ME of L such that every entry in E is in ME.

Proof. Follows from Lemma 1.2.5. �

Lemma 1.2.7. Let L = (li j) be a k × n Latin rectangle and let θ = (α, β, γ) be an autotopism
of L. Let i index a row of L and let j index a column of L. Any two of following statements
implies the other:

1. row i is fixed by α,

2. column j is fixed by β,

3. symbol li j is fixed by γ.

Proof. Suppose row i is fixed by α and column j is fixed by β. Since θ is an autotopism,
γ(li j) = lα(i)β( j) = li j by (1.4). The remaining cases are handled similarly. �

Our next lemma illustrates how subsquares arise naturally in the study of autotopisms and
is often used in Chapter 2.

Lemma 1.2.8. Let L be a Latin rectangle and θ = (α, β, γ) be an autotopism of L. Let M
denote the submatrix formed by the intersection of the rows whose indices are fixed by α and
the columns whose indices are fixed by β. Then M is a subrectangle of L. In particular, if L
is a Latin square, then M is a (possibly empty) subsquare of L.
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Proof. Lemma 1.2.7 implies that (a) every symbol in M is fixed by γ and (b) every symbol
occurring outside of M, but in a row shared with M, is not fixed by γ. Therefore, M is a
subrectangle of L.

When L is a Latin square, a similar argument shows that M(rc) is a subrectangle of L(rc).
Hence M must be a subsquare. �

Lemma 1.2.8 was a precursor to a theorem of McKay, Meynert and Myrvold [222] (The-
orem 4.3.6). Lemma 1.2.8 will be generalised by Lemma 2.5.4 on page 53, when L is a Latin
square.

We will now briefly introduce transversals of Latin squares, which are another important
object within many Latin squares. If L = (li j) is a Latin square of order n, then a diagonal of
L (or any square matrix) is a set of n entries of L such that if (i, j, li j) and (i′, j′, li′ j′) are two
distinct entries in the diagonal then i , i′ and j , j′. A diagonal that consists of n distinct
symbols is called a transversal. A survey on the theory of transversals of Latin squares was
given by Wanless [324].

We consider a notion of transversals for Latin hypercuboids in Section 2.5. In Chapter 3,
we will see that transversals of the Cayley table of Zn are equivalent to orthomorphisms of
Zn.

1.2.4 Permanents and bounds
In this section we discuss the known bounds for Rn. We will see that the best known bounds
for Rn are still quite poor. We can easily find a super-exponential lower bound on Rn. In
fact, for any k > 2, Rk,n increases super-exponentially as n → ∞. To show this, observe
that Rk,n > Rk′,n whenever k′ 6 k 6 n, by Theorem 1.1.1 and (1.1). A derangement is a
permutation without fixed points. When n > k we have Rk,n > R2,n = Dn/(n − 1), where Dn is
the number of derangements on a set of cardinality n. It is well-known that Dn ∼ exp(−1) ·n!.
Hence Rk,n increases super-exponentially with n and Rn > Rk,n when n > k.

To study the bounds on Rk,n, we will need to introduce the permanent function for square
matrices. The permanent of a square matrix, M = (mi j)n×n is defined as

(M) =
∑
σ∈Sn

∏
i∈Zn

miσ(i)

where Sn is the symmetric group on Zn. The primary source of information for permanents is
Minc [233, 234, 235]; see also his biography by Marcus [216].

Given a k × n Latin rectangle L we can construct an n× n (0, 1)-matrix T = (ti j) such that
ti j = 1 if and only if symbol j does not occur in column i in L. The matrix T is called the
template of L. We will index the rows and columns of T by Zn. For any σ ∈ Sn, if tiσ(i) = 1 for
all i ∈ Zn then L can be extended to a (k + 1)× n Latin rectangle with the new row containing
symbol σ(i) in column i for each i ∈ Zn. Therefore, the number of ways L can be extended to
a (k + 1) × n Latin rectangle is (T ).

Let Λs
n denote the set of (0, 1)-matrices with exactly s non-zero entries in each row and

column. It follows that

k−1∏
s=0

min
M∈Λn−s

n

(M) 6 Lk,n 6
k−1∏
s=0

max
M∈Λn−s

n

(M). (1.5)
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Let M = (mi j) be a (0, 1)-matrix and define the row sum ri =
∑

j∈Zn
mi j for all rows i. Hall

Jr [149] showed that if (M) > 0 then (M) > mini∈Zn ri!. Jurkat and Ryser [176, (12.33)]
showed that (M) >

∏n
i=1 max(0, ri − i + 1). Minc [232] showed that a result of Sinkhorn

[287] implies that if M ∈ Λs
n then (M) > n(s − 3)/3 and improved this lower bound to

(M) > n(s − 2) + 2.
Minc [230] showed that (M) 6

∏
i∈Zn

(ri + 1)/2 with equality if and only if M ∈ Λ1
n

which was subsequently improved [231] to (M) 6
∏

i∈Zn
(ri +

√
2)/(1 +

√
2). Brègman

[31] (see also [281]) proved a conjecture of Minc [230] that (M) 6
∏

i∈Zn
ri!1/ri . Liang and

Bai [205] gave (M) 6
∏n−1

i=0
√

ai(ri − ai + 1) where ai = min(d(ri + 1)/2e , di/2e). A lower
bound for the maximum permanent in Λs

n was given by Wanless [321].
We can combine (1.5) with the above bounds on the permanent of matrices in Λs

n to find
bounds for Lk,n and consequently Rk,n by (1.1). We will now discuss some other bounds on
Rn. Hall Jr [149] gave the lower bound Rk,n >

∏n−2
i=n−k+1 i!, which was also proved by Ryser

[273, pp. 52–53]. Alter [7] gave the “crude upper bound” Rn 6 (n − 1)!
∏n−2

i=1 in−i−1 · i!. An
upper bound was also given by Duan [86], but it is no better than that of Alter for n > 13,
although it appears Duan did not have access to Alter’s paper. Smetaniuk [291] showed that
Ln+1 > (n + 1)!Ln and therefore Rn+1 > (n − 1)!Rn by (1.1). Van Lint and Wilson [315,
Thm 17.2] showed that the van der Waerden Conjecture [313] (proved by [90, 115]) implies
that Ln > n!2nn−n2

.
A comparison of the discussed bounds for Rn is given in Figure 1.12. We also include

the known values of Rn and the approximations by [200, 223, 344] (see also Figure 1.3).
It is clear there remains a large difference between the best upper and lower bounds on Rn.
Judging from Figure 1.12, it appears that the best known upper and lower bounds on Rn both
have at least an exponential difference from Rn.

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Lower bound by:
Hall Jr 2 3 5 8 12 16 22 28 36 45 54 65 77 91 105 121
Smetaniuk 42 51 61 72 84 97 112 127 145
van Lint and Wilson 1 2 4 8 13 20 28 37 48 61 76 93 112 132 155 180

Rn 2 4 8 12 18 25 34
Approximation 2 4 8 12 18 25 34 45 57 71 87 104 124 146 170 195

Upper bound by:
Brègman, Minc 3 5 9 14 21 29 38 49 63 77 94 113 134 156 181 208
Liang and Bai 2 5 9 14 20 29 38 50 63 79 96 116 137 161 187 215
Alter 4 7 12 19 27 37 50 64 80 99 119 142 168 196 226 259
Duan 2 5 10 16 25 35 48 63 81 101 123 149 177 208 242 278

F 1.12: The number of decimal digits of some bounds on Rn, approximations of Rn and
the value of Rn itself.

1.2.5 The sign of a Latin square
Let α be a permutation of Zn. If α can be decomposed into the composition of an even
number of transpositions, then α is called an even permutation, otherwise α is called an odd
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permutation. Define the sign of α, denoted ε(α), as +1 if α is an even permutation and −1 if
α is an odd permutation. Since “α is an even (or odd) permutation” and “ε(α) = +1 (or −1)”
are equivalent statements, the adjective that describes α, even or odd, is also referred to as the
sign of α.

Given a Latin square L = (li j) of order n, we can identify the following 3n permutations
of Zn.

• For all i ∈ Zn define σrow
i = σrow

i ( j) such that σrow
i ( j) = li j.

• For all j ∈ Zn define σcol
j = σcol

j (i) such that σcol
j (i) = li j.

• For all ` ∈ Zn define σsym
` = σ

sym
` (i) such that σsym

` (i) is equal to j for which li j = `.

We call εrow(L) :=
∏

i ε(σrow
i ), εcol(L) :=

∏
j ε(σcol

j ) and εsym(L) :=
∏

` ε(σ
sym
` ) the row-sign,

column-sign and symbol-sign of L, respectively. The product ε(L) := εrow(L)εcol(L) is called
the sign of L.

A Latin square is called even or odd if ε(L) = +1 or ε(L) = −1, respectively. A Latin
square is called row-even or row-odd if εrow(L) = +1 or εrow(L) = −1, respectively. A Latin
square is called column-even or column-odd if εcol(L) = +1 or εcol(L) = −1, respectively. A
Latin square is called symbol-even or symbol-odd if εsym(L) = +1 or εsym(L) = −1, respec-
tively. We define the properties

•  = “is an even Latin square,”

•  = “is an odd Latin square,”

•  = “is a row-even Latin square,”

•  = “is a row-odd Latin square,”

•  = “is a column-even Latin square,”

•  = “is a column-odd Latin square,”

•  = “is a symbol-even Latin square,”

•  = “is a symbol-odd Latin square.”

Let P be a property of Latin squares of order n.

• Let LP
n be the number of Latin squares of order n that satisfy P.

• Let RP
n be the number of reduced Latin squares of order n that satisfy P.

• Let UP
n be the number of normalised unipotent Latin squares of order n that satisfy P.

• Let T P
n be the number of unipotent Latin squares of order n with the first column

(0, 1, . . . , n − 1)T that satisfy P.

Let θ = (α, β, γ) ∈ In be an isotopism. By considering the action of θ on each individual
row and column we find that

ε
(
θ(L)

)
= ε

(
L
)
εn(α)εn(β)ε2n(γ) = ε

(
L
)
εn(α)εn(β). (1.6)

For example, (1.6) implies that θ preserves the sign of a Latin square (a) if n is even or (b) if
θ is a isomorphism. So, when n is even and P ∈ {, },

LP
n = n!(n − 1)!RP

n = n!(n − 1)!UP
n . (1.7)
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Let L be an arbitrary Latin square of order n for odd n > 3, if we choose θ = (α, ε, ε) where
α consists of a single 2-cycle (i.e. a transposition) and fixed points, then ε

(
L
)

= −ε
(
θ(L)

)
, by

(1.6). Since θ(L) , L, we find that, when n is odd and n > 3,

Ln = Ln =
1
2

Ln =
1
2

n!(n − 1)!Rn =
1
2

n!(n − 1)!Un. (1.8)

For odd n, despite Ln = Ln , it is conjectured that both Rn , Rn and Un , Un ,
as we will discuss in the next section. On the other hand, for even n, (1.7) implies that

Rn = Rn ⇐⇒ Un = Un ⇐⇒ Ln = Ln .

Conjectures

We now introduce the following conjecture by Alon and Tarsi [5] and a theorem of Drisko
[83], which motivate the results in Section 2.7.

Conjecture 1.2.9 (Alon-Tarsi Conjecture). Ln , Ln when n is even.

Theorem 1.2.10. If p is a prime and p > 3 then Lp+1 − Lp+1 ≡ (−1)(p+1)/2 p2 (mod p3).

Theorem 1.2.10 proves a special case of the Alon-Tarsi Conjecture. After proving The-
orem 1.2.10, Drisko asked if his method could be extended to include other cases, giving
three examples which he thought looked promising. In Corollary 2.7.7 we will prove that
Ln+1 ≡ Ln+1 (mod t3) for all 1 6 t 6 n except when t = n and n is prime, which includes all
of the cases suggested by Drisko.

Alon and Tarsi showed that their conjecture implies the even n case of a conjecture (The-
orem 1.2.11) that has been attributed to Dinitz [94]. Theorem 1.2.11 was proved by Galvin
[125] and Slivnik [289] (see also [57, 147, 170, 341]).

Theorem 1.2.11 (Dinitz Conjecture). Given any n2 sets Si j of cardinality n with 0 6 i, j 6
n − 1, there always exists an n × n matrix (li j) with each li j ∈ Si j without repeated symbols in
any row or column.

Huang and Rota [163] showed that the Alon-Tarsi Conjecture is equivalent to the follow-
ing conjecture.

Conjecture 1.2.12. Rn , Rn when n is even.

Actually, in [163] it was conjectured that Ln , Ln for even n, but this is equivalent to
Conjecture 1.2.12. Some values of Rn and Rn were given in [145] for n 6 7 (which is
incorrect for n = 4 and the sign of Rn −Rn is missing when n = 7). Also see [171, 217, 218,
343] for further results on the row-sign of Latin squares and Latin rectangles.

Huang and Rota [163] showed that the Alon-Tarsi Conjecture implies a conjecture of Rota
entitled “Rota’s Colorful Conjecture” [256] or “Rota’s Basis Conjecture” [134].

Dougherty and Szczepanski [80] conjectured a generalisation of the Alon-Tarsi Conjec-
ture, which is discussed in Section 2.5.1. We prove a special case of Dougherty and Szczepan-
ski’s generalised version of the Alon-Tarsi Conjecture in Theorem 2.5.11.

We also list the following related conjectures. The first conjecture was made by Zappa
[340] and the second was not found in the literature.
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Conjecture 1.2.13. Un , Un for all n > 1.

Conjecture 1.2.14. Rn , Rn for all n > 1.

For even n, (1.7) implies that

Rn − Rn =
1

n!(n − 1)!

(
Ln − Ln

)
= Un − Un . (1.9)

However, Conjectures 1.2.13 and 1.2.14 are not equivalent for all odd n, for example, Fig-
ures 1.13 and 1.14 show that R7 − R7 = 276480 , 368640 = U7 − U7 . Figure 1.13
implies that |Rn −Rn | = |U


n −Un |, so Conjecture 1.2.13 implies Conjecture 1.2.12 is true

for all n > 1.
Drisko [84] showed that Up − Up ≡ (−1)(p−1)/2 (mod p) for odd primes p. Glynn

[134] showed that Lp−1 − Lp−1 ≡ (−1)(p−1)/2 (mod p) for odd primes p. Glynn also showed
that a result of Zappa [340] is unreliable, which has consequences for [84]. Marini and Pirillo
[217] (see also [340]) gave the value of Un − Un for n 6 8.

To review, we know the Alon-Tarsi Conjecture and Conjectures 1.2.12, 1.2.13 and 1.2.14
are true when n = p ± 1 for some odd prime p and when n 6 8 (see Figure 1.14 or Ap-
pendix A.2). Additionally, Conjecture 1.2.13 holds when n is a prime.

Data

A theorem of Wanless [322] (see also [339]) states that

εrow(L)εcol(L)εsym(L) =

+1 if n ≡ 0 or 1 (mod 4)
−1 if n ≡ 2 or 3 (mod 4)

(1.10)

In particular, we can use (1.10) to find εsym(L) from εrow(L), εcol(L) and the value of n (mod 4).
We define the parity of a Latin square L to be the triplet

πrowπcolπsym ∈
{ n≡0 or 1 (mod 4)︷                 ︸︸                 ︷
000, 011, 101, 110,

n≡2 or 3 (mod 4)︷                 ︸︸                 ︷
001, 010, 100, 111

}
such that πx = 0 when εx(L) = +1 and πx = 1 when εx(L) = −1 for x ∈ {row, col, sym}.
Consequently, we can deduce the equations given in Figure 1.13, where Rπrowπcolπsym

n is the
number of reduced Latin squares of order n with given parity πrowπcolπsym.

Figure 1.14 lists the number Rπrowπcolπsym
n of reduced Latin squares with parity πrowπcolπsym

for some small n, sourced from [217, 339] and Ian Wanless (private communication). In
Appendix A.2 we give tables of values of Rn , Rn , Rn , Rn , Un and Un . By considering
the effect of transposition on the sign of a Latin square, it can easily be seen that Un = T n
and Un = T n for all n and so R010

n = R100
n and R011

n = R101
n for all n. Moreover, combining

Figure 1.13 and (1.9), we find that R110
n = R101

n = R011
n when n ≡ 0 (mod 4) and R100

n =

R010
n = R001

n when n ≡ 2 (mod 4). The Alon-Tarsi Conjecture is therefore equivalent to the
conjecture that R000

n , R110
n when n ≡ 0 (mod 4) and R001

n , R111
n when n ≡ 2 (mod 4) [217].
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If n ≡ 0 or 1 (mod 4)

Rn = Rn = R110
n + R000

n

Rn = Rn = R101
n + R011

n

Un = Rn = R101
n + R000

n

Un = Rn = R110
n + R011

n

T n = Rn = R011
n + R000

n

T n = Rn = R110
n + R101

n

If n ≡ 2 or 3 (mod 4)

Rn = Rn = R111
n + R001

n

Rn = Rn = R100
n + R010

n

Un = Rn = R111
n + R010

n

Un = Rn = R100
n + R001

n

T n = Rn = R111
n + R100

n

T n = Rn = R010
n + R001

n

F 1.13: Table of equations.

Even Latin squares Odd Latin squares

n ≡ 0, 1 (mod 4) n ≡ 2, 3 (mod 4) n ≡ 0, 1 (mod 4) n ≡ 2, 3 (mod 4)
R000

n R110
n R001

n R111
n R011

n = R101
n R010

n = R100
n

n = 2 1
3 1
4 4
5 8 32 8
6 1776 4080 1776
7 4120320 4488960 4166400
8 138478485504 132267638784 132267638784

F 1.14: The number Rπrowπcolπsym
n of reduced Latin squares of order n with given parity

πrowπcolπsym.

1.2.6 Algorithms
Enumeration algorithms

Modern enumeration algorithms for Latin rectangles, for example those of McKay and Ro-
goyski [223] and McKay and Wanless [225], stem from a result of Sade [274], related to
Theorem 1.2.15.

Recall the definition of the template of a Latin rectangle from Section 1.2.4. We call two
k × n Latin rectangles L and L′ template equivalent if the template of L′ or its transpose can
be formed from the template of L by some row and column permutations.

Theorem 1.2.15. Suppose L and L′ are k×n Latin rectangles such that L and L′ are template
equivalent. Then L can be extended to a k∗ × n Latin rectangle, for any k∗ in the range
k 6 k∗ 6 n, in the same number of ways as L′.

There is some discrepancy in the literature as to which equivalence relation Sade actually
used in [274]. According to Wells [326] (and [71, pp. 142–143]), Sade found isotopy class
representatives for the 2 × 7, the 3 × 7 and the 4 × 7 Latin rectangles, keeping track of the
number of ways each rectangle could have been formed. Afterwards, Sade simply computed
the number of completions of each 4 × 7 Latin rectangle representative to complete the enu-
meration of the Latin squares of order 7. However, both Yamamoto [336] and Bammel and
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Rothstein [16] imply that the equivalence relation that Sade used is what we call template
equivalent, but without transposition.

Sade’s idea was first adapted to the computer by Wells [326, 327], who gave the correct
value for R8, which he computed on the MANIAC II computer at the Los Alamos Scientific
Laboratory. Bammel and Rothstein [16] verified the values for R7 and R8 and discovered
R9, with the use of the PDP-10 (Programmed Data Processor model 10) computer. The
algorithms of [223] and [225] were graph theoretic adaptations of Theorem 1.2.15 that made
use of nauty [220].

We will now describe the formulae that McKay and Wanless [225] used to find Rk,11.
Given a k × n Latin rectangle L, we can construct a bipartite graph B = B(L) with vertex
bipartition C ∪ S where C is the set of columns of L, and S is the set of symbols of L.
Vertices c ∈ C and s ∈ S are adjacent if and only if symbol s occurs in column c in L. So B
is regular of degree k.

Let T be the group of paratopisms that combines isotopisms of the form (ε, β, γ) and
(cs)-conjugation, where ε is the identity permutation. Then T acts on the set of k-regular
bipartite graphs on C and S , by permuting the vertices of C and S individually and possibly
by swapping the sets C and S . Let B(k, n) be a set containing one representative from each
orbit of k-regular bipartite graphs on the vertices C ∪ S under the action of T . For any
B ∈ B(k, n) let AutT (B) denote the group of all τ ∈ T such that τ(B) = B.

Let B′ be the bipartite complement of B, that is, B′ is a bipartite graph with vertex bi-
partition C ∪ S such that c ∈ C is adjacent to s ∈ S if and only if symbol s does not occur
in column c in L. Recall that, for any graph, a one-factor is a 1-regular spanning subgraph
and a one-factorisation is a decomposition into one-factors. Let m(H) denote the number of
one-factorisations of a graph H. Whenever 0 6 k 6 n,

Rn = 2nk!(n − k)!
∑

B∈B(k,n)

m(B)m(B′)
|AutT (B)|

and
Rk,n = 2nk!(n − k)!

∑
B∈B(k,n)

m(B)
|AutT (B)|

.

It is possible to compute m(B) with the recurrence relation

m(B) =
∑
F∈Fe

m(B − F)

for any edge e of B, where Fe is the set of all one-factors F of B that contain e. We use B− F
to denote the graph formed by deleting the edges from B that are also in F. Describing their
computation of Rk,11, McKay and Wanless made the following comment.

“ The main practical difficulty was the efficient management of the
fairly large amount of data... It is unlikely that R12 will be com-
putable by the same method for some time. ”— MK W [225]
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Random Latin squares and Latin rectangles

In this section we will briefly review the algorithms used in generating random Latin squares
and rectangles. There are several reasons why one would want to generate random Latin
squares, for example, they can assist in identifying which properties of Latin squares are
typical or not. There are also practical applications, for example, in experimental design
[14, 15]. The problem of uniform random Latin square generation is outside of the scope of
this thesis, however the following quote motivates at least a brief mention.

“ Why is this a challenge? Counting Latin squares is hard, and
the problems of counting and random generation are, in general,
closely related. The difficulties are illustrated by a couple of un-
suitable generation algorithms:

We could generate random permutations of the symbols to fill a
square a row at a time. Each permutation would be restricted to
choices that would not cause column conflicts with the already-
filled rows... However, we have no general way of weighting these
choices appropriately in order to achieve the uniform distribution
on Latin squares.

We could generate uniformly distributed random permutations to
fill a square a row at a time, restarting from scratch if we produce
a column conflict. This algorithm terminates with probability
1, and it produces uniformly distributed random Latin squares.
However, the expected number of “starts” we make before suc-
cessfully completing an order-n LS is n!n−1/Ln = en2

(
1+o(1)

)
, which

is unacceptable; the price we pay for uniformity is computational
complexity. ”— J M [169]

O’Carroll [253] described a basic algorithm for generating random Latin squares which
was implemented on the Elliott 803 computer. However, O’Carroll’s algorithm does not gen-
erate Latin squares uniformly at random. McKay and Wormald [227] provide an algorithm
that generates a k × n Latin rectangle uniformly at random in expected time O(nk3) provided
k = o(n1/3). Jacobson and Matthews [169] provided a Markov chain Monte-Carlo algorithm
for generating Latin squares of order n approximately uniformly at random. This algorithm
has been implemented in the LOOPS [242] package for GAP [127] and SAGE [277], for exam-
ple.

1.2.7 Software
Nagy and Vojtěchovský [243] produced a package LOOPS [242] for GAP [127] for the study
of loops and quasigroups. Some functions that are likely to be useful to the reader are:

• RandomQuasigroup(n); returns a random quasigroup of order n.

• RandomLoop(n); returns a random loop of order n.
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• CayleyTable(Q); returns a Cayley table of the quasigroup Q.

• AutomorphismGroup(L); returns the automorphism group of the loop L.

• IsotopismLoops(L,M); returns an isotopism θ such that θ(L) = M if θ exists and
returns fail otherwise.

The RandomQuasigroup(n) and RandomLoop(n) functions make use of the algorithm by
Jacobson and Matthews [169].

Two features that are absent from LOOPS (version 2.1.0) are (a) a function that returns the
autotopism group of a quasigroup and (b) a function that returns the autoparatopism group
of a quasigroup. In Appendix A.1 we have included some GAP code that will enable us to
compute the autotopism and autoparatopism groups of a Latin square. It requires the GRAPE
[295] package for GAP, which in turn requires McKay’s nauty [220] package.

1.3 History of the enumeration of Latin rectangles
The enumeration of Latin rectangles, particularly Latin squares, has a long history stretching
back to Euler [97, 99], including names like Cayley [54] and MacMahon [209, 210, 211].
McKay, Meynert and Myrvold [222] surveyed the “sorry history” of the enumeration of Latin
squares, pointing out numerous published errors. We survey the formulae for the number of
Latin rectangles in Section 1.3.1. Denés and Keedwell [71, Sec. 4.4] also gave a brief survey
of the enumeration of Latin rectangles. Several other Ph.D. theses were concerned with
problems related to the enumeration of Latin squares and rectangles; for example, Brown
[33], Nechvatal [244], Smetaniuk [292], Green [139] and Drisko [82].

1.3.1 Formulae for Ln and Lk,n

In this section we will survey the general formulae for Ln (Sloane’s [290] A002860) and Lk,n.
The first part of this section focuses on the formulae for Rk,n for small fixed k, which comes
from the literature review in [308]. The remainder of this section follows the survey paper
[301].

The number Dn of derangements (permutations without fixed points) of n elements is
related to the number of 2 × n Latin rectangles by

Dn = n!
n∑

k=0

(−1)k

k!
= K2,n = (n − 1)R2,n. (1.11)

The enumeration of L3,n, the number of three-line Latin rectangles, has a long history. Re-
currence formulae for L3,n were shown by Jacob [168] (which is invalid for n > 8), Kerewala
[183] and Riordan [269]. Riordan [267, 268] established the link between three-line Latin
rectangles and the famous problème de ménages (see also [237]). Dulmage [88] provided an
explicit formula for L3,n, which was later refined by Dulmage and McMaster [89]. Bogart and
Longyear [24] provided a practical formula for K3,n, which they used for n 6 11 exactly (with
typographical errors in the values of K3,7 and K3,8) and approximately for n 6 20, accurate to
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12 significant figures. Riordan [269] gave the credit to Yamamoto [333] for the equation

R3,n =
∑

i+ j+k=n

n(n − 3)!(−1) j 2
ki!
k!

(
3i + j + 2

j

)
, (1.12)

where i, j, k are non-negative integers. Equation (1.12) also appears in [264]. Gessel [130]
provided a formula for K3,n based on the cycle decomposition of the permutations defined
by the second and third rows of a normalised three-line Latin rectangle. Kerawala [184]
and Yamamoto [334, 337] studied the asymptotic value of L3,n. Goulden and Jackson [137]
showed that R3,n is the coefficient of xn/

(
n(n − 3)!

)
in the expansion of

exp(2x)
∑
i>0

i!xi

(1 + x)3i+3 .

Riordan [269] gave the congruence R3,n+p ≡ 2R3,n (mod p) for all odd primes p, which
was generalised by Carlitz [46] to R3,n+t ≡ 2tR3,n (mod t) for all t > 1. We will later gener-
alise these congruences by Corollary 2.3.6.

Light Jr [206], Athreya, Pranesachar and Singhi [12, 263] and Doyle [81] gave formulae
for L4,n, the number of four-line Latin rectangles (Sloane’s A000573). Light Jr gave a table
of values of K4,n that is correct for 4 6 n 6 7, but incorrect when n = 8.

We now begin our survey of explicit formulae for Lk,n for general k. First, we identify Lk,n

as a coefficient in a polynomial in kn variables. Let X = (xi j) be a k×n matrix whose symbols
are the kn variables xi j. We index the rows of X by [k] := {1, 2, . . . , k} and the columns of X
by [n] := {1, 2, . . . , n}, so [k] ⊆ [n]. Let Sk,n be the set of injections σ : [k] → [n]. We define
the permanent of the rectangular matrix X to be

(X) =
∑
σ∈Sk,n

k∏
i=1

xiσ(i).

When k = n this matches our definition of permanent for square matrices introduced in
Section 1.2.4, except with different indices on X. It follows that Lk,n is the coefficient of∏k

i=1
∏n

j=1 xi j in (X)n. This property was noticed over a century ago by MacMahon [209]
in the theory of symmetric functions encoded with xi j = α2 j−1

i . He gives a different, but related
formula in [211, Vol. 2, pp. 323–326] (also see his collected works [212]). We can obtain the
value of Lk,n from (X)n by differentiation, for example

Lk,n =
∂

∂x11

∣∣∣∣∣
x11=0
· · ·

∂

∂xkn

∣∣∣∣∣
xkn=0
(X)n (1.13)

which, when k = n, was one of Fu’s [124] equations. MacMahon also used differentiation
to “obliterate” the unwanted terms from (X)n but in a different, more complicated, way to
(1.13). The merit of MacMahon’s formulae has inspired much discussion.

“ The calculation will, no doubt, be laborious but that is here not
to the point, as an enumeration problem may be considered to
be solved when definite algebraical processes are set forth which
lead to the solution. ”— MM [209]
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“ The problem of enumerating n by k Latin rectangles was solved
formally by MacMahon using his operational methods. ”— E̋  K [93]

“ A complete algebraic solution has been given by MacMahon in
two forms, both of which involve the action of differential op-
erators on an extended operand. If MacMahon’s algebraic ap-
paratus be actually put into operation, it will be found that dif-
ferent terms are written down, corresponding to all the different
ways in which each row of the square could conceivably be filled
up, that those arrangements which conflict with the conditions
of the Latin square are ultimately obliterated, and those which
conform to these conditions survive the final operation and each
contribute unity to the result. The manipulation of the algebraic
expressions, therefore, is considerably more laborious than the
direct enumeration of the possible squares by a systematic and
exhaustive series of trials. ”— F  Y [119]

“ The use of MacMahon’s result by mere mortals seems doomed. ”— R [270]

MacMahon’s formula was nonetheless employed in a simplified form by Saxena [278,
279] to find L6 and L7, although these numbers were found earlier, see Figure 1.1. Another
proof of MacMahon’s formula for Ln was given by van Leijenhorst [314], who described it
as both “beautiful” and “handsome.” MacMahon had a particularly unorthodox life, even for
a mathematician, which can be discovered in his biography [128].

Another way of extracting the value of Lk,n from (X)n was given by Fu [124], Shao and
Wei [282] and McKay and Wanless [225]. We will write their formulae in a more general
form in (1.15).

Let Bk,n be the set of k × n (0, 1)-matrices. As identified by Fu [124] and Shao and Wei
[282], we can use Inclusion-Exclusion to obtain

Lk,n =
∑

A∈Bk,n

(−1)σ0(A) (A)n, (1.14)

where σ0(A) is the number of zeroes in A. Fu essentially gave (1.14), but the summation is
split in a different way. It seems that [124] and [282] obtained (1.14) independently as neither
paper has mention of the other.

Let c and d be real numbers such that c , 0 and let X = cX + dJ where J is the all-1
matrix. It follows that Lk,n is the coefficient of ckn ∏k

i=1
∏n

j=1 xi j in (X)n. We claim that

Lk,n = c−kn
∑

A∈Bk,n

(−1)σ0(A)
(
(A)n + f

(
(A)

))
(1.15)
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where A = cA + dJ and f is any polynomial of degree at most n − 1. If we let g = g(A) be
any summand of f

(
(A)

)
when fully expanded, then g has integral degree in each ai j and

total degree at most k(n− 1). Therefore g cannot vary with every ai j, otherwise it would have
degree kn. Hence

∑
A∈Bk,n

(−1)σ0(A)g(A) = 0 and so
∑

A∈Bk,n
(−1)σ0(A) f

(
(A)

)
= 0.

Equation (1.15) yields the formula of McKay and Wanless [225] when c = 2, d = −1
and k = n. There were various other formulae for Ln and Lk,n given by Shao and Wei [282],
which are all special cases of (1.15). There are 2kn matrices A ∈ Bk,n which makes (1.15)
impractical for enumeration.

Fu [124] also gave the equation

Lk,n =
∑

A∈Bn,n

(−1)σ0(A)
(
n2 − kn + σ0(A)

σ0(A)

)
(A)k

which has been rearranged and a problem corrected – the last equation of [124] should have
fn(n−r)+k instead of fn(n−r).

Jucys [174] constructed an algebraAn over C, with the “magic squares” as a basis, which
were actually n × n non-negative integer matrices with row and column sums equal to n.
Multiplication in An was defined using a “structure constant,” which, in one case, was Ln.
An isomorphism was identified between An and a subalgebra of the group algebra of the
symmetric group Sn2 over C. Representation theory was then used to give an expression for
Ln in terms of eigenvalues of a particular element ofAn.

“ It seems to us that for obtaining the general formulas for the
eigenvalues... some further developments of Young’s substitu-
tional analysis are needed. ”— J [174]

Light Jr [207] (see also [206]) gave an equation for the number of “truncated Latin rect-
angles” which, for Latin rectangles, simplifies to

Lk,n =

n∑
i=0

(−1)i

(
n
i

)
(n − i)!kak,i,n

where ak,i,n is the number of k × i matrices with symbols from a set of cardinality n such that
each row does not have a repeated symbol and each column has at least one repeated symbol.

LetMn be the set of partitions of n into parts of size at least 2. For µ ∈ Mn, let Xµ be the
number of 2 × n Latin rectangles L = (li j) with derangement l0i 7→ l1i having cycle structure
µ. In fact

Xµ =
n!2∏

i
(
si(µ)! · isi(µ)) ,

where si(µ) is the number of copies of i in the partition µ. According to Theorem 1.2.15, each
L counted by Xµ admits the same number of completions Cµ to a Latin square. Denés and
Mullen [75] gave a formula for Ln which is essentially

Ln =
∑
µ∈Mn

Xµ ·Cµ.
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We will now reproduce Doyle’s [81] formula for Kk,n, which he gives for 2 6 k 6 4.
We will consolidate it into a concise general form. Let R be the set of non-negative integer
vectors ~s = (si)16i62k−1 such that

∑
i si = n. For 1 6 i 6 2k−1, let ∆i = (δi j)16 j62k−1 , where δi j is

the Kronecker δ-function. For any non-negative integer i let b j(i) be the j-th binary digit of i,
for example

(
b j(3)

)
j>1 = (1, 1, 0, 0, 0, . . .). Let ||~s|| =

∑
i, j sib j(i). Then

Kk,n =
∑
~s∈R

(−1)||~s||
(

n
s1, s2, . . . , s2k−1

) 2k−1∏
i=1

g
(
~s − ∆i

)si (1.16)

where subtraction of vectors is component-wise and for ~a = (a1, a2, . . . , a2k−1)

g(~a) =
∑

P∈Pk−1

∏
p∈P

(−1)|p|−1(|p| − 1)! fp(~a) (1.17)

where Pk−1 be the set of partitions of {1, 2, . . . , k − 1} and

fp(~a) =
∑

i:b j(i)=0∀ j∈p

ai

for all p ⊆ {1, 2, . . . , k − 1}.
The coefficients in (1.17) were not given by Doyle in full generality, although he did state

how to obtain them, that is by Möbius Inversion on the lattice of partitions of {1, 2, . . . , k − 1}
(see [272, p. 360], for example).

“ The expressions get uglier and uglier at an exponential rate as k
increases... When you come right down to it, no one really wants
to know how many k-line Latin rectangles there are anyway. ”— D [81]

For a fixed k, the function g(~a) is a 2k−1-variate polynomial. Therefore the computational
complexity of (1.16) is bounded above by |R|h(k, n) 6 n2k−1

h(k, n) for some polynomial h.
According to Wilf [330], the problem of enumerating k × n Latin rectangles for a fixed k is
therefore p-solved – there exists an algorithm that returns Rk,n in polynomial-time in n (rather
than the length of n).

“ Wilf arrived at this definition after he refereed a paper proposing
a “formula” for the answer to [what is Ln?], and realizing that its
“computational complexity” exceeds that of the caveman’s for-
mula of direct counting. ”— Z [342]

The author has used (1.16) to find the values of R4,n for n 6 80 (Sloane’s [290] A000573),
R5,n for n 6 25, as listed in Appendix A.3 and

R6,12 = 16790769154925929673725062021120
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and
R6,13 = 4453330421956050777867897829494620160.

Computing R6,n for 1 6 n 6 13 took just under two months. The C code has been uploaded
here [302]; it uses the GMP library [138]. In Appendix A.3 we also list some values of R4,n.

There are some other published formulae for the number of Latin rectangles that will not
be given explicitly in this thesis because they are similar to (1.16), in that they found by a
combination of Inclusion-Exclusion and Möbius Inversion. These are by Nechvatal [244,
245], Gessel [131] (see also [130]), Athreya, Pranesachar and Singhi [12] and Pranesachar
[263]. In a 2007 article, de Gennaro [70] claimed to have found a formula for Rk,n and wrote

“ Until now... no explicit formula is known which permits the cal-
culation of Kk,n whatever the value of k. ”—  G [70]

This misbelief highlights the need for this survey.
We will now introduce a new formula for Lk,n whose complexity lies in computing sub-

graphs of a given graph. Actually, we arrive at this formula using standard techniques in
graph theory [329]. Let G = Gk,n be the rook’s graph introduced in Section 1.2.2. We identi-
fied that Lk,n is the number of proper vertex-colourings of G with colour set Zn. Let E(G) be
the edge set of G. For each non-empty E ⊆ E(G) let SE denote the set of improper vertex-
colourings of G such that if uv ∈ E then u and v receive the same colour. Let S∅ be the set of
all nkn vertex-colourings of G. Then

Lk,n = |S∅| −

∣∣∣∣∣ ⋃
E⊆E(G):E,∅

SE

∣∣∣∣∣.
By Inclusion-Exclusion

Lk,n =
∑
E⊆E(G)

(−1)|E||SE|.

For any E ⊆ E(G) let HE be the graph on the same vertex set as G, but with edge set E.
Then |SE| = nc(HE), where c(HE) is the number of connected components of HE. Hence

Lk,n =
∑
E⊆E(G)

(−1)|E|nc(HE). (1.18)

There are |E(G)| = n
(

k
2

)
+ k

(
n
2

)
edges in G and 2|E(G)| subsets of E(G). While each individual

summand of (1.18) is simple to compute, there are too many terms in the sum for practical
use.

For any graph H, let ξk,n(H) be the number of subgraphs of Gk,n that are isomorphic to H.
Let Γ be a set of isomorphism class representatives of graphs without isolated vertices; here
we include the empty graph in Γ which has no vertices, edges and components. Then

Lk,n =
∑
H∈Γ

(−1)|E(H)|nc(H)+kn−|V(H)|ξk,n(H)
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where V(H) is the vertex set of H and E(H) is the edge set of H. It appears that ξk,n is a
difficult function to compute, thus making this formula for Lk,n impractical also. A result of
Alon [3] implies that ξn,n(H) = O(n2|V(H)|) for any fixed H ∈ Γ as n→ ∞.

As for asymptotic formulae, Godsil and McKay [135, 136] proved

Lk,n ∼ n!k
(
n(n − 1) · · · (n − k + 1)/nk

)n
(1 − k/n)−n/2 exp(−k/2)

as n→ ∞ with k = o(n6/7) improving on the work of [93, 298, 335, 338] (see also [297, 299]
and [139, 140, 141]). For a history of earlier asymptotic enumerations of Latin rectangles
also see [135, 136]. Comtet [64, p. 183] said that even estimating Ln when n → ∞ “seems
to be an extremely difficult combinatorial problem.” However, van Lint and Wilson [315,
p. 162] showed that 1

n L1/n2

n → exp(−2) (see also [288]). This is not a particularly satisfying
result since, for example, (1.2) and Stirling’s Approximation imply

lim
n→∞

1
n

R1/n2

n = lim
n→∞

1
n

L1/n2

n = exp(−2),

despite Ln and Rn differing by a factor of n!(n − 1)!. Timashov [312] made the following
conjecture.

Conjecture 1.3.1.

Rn ∼
1
2

(2π)3n/2 exp
(
−2n2 + 3n/2 − 1

)
nn2−n/2−1. (1.19)

Conjecture 1.3.1 corresponds well with the estimates in Figure 1.3 on page 8, most of
which were published after Timashov made Conjecture 1.3.1. For example, Figure 1.3 lists
the estimates R50 ≈ 3.06 × 102123 and R100 ≈ 1.78 × 1011396 by Zhang and Ma [344], whereas
the right-hand side of (1.19) is approximately 3.02 × 102123 and 1.76 × 1011396 when n = 50
and n = 100, respectively.

1.4 Outline
We will now summarise the author’s contributions to the study of the number of Latin rect-
angles and related combinatorial objects in this thesis. Along the way, we will uncover new
interesting research directions and make new goals.

Chapter 2 follows and extends the work in [308] finding divisors of, and congruences for,
Rk,n. In Theorem 2.2.1 we show that (k−1)! divides Rk,n when k 6 bn/2c and in Theorem 2.2.2
we show that bn/2c! divides Rk,n when bn/2c < k 6 n. In Theorems 2.3.1 and 2.3.2 we give
the machinery that enables us to deduce numerous congruences for Rk,n. In Corollary 2.3.3
we show that if p is a prime and p < k then the largest a such that pa divides Rk,n increases
at least linearly with n, with k fixed. We eventually reach Theorem 2.4.6 which states that
Rk,n ≡

(
(−1)k−1(k − 1)!

)n−1 (mod n). In particular, this means that if n is prime, then Rk,n ≡ 1
(mod n) for 1 6 k 6 n and if n is composite then Rk,n ≡ 0 (mod n) if and only if k is larger
than the greatest prime divisor of n.

In Section 2.5 we study the generalisation of Latin rectangles to an arbitrary number of
dimensions, which we call Latin hypercuboids. We also consider certain subsets of Latin
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hypercuboids. Theorem 2.5.6 gives a factorial divisor for the cardinalities of a very general
class of subsets of Latin hypercuboids. Corollary 2.5.8 shows that Rn and Rn are both
divisible by (dn/2e − 1)! for all n. Corollary 2.5.9 gives a divisor for the number of Latin
squares without proper subsquares. Theorem 2.5.11 shows that there is a unique reduced
4 × 4 × · · · × 4 Latin hypercube that admits a cyclic automorphism based on the 3-cycle that
fixes the first index. This leads to Corollary 2.5.12, where we prove a special case of the
generalisation of the Alon-Tarsi Conjecture by Dougherty and Szczepanski [80].

In Section 2.6 we apply the theory developed earlier in Chapter 2 to give divisors for
the number of decompositions of the labelled complete graph into one-factors, triangles and
Hamilton cycles. Finally, In Section 2.7 we show that the methodology of Drisko in proving
the p + 1 case, for odd prime p, of the Alon-Tarsi Conjecture (Conjecture 1.2.9) cannot be
extended to encompass the n+1 case, for composite n. Theorem 2.7.2 also gives new divisors
for Rn in some cases.

We then move on to the study of orthomorphisms and partial orthomorphisms of Zn, as
defined in Chapter 3. We use zn to denote the number of canonical orthomorphisms and
ω(n, d) = n2χ(n, d)/d2 to denote the number of partial orthomorphisms of Zn whose domains
have cardinality n − d.

Chapter 3 follows the work of [304] and [305] which study the numbers zn and ω(n, d)
and apply the results to find congruences for Rk,n. In Theorem 3.2.1 we find the congruence

Rk,n ≡ χ(p, n − p)
(n − p)!(n − p − 1)!2

(n − k)!
Rk−p,n−p (mod p)

when p is a prime and n > k > p + 1. We compute the values of χ(n, d) listed in Figure 3.3,
enabling us to calculate some previously unknown congruences for Rn, which are listed in
Figure 3.4.

*Goal: Improve our knowledge of the numbers zn and ω(n, d).

We develop techniques for computing ω(n, d) exactly in Sections 3.2.2 and 3.2.3. Starting
with Theorem 3.2.4, we show that for each a there exists µa such that, on each congruence
class modulo µa, ω(n, n − a) is determined by a polynomial of degree 2a in n. We give the
coefficients of these polynomials for 1 6 a 6 6 in Figure 3.5, and find an asymptotic formula
for ω(n, n − a) as n→ ∞, for arbitrary fixed a in Theorem 3.2.9.

We introduce an interesting class of orthomorphism of Zn, which we call d-compound,
where d divides n (defined in Section 3.3). We develop the theory of d-compound orthomor-
phisms and, in particular, the subclasses of compatible and polynomial orthomorphisms.

We prove that every canonical d-compound orthomorphism of Zn can be constructed
uniquely from d orthomorphisms of Zt and 1 orthomorphism of Zd. This enables us to show
that there are precisely td−1zdzd

t canonical d-compound orthomorphisms of Zn.
In Corollary 3.3.7, we show that Rn+1 ≡ zn ≡ −2 (mod n) for prime n and Rn+1 ≡ zn ≡ 0

(mod n) for composite n. In Section 3.3.2 we improve the current knowledge of zn (mod 3),
expanding upon a result of McKay, McLeod and Wanless [221]. In Theorem 3.3.8 we provide
a congruence for zn which we use to compute zn (mod 3) for all n 6 60. Moreover, if n > 5
and n . 1 (mod 3) then zn ≡ 0 (mod 3). Theorem 3.3.9 states that zn ≡ 1 (mod 3) when
n = 2 · 3k + 1 is prime.
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We develop the theory of compatible and polynomial orthomorphisms in Section 3.3.3.
Let λn and πn be the number of canonical compatible and canonical polynomial orthomor-
phisms, respectively. We find a formula for λn in Theorem 3.3.14 and in Theorem 3.3.15 we
find necessary and sufficient conditions for λn = πn. In Section 3.3.4 we find some new suf-
ficient conditions for when a partial orthomorphism can be completed to an orthomorphism.
In Section 3.3.5 we classify when two compound orthomorphisms are orthogonal.

Chapter 4 considers questions relating to autotopisms of Latin squares [303, 307]. In
Section 4.1.1 we give an upper bound on the maximum size of an autotopism group of a
Latin square. Consequently, we find an asymptotic divisor of Rn as n → ∞. Specifically,
Corollary 4.1.2 states that, for a fixed prime q, qa divides Rn where a = n

q−1 − O(log2 n) as
n → ∞. Using a similar technique, we give an upper bound on the maximum number of
subsquares of a Latin square in Section 4.2.

*Goal: Find conditions for when an isotopism is an autotopism of some Latin square.

The remainder of Chapter 4 extends previous results classifying which isotopisms θ ∈ In

are autotopisms of some Latin square. For all θ ∈ In, let ∆(θ) be the number of Latin
squares L of order n with θ ∈ Atop(L). For example, Theorems 4.3.8 and 4.3.11 give strong
necessary conditions for when ∆(θ) > 0. Corollary 4.3.9 is a generalisation of Lemma 1.2.8.
In Section 4.3.4 we give necessary and sufficient conditions for when ∆(θ) > 0 where θ =

(η, η, η) ∈ In such that η consists of cycles of the same length and possibly some fixed
points. In Section 4.3.4 we give necessary and sufficient conditions for when ∆(θ) > 0 where
θ = (η, η, η) ∈ In such that η consists of two non-trivial cycles and possibly some fixed points.

Finally, in Chapter 5 we list some interesting open problems and ideas for future research
that are relevant to this thesis.

We depict the structure of this thesis below.

Rk,n
Chapter 2:

congruences for Rk,n

Chapter 3:
orthomorphisms of Zn

Section 4.1:
autotopism groups
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Section 4.3:
classification of
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Sections 2.5 and 2.6:
Latin hypercubes and
graph decompositions

Section 2.7:
Alon-Tarsi Conjecture



CHAPTER 2

Divisors of the number of Latin rectangles

We will now commence our study into congruences involving, and divisors of, the numbers
Rk,n, Kk,n and Lk,n. In the beginning of this chapter we follow the work in [308], but in
Sections 2.5 and 2.6 we will expand upon this work. Afterwards, in Section 2.7 we will
study congruences for the number of even and odd Latin squares, which relates to the Alon-
Tarsi Conjecture, following the work of [306]. We will primarily use the symbol set [n] =

{1, 2, . . . , n}. We begin with a “proof template” in Section 2.1 which aids us in finding divisors
of and congruences for Rk,n which we later apply to different combinatorial enumeration
problems. We prove several results giving divisors of Rk,n. For example, in Theorems 2.2.1
and 2.2.2 we show that (k − 1)! divides Rk,n when k 6 bn/2c and bn/2c! divides Rk,n when
bn/2c < k 6 n. This extends a result of McKay and Wanless [225], who proved Theorem 2.2.2
for Latin squares.

Theorem 2.2.1 is then extended in Theorem 2.2.5 in the special case n > 3k. In The-
orems 2.3.1 and 2.3.2, we establish recurrences that determine the congruence class of Rk,n

(mod t) and Kk,n (mod t) for a range of different t, which yields several useful corollaries. Let
p be a prime. In Corollary 2.3.3 we find a lower bound on the largest power of p dividing Rk,n

and Kk,n when p < k. We can compare this lower bound to the divisors of Rk,n in Figures A.4
and A.5, when k ∈ {4, 5}. In Corollary 2.3.6 we show that Rk,n+d ≡ (−1)k−1(k − 1)!Rk,nRk,d

(mod d) if k 6 n. Corollary 2.3.6 generalises earlier results by Riordan [269] and Carlitz [46]
who dealt with the case k = 3.

In Theorem 2.4.6 we find that Rk,n ≡
(
(−1)k−1(k − 1)!

)n−1 (mod n) for all k and n. This
implies that if n is prime, then Rk,n ≡ 1 (mod n) for 1 6 k 6 n and if n is composite then
Rk,n ≡ 0 (mod n) if and only if k is larger than the greatest prime divisor of n.

In Section 2.5 the proof template is used to find divisors for subsets of Latin hypercuboids,
a generalisation of Latin rectangles to arbitrary dimensions. Some results are applicable to
Latin squares and rectangles, which are a special class of Latin hypercuboid. Theorem 2.5.6
gives a factorial divisor of the size of a very general class of subsets of Latin hypercuboids.
In Corollary 2.5.12 we prove a special case of a conjecture by Dougherty and Szczepanski
[80].

In Section 2.6 we apply the template of Section 2.1 to find divisors of the number of graph
factorisations. Let G denote the labelled complete graph on n vertices. We give divisors for
(a) the number of one-factorisations of G in Theorem 2.6.3, (b) the number of Steiner triple
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systems in Theorem 2.6.5 and (c) the number of Hamilton cycle decompositions of G in
Theorem 2.6.6.

In Section 2.7 we modify the techniques developed in this chapter to be applicable to the
numbers Rn and Rn . Drisko [83] proved the p + 1 case, for odd prime p, of the Alon-Tarsi
Conjecture. The aim of Section 2.7 is to reach Theorem 2.7.6, where we show that Drisko’s
method cannot be extended to include the n + 1 case, for composite n. Theorem 2.7.2 also
gives a divisor for Rn, greater than that of Theorem 1.1.5, in some cases.

2.1 Proof template
Many of the proofs in this chapter follow the same basic strategy. We have some set of Latin
rectangles C and wish to calculate |C| (mod µ) for some integer µ. Typically, C will be the
set of reduced k × n Latin rectangles and we will often use L to denote an arbitrary Latin
rectangle in C. We choose a group of isotopisms G that acts on C such that µ divides |G|. For
each L ∈ C, let G(L) denote the orbit of L under G, namely G(L) = {θ(L) : θ ∈ G} ⊆ C.

If there exist distinct θ1, θ2 ∈ G such that θ1(L) = θ2(L) then θ−1
2 ◦ θ1 ∈ G is a non-

trivial autotopism of L. Therefore if L does not admit a non-trivial autotopism in G (i.e.
|Atop(L) ∩ G| = 1) then |G(L)| = |G| ≡ 0 (mod µ). Hence any L ∈ C such that |G(L)| . 0
(mod µ) must admit a non-trivial autotopism in G.

We identify a subsetA ⊆ C such that:

• A contains every L ∈ C that admits a non-trivial autotopism in G.

• A is closed under the action of G.

• Members ofA are characterised by some special structure, usually a subrectangle in a
particular position.

With A satisfying these conditions, µ divides |C \ A| and hence |C| ≡ |A| (mod µ) and
gcd

(
µ, |A|

)
divides |C|. We then either calculate |A| explicitly, evaluate |A| (mod µ) or find

some divisor of |A|. We typically do this by defining an equivalence relation on A which
utilises the special structure possessed by the elements ofA.

2.2 Factorial divisors
In this section we prove that certain factorials divide Rk,n. We use m = bn/2c.

Theorem 2.2.1. gcd
(
k!, (k − 1)!Rk,n−kRk

)
divides Rk,n when k 6 m.

Proof. This proof follows the template in Section 2.1. Let G be the group of isotopisms of
the form θ = (ε, β, β) such that β fixes [n − k] pointwise. Let C be the set of reduced k × n
Latin rectangles and µ = |G| = k!. Let L = (li j) ∈ C and let A denote the square submatrix
formed by the last k columns of L.

Suppose that L admits a non-trivial autotopism θ = (ε, β, β) ∈ G. Let F denote the fixed
points of β and F∗ = [n] \ F denote its complement. Since θ is non-trivial there exists j ∈ F∗.
By Lemma 1.2.7, li j ∈ F∗ for all 1 6 i 6 k. Hence |F∗| > k and so F∗ = [n] \ [n − k]. By
Lemma 1.2.8, A is a subsquare of L.
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LetA = {L ∈ C : A is a subsquare of L}. Note thatA is closed under the action of G and
hence gcd(k!, |A|) divides |C| = Rk,n. By construction, |A| = Rk,n−kKk = (k − 1)!Rk,n−kRk, by
(1.1). �

Corollary 2.4.4 will classify when k divides Rk and it will follow that k! divides Rk,n for
all composite k 6 m. For prime k, the largest divisor proved by Theorem 2.2.1 will be (k−1)!
unless k divides Rk,n−k, as it does, for example, when n = 12 and k = 5 (see Figure 1.1).
Theorem 2.2.1 is extended in Theorem 2.2.5 in the special case n > 3k.

Theorem 2.2.1 provides a divisor for the number of “thin” Latin rectangles, where k 6 m.
Next, we prove a similar result for “fat” Latin rectangles, where m < k 6 n, by extending the
techniques that were used in [225] for the case k = n.

Theorem 2.2.2. When m < k 6 n, Rk,n is divisible by m!. If n is odd and m + 1 < k 6 n and
m + 1 is composite, then (m + 1)! divides Rk,n.

Proof. This proof follows the template in Section 2.1. Let G be the group of isomorphisms
θ = (α, α, α) such that α fixes {1, 2, . . . , k − r} ∪ {k + 1, k + 2, . . . , n} pointwise, for some
1 6 r < k to be specified later. Let C be the set of reduced k × n Latin rectangles and
µ = |G| = r!.

Suppose that L = (li j) ∈ C admits a non-trivial automorphism θ = (α, α, α) in G. Let F
denote the fixed points of α and let F∗ = [n] \ F denote its complement. Since θ is non-trivial
there exists i ∈ F∗. If j ∈ F then li j ∈ F∗, by Lemma 1.2.7. Hence

n − r 6 |F| 6 |F∗| 6 r. (2.1)

We now consider two choices for r.
Case I: r = m. This case requires k > m. If n is odd we contradict (2.1), so it is sufficient

to chooseA = ∅ in order to deduce that m! divides |C|.
Next we consider even n = 2m. We must have F = {1, 2, . . . , k − r} ∪ {k + 1, k + 2, . . . , n}

and F∗ = {k − r + 1, k − r + 2, . . . , k} to satisfy (2.1). Furthermore the m × m submatrix A,
formed by the rows and columns indexed by F∗, is a subsquare of L. We let A = {L ∈ C :
A is a subsquare of L}, which is closed under the action of G.

We define the Latin rectangles equivalent to L ∈ A to be those formed by replacing A
by one of the Lm Latin squares on the same symbols. Since m! divides Lm by (1.1), m! also
divides |A| and hence m! divides |C| = Rk,n.

Case II: Odd n = 2m + 1 and r = m + 1. This case requires k > m + 1. By (2.1) and since
|F| + |F∗| = n, we must have |F∗| = m + 1 and |F| = m. Let A denote the (m + 1) × (m + 1)
submatrix of L formed by the rows and columns indexed by F∗, and let B denote the (m+1)×m
submatrix formed by the remainder of the entries in those rows.

The submatrix B contains only symbols in F∗ and therefore A contains one symbol from
F∗ in each row. Furthermore, A contains one symbol from F∗ in each column, otherwise there
exists a column of A without a symbol from F∗, contradicting |F| = m. LetA ⊆ C be the set
of Latin rectangles with submatrices A and B of this description. Note thatA is closed under
the action of G.

We define two Latin rectangles L1, L2 ∈ A to be equivalent if:

• The first k − r rows are identical in L1 and L2 and
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• For each column c the set of symbols which occur in c is the same for L1 and L2.

We will now enumerate the Latin rectangles equivalent to any given L ∈ A. Let D denote
the set of cells of A that contain a symbol in F∗. We can replace A by one of Km+1 Latin
squares of order m + 1 on the symbols {0} ∪F such that the zeroes occur in the cells in D. We
then restore the original contents of D.

Irrespective of the previous replacements, we now can replace B by the transpose of one
of the Km,m+1 = Km+1 normalised m× (m + 1) Latin rectangles on the same symbols. Then we
replace the symbols in D appropriately so that the set of symbols in each row is [n], which is
a unique replacement. Then we permute the columns of A so that the set of symbols in each
column is the same as in L, for which there is a unique permutation.

Therefore L is equivalent to K2
m+1 Latin rectangles. Hence K2

m+1 divides |A| and so
gcd(µ,K2

m+1) divides |C| = Rk,n. Therefore by (1.1), gcd
(
(m + 1)!,m!2) divides Rk,n. Note that

m! is divisible by m + 1 unless m + 1 is prime or m + 1 = 4. In the latter case n = 2m + 1 = 7
and Figure 1.2 implies that R5,7 and R6,7 = R7,7 are divisible by 4!. �

In Figure 2.1 we compare the results of Theorems 2.2.1 and 2.2.2 with the greatest facto-
rial divisor of Rk,n from the known data, listed in Figure 1.2. We omit R1,n = 1 and Rn = Rn−1,n.
Let ψ = ψ(k, n) denote the greatest integer such that ψ! divides Rk,n. Theorems 2.2.1 (dark)
and 2.2.2 (light) provide a lower bound on ψ. For n 6 11 this bound is the actual value of ψ,
except for the entries marked with an asterisk, where Theorem 2.2.2 only proves that (ψ− 1)!
divides Rk,n.

McKay and Wanless [225] also showed that 7! divides R13, which is the first case when
n = 2m + 1 such that m + 1 is prime and (m + 1)! divides Rn. Judging from the results in
Figure 2.1, it would not be surprising if 9! divides R13, in which case Theorem 2.2.2 (which
gives the divisor 6! of R13) is well short of best possible.

We later show, in Figure 3.4 on page 76, that 11 does not divide R13, which gives an upper
bound on the maximum factorial divisor. In fact, Figures 2.1 and 3.4 together show that 11
does not divide Rn for all n 6 21 whereas Theorem 2.2.2 implies that 11 divides Rn for all
n > 22.

Corollary 2.2.3. If n is composite and k > m then n divides Rk,n.

Proof. Since n is composite, n = λq for some prime q 6 m and 2 6 λ 6 m. By Theorem 2.2.2,
m! divides Rk,n and therefore Rk,n ≡ 0 (mod n) except possibly when λ = q and m < 2q. If
n = q2, then m =

⌊
q2/2

⌋
< 2q only if q = 2 or 3, that is when n = 4 or 9, and these cases are

resolved by Figure 2.1. �

We determine when n divides Rk,n in Corollary 2.4.5 and in Theorem 2.4.6 we give a
formula for Rk,n (mod n) for all k, n ∈ N.

Corollary 2.2.4. If k is composite then k divides Rk,n.

Proof. Case I: k 6 m. Theorem 2.2.1 implies that gcd
(
k!, (k − 1)!Rk

)
divides Rk,n. When

k = 4, R4 = 4 divides R4,n and when k > 4, k divides (k−1)!, since k is composite. Therefore
k divides Rk,n when k 6 m.

Case II: m < k 6 n. Theorem 2.2.2 implies that k divides Rk,n except possibly when
k = p2 for some prime p > m/2. But then 2p > m =

⌊
n/2

⌋
>

⌊
p2/2

⌋
, which can only be

satisfied in the following cases that are resolved by Figure 2.1: when k = 4 and n ∈ {4, 5, 6, 7},
and when k = 9 and n ∈ {9, 10, 11}. �
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n, k Rk,n ψ

3, 2 1 1

4, 2 3 1
3 22 2

5, 2 11 1
3 2·23 2
4 23·7 2

6, 2 53 1
3 23·7·19 2
4 23·32·7·13 4∗

5 26·3·72 4∗

7, 2 3·103 1
3 24·2237 2
4 25·3·19·709 4∗

5 28·3·52·587 5∗

6 210·3·5·1103 5∗

8, 2 13·163 1
3 26·26153 2
4 26·3·159·14713 4
5 211·3·23·192529 4
6 211·3·7·173·45077 4
7 217·3·1361291 4

n, k Rk,n ψ

9, 2 11·37·41 1
3 25·13·167·1489 2
4 27·34·20025517 4
5 211·34·13·52251029 4
6 214·35·3253351007 4
7 215·32·61·12923·965171 4
8 221·32·5231·3824477 4

10, 2 32·16481 1
3 26·23·61·90821 2
4 28·33·71·271·1106627 4
5 216·36·19·97·8483617 4
6 214·33·5·26053·15110358097 6∗

7 220·33·5·509·2458531126109 6∗

8 221·33·5·11·132·37·1381·159597187 6∗

9 228·32·5·31·37·1468457·547135293937 6∗

11, 2 1468457 1
3 27·13·23·20851549 2
4 210·32·1823·8569184461 4
5 213·32·29·168293·20936295857 4
6 217·32·5·31·2334139·225638611943 6∗

7 221·32·5·9437·269623520098467133 6
8 228·32·5·97·73488673152815765447 6
9 232·33·5·61·7487·260951·42053669617 6

10 235·34·5·2801·2206499·62368028479 6

F 2.1: Prime factorisation of Rk,n for 2 6 k < n 6 11 and the greatest integer ψ such that
ψ! divides Rk,n.
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The converse of Corollary 2.2.4 is false. For example, R5,7 = 11270400 ≡ 0 (mod 5).
The following theorem extends Theorem 2.2.1 in the special case n > 3k.

Theorem 2.2.5. Suppose k, n, r ∈ N where n > 2k + r and k 6 r < 2k. Then (k− 1)! P divides
Rk,n where P denotes the product of all composite numbers c such that k 6 c 6 r.

Proof. This proof follows the template in Section 2.1. Let G be the group of isotopisms of
the form θ = (ε, β, β) such that β fixes [n − r] pointwise. Let C be the set of reduced k × n
Latin rectangles and µ = (k − 1)! P.

Suppose that L ∈ C admits a non-trivial autotopism θ = (ε, β, β) ∈ G. Let A denote
the submatrix formed by the last r columns of L. Lemma 1.2.8 implies that the columns of
L whose indices are fixed by β form a subrectangle of L. Consequently, the columns of L
whose indices are not fixed by β form a k × i subrectangle of L in A for some k 6 i 6 r.

For all k 6 i 6 r, letAi = {L ∈ C : A contains a k× i subrectangle of L} and letA = ∪iAi.
Note that eachAi is closed under the action of G and so |C| ≡ |A| (mod µ). Since r < 2k, the
Ai are disjoint and so |A| =

∑
k6i6r |Ai|.

By construction

|Ai| =

(
r
i

)
Kk,iRk,n−i =

r!
i(r − i)!(i − k)!

Rk,iRk,n−i,

by (1.1).
Since n > 2k + r > 2k + i for all k 6 i 6 r, we find k 6 b(n − i)/2c. Therefore by

Theorem 2.2.1, (k − 1)! divides Rk,n−i and we know that (r − i)!(i − k)! divides (r − k)! which
divides (k − 1)! since r < 2k.

If i is prime then µ divides r!/i, since k 6 i 6 r, and so µ divides |Ai|. If i is composite,
then i divides Rk,i by Corollary 2.2.3 since i 6 r < 2k, and therefore r! divides |Ai|.

Hence µ divides |Ai| for all k 6 i 6 r and so Rk,n = |C| ≡ |A| =
∑

k6i6r |Ai| ≡ 0
(mod µ). �

2.3 Recurrence congruences
In this section we establish congruences for Rk,n and Kk,n modulo t for a range of t ∈ N. With
the results presented in this section, we use the convention that Rk,n = Kk,n = 0 whenever n <
k. We will also use the following notation throughout this section. Let n = b0+b1+· · ·+bs be a
partition of the integer n where s > 1. Let t =

∏
16i6s bi and t′ = b0t. For any I ⊆ {0, 1, . . . , s},

let ‖I‖ =
∑

i∈I bi. Let Q be the set of partitions of the set {0, 1, . . . , s} into at least two parts.
For U ∈ Q, define u0 = u0(U) to be the part of U containing 0. For any integer r > 2, let
gpd(r) denote the greatest prime divisor of r.

Theorem 2.3.1. If b0 > k then

Rk,n ≡
∑
U∈Q

(−1)|U |(|U | − 1)!Rk,‖u0‖

∏
u∈U\{u0}

Kk,‖u‖ (mod t).

Proof. This proof follows the template in Section 2.1. Let C be the set of reduced k× n Latin
rectangles and let L ∈ C.
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Let b∗0 = 0 and for 1 6 i 6 s, let b∗i = b∗i−1 + bi−1. Let Mi be the submatrix of L consisting
of the bi columns b∗i + 1, b∗i + 2, . . . , b∗i + bi.

Suppose U ∈ Q. If, for each u ∈ U, the submatrix ∪ j∈uM j is a subrectangle of L, then
we say L is U-decomposable and that U is a decomposition of L. For all U,V ∈ Q we
write V / U and U . V whenever V is a refinement of U and V , U. Call U an irreducible
decomposition of L if there does not exist V / U such that L is V-decomposable. For all
U ∈ Q, letAU = {L ∈ C : U is an irreducible decomposition of L}. LetA = ∪U∈QAU .

Define the bi-cycle βi =
(
b∗i +1, b∗i +2, . . . , b∗i +bi

)
. Let G be the group of order t generated

by the isotopisms (ε, βi, βi) for 1 6 i 6 s. Since k 6 b0, G acts on C. Suppose L ∈ C admits
a non-trivial autotopism θ ∈ G. Lemma 1.2.8 implies that the columns fixed by θ form a
subrectangle of L and hence L ∈ A. Note that AU is closed under the action of G for all
U ∈ Q and hence Rk,n = |C| ≡ |A| (mod t).

The key observation is that every L ∈ A admits exactly one irreducible decomposition.
Therefore {AU}U∈Q partitionsA and so |A| =

∑
U∈Q |AU |, giving

Rk,n ≡
∑
U∈Q

|AU | (mod t).

In order to count |AU |, we first count the total number of U-decomposable L ∈ AU , which
is Rk,‖u0‖

∏
u∈U\{u0}

Kk,‖u‖ and then subtract the number of L ∈ A that have some irreducible
decomposition V / U of L, giving

|AU | = Rk,‖u0‖

∏
u∈U\{u0}

Kk,‖u‖ −
∑
V/U

|AV |. (2.2)

By repeated use of (2.2) we obtain∑
U∈Q

|AU | =
∑
U∈Q

cURk,‖u0‖

∏
u∈U\{u0}

Kk,‖u‖

for integers cU . We next show that cU = (−1)|U |(|U | − 1)! by induction on |U |. If |U | = 2 then
cU = 1 by (2.2) since V /U implies |V | > |U |. Now assume that cW = (−1)|W |(|W | − 1)! for all
W . U. By (2.2),

cU = 1 −
∑
W.U

cW = 1 −
|U |−1∑
i=2

(−1)i(i − 1)! S2(|U |, i)

where S2(·, ·) denotes the Stirling number of the second kind. The identity
∑|U |

i=1(−1)i(i −
1)! S2(|U |, i) = 0 then gives cU = (−1)|U |(|U | − 1)!. �

It is possible to provide a similar proof for normalised k × n Latin rectangles. Since the
proof is analogous, it is omitted.

Theorem 2.3.2.
Kk,n ≡

∑
U∈Q

(−1)|U |(|U | − 1)!
∏
u∈U

Kk,‖u‖ (mod t′).

Theorems 2.3.1 and 2.3.2 provide numerous interesting corollaries, which we will now
present.
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Corollary 2.3.3. Suppose p is prime and n ∈ N. If d > k > p then pbn/pc divides Rk,n+d and
Kk,n.

Proof. When n < p, Rk,n+d and Kk,n are both divisible by pbn/pc = 1, so assume n > p
and hence a := bn/pc > 1. Choose b0 = n − sp and b1 = b2 = · · · = bs = p where
s = a − 1 if p divides n and s = a otherwise. By Theorem 2.3.2 and induction on n, Kk,n ≡ 0
(mod pa). Similarly, Rk,n+d ≡ 0 (mod pa) follows from Theorem 2.3.1, if we instead use
b0 = n + d − ap > k. �

For fixed k, Corollary 2.3.3 implies that for any prime p < k the largest x ∈ N such
that px divides Rk,n increases at least linearly with n. This can be compared with the data in
Appendix A.3 when k ∈ {4, 5}.

Corollary 2.3.4. Let d, k, n ∈ N be such that d > k > gpd(n). Then n divides Rk,n+d and Kk,n.

Proof. Note that Rk,n+d ≡ Rk,dKk,n (mod n) by Theorem 2.3.1. Since k > gpd(n), if n is prime
then Kk,n = 0 and hence Rk,n+d ≡ 0 (mod n). So assume n is composite. If px divides n, for
some x ∈ N and prime p, then pn/p divides Rk,n+d and Kk,n, by Corollary 2.3.3. However,
n/p > px−1 > x if x > 2 and n/p > x if x = 1. Hence px divides pn/p which in turn divides
Kk,n and Rk,n+d. The result follows since px was an arbitrary prime power divisor of n. �

A complete determination of when n divides Rk,n is given later, in Corollary 2.4.5.

Corollary 2.3.5. If k > gpd(t′) then Kk,n ≡ 0 (mod t′) and if b0 > k > gpd(t) then Rk,n ≡ 0
(mod t).

Proof. The result follows from Theorems 2.3.1 and 2.3.2 by induction on s. Note that if s = 1
then Rk,n ≡ Rk,b0 Kk,b1 ≡ 0 (mod t) and Kk,n ≡ Kk,b0 Kk,b1 ≡ 0 (mod t′), using Corollary 2.3.4.

�

We can use Theorem 2.3.1 and Corollary 2.3.5 repeatedly with the same values of k and n
but with various partitions of n. For example, suppose we seek congruences involving R6,20.
There are various sequences (bi)s

i=0 with s > 1 that satisfy b0 > 6 and n =
∑s

i=0 bi = 20,
but produce different values of t. The order of the subsequence (bi)s

i=1 does not affect the
outcomes of Theorem 2.3.1 and Corollary 2.3.5. Also, there is little advantage in choosing a
composite bi when i > 1, since a composite term can be replaced by its prime factorisation
and b0 and s increased accordingly to preserve n =

∑
06i6s bi. In Figure 2.2, we choose the

subsequence (bi)s
i=1 to be a single prime repeated s times. See Figure 2.1 for the values of

Rk,n for 1 6 n 6 11. We also use the value of R6,13 given in Section 1.3.1. Recall that
Kk,n = (n − 1)!Rk,n/(n − k)! by (1.1).

In the case of powers of 5 dividing R6,20, we can actually prove a larger divisor by using
Theorem 2.3.2 rather than Theorem 2.3.1. When (bi)s

i=0 = (5, 5, 5, 5), Theorem 2.3.2 gives
K6,20 ≡ 0 (mod 54) and so 360R6,20 ≡ 0 (mod 54) by (1.1). Therefore R6,20 ≡ 0 (mod 53).
When combined with the congruences in Figure 2.2, this establishes that R6,20 ≡ 2903040000
(mod 9081072000), by the Chinese Remainder Theorem.

A quirk of Corollary 2.3.5 is that, for a given n, it provides an increasing prime power
divisor of Rk,n with decreasing k. For example, it implies that R7,11 ≡ R6,11 ≡ 0 (mod 22),
R5,11 ≡ R4,11 ≡ 0 (mod 23) and R3,11 ≡ 0 (mod 24). In Figure 2.1, the greatest power of 2
dividing Rk,n usually increases with k, although R6,10 is an exception.

The following is a special case of Theorem 2.3.1, using (1.1).
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(bi)s
i=0 Congruence for R6,20

(6, 2, 2, 2, 2, 2, 2, 2) 0 (mod 27)
(8, 3, 3, 3, 3) 0 (mod 34)

(10, 5, 5) 0 (mod 52)
(6, 7, 7) R6,6K6,14 + 2R6,13K6,7 − 2R6,6K2

6,7 ≡ 14 (mod 72)
(9, 11) R6,9K6,11 ≡ 3 (mod 11)
(7, 13) R6,7K6,13 ≡ 3R6,13 ≡ 3 (mod 13)

F 2.2: Congruences for R6,20 implied by Theorem 2.3.1.

Corollary 2.3.6. If k 6 n then Rk,n+d ≡ (−1)k−1(k − 1)!Rk,nRk,d (mod d) for all d ∈ N.

In particular, Corollary 2.3.6 implies the following.

Corollary 2.3.7. If k 6 n and d divides Rk,n then d divides Rk,n+d.

Upon inspection of Figure 2.1 we see that R3,n is indivisible by 3 for 3 6 n 6 5 and
indivisible by 5 for 3 6 n 6 7. Therefore Corollary 2.3.6 implies that 3 and 5 do not divide
R3,n for any n > 3. In this way, Corollary 2.3.6 can be used to also discover indivisibility
properties of Rk,n. In fact, the primes p < 100 that do not divide R3,n for all n > 3 are p ∈
{3, 5, 11, 29, 37, 41, 43, 53, 67, 79, 83, 97}, which were found using (1.12) and Corollary 2.3.6.

In the next section we will see that Corollary 2.3.6 generalises the congruence R3,n+t ≡

2tR3,n (mod t) for all t > 1 by Carlitz [46] (see also [269]).

2.4 Modulo n

We turn our attention to the value of Rk,n (mod n), which is listed in Figure 2.3 for small val-
ues of k and n. For n 6 11 the values of Rk,n have been explicitly calculated (see Figure 1.2),
while Rk,n for k 6 5 can be enumerated by (1.16) (see also Appendix A.3). The remaining
values are established later, in Theorem 2.4.6.

Our first theorem for this section shows that the k = 3 case of Corollary 2.3.6 includes the
congruences of Riordan [269] and Carlitz [46].

Theorem 2.4.1.

• For n > 2, R2,n ≡ (−1)n−1 (mod n) and R2,n is odd.

• For n > 3, R3,n ≡ 2n−1 (mod n) and R3,n ≡ 2n−1(1 − n − n2) (mod 3).

Proof. By (1.11), R2,n ≡ −Dn = −n!
∑n

i=0(−1)i/i! ≡ (−1)n−1 (mod n). Euler [98] proved the
recurrence Dn = (n−1)(Dn−1 + Dn−2) with D1 = 0 and D2 = 1. Therefore Dn ≡ 0 (mod 2) for
odd n and by induction, Dn ≡ 1 (mod 2) for even n. Hence R2,n = Dn/(n−1) = Dn−1 +Dn−2 ≡

1 (mod 2).
The summands in (1.12) are integer multiples of n except possibly for when n−2 6 k 6 n,

which is when (i, j, k) ∈
{
(0, 0, n), (1, 0, n−1), (0, 1, n−1), (2, 0, n−2), (1, 1, n−2), (0, 2, n−2)

}
.

Hence

R3,n ≡
2n−1

(n − 1)(n − 2)
(2 + n − 3n) +

2n−2n
n − 2

(2 − 6 + 6) = 2n−1 (mod n).
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

k = 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 3 1 5 1 7 1 9 1 11 1 13 1 15 1 17 1 19 1 21
3 1 0 1 2 1 0 4 2 1 8 1 2 4 0 1 14 1 8 4 2
4 0 1 0 1 0 0 4 1 0 1 8 6 0 1 0 1 4 15 16
5 1 0 1 0 0 4 1 0 1 10 6 0 1 0 1 4 9 2
6 0 1 0 0 0 1 0 1 6 0 0 1 0 1 0 15 12
7 1 0 0 0 1 0 1 6 0 0 1 0 1 0 15 16
8 0 0 0 1 0 1 0 0 0 1 0 1 0 0 20
9 0 0 1 0 1 0 0 0 1 0 1 0 0 16

10 0 1 0 1 0 0 0 1 0 1 0 0 10
11 1 0 1 0 0 0 1 0 1 0 0 10
12 0 1 0 0 0 1 0 1 0 0 0

F 2.3: Values of Rk,n (mod n) for some small values of k and n.

The summands in (1.12) are integer multiples of 3 except possibly for when n−2 6 k 6 n
or (i, j, k) ∈ {(0, 3, n − 3), (1, 3, n − 4)}. Similarly to the modulo n case, this yields R3,n ≡

2n−1 − 2n−310n − 2n−456n(n − 3) ≡ 2n−1(1 − n − n2) (mod 3). �

We now make an interesting observation, that will lead to the evaluation of Rk,p (mod p)
for all primes p, in Theorem 2.4.3.

Lemma 2.4.2. Let p be a prime, and let Zk,p denote the number of reduced k × p Latin
rectangles that are isotopic to a subrectangle of the Cayley table of Zp. Then Zk,p = (p − 2)!
when 1 < k 6 p.

Proof. Each reduced 2× p Latin rectangle L can be interpreted as a permutation σL in 2-row
format. It is easy to show that L is isotopic to a subrectangle of Zp if and only if σL is a
p-cycle. There are (p − 2)! different p-cycles that map 1 to 2, therefore Z2,p = (p − 2)!.

Let Atop(Zp) be the autotopism group of the Cayley table of Zp. The autotopism group
of the Cayley table of a finite group has been described by, for example, Bailey [13]. As a
corollary |Atop(Zp)| = p2(p − 1) and so

Zp,p =
(p!)3

p!(p − 1)!|Atop(Zp)|
= (p − 2)!.

Each reduced k × p Latin rectangle isotopic to a subrectangle of the Cayley table of Zp

can easily be extended to a (k + 1) × p such Latin rectangle. Hence

(p − 2)! = Z2,p 6 Z3,p 6 · · · 6 Zp,p = (p − 2)!,

from which the result follows. �

Theorem 2.4.3. Let p be a prime and 1 6 k 6 p. Then Rk,p ≡ 1 (mod p).

Proof. It will be assumed that k > 1 since R1,p = 1. Let G be the group of isotopisms gener-
ated by (ε, β, β) where β = (1, 2, . . . , p). Our proof follows the basic template in Section 2.1,
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except that G acts on the set of normalised k × p Latin rectangles, while we choose C to be
the set of reduced k × p Latin rectangles.

For any isotopy class I, let Norm(I) be the number of normalised Latin rectangles in I
and let Red(I) be the number of reduced Latin rectangles in I. Then Norm(I) = Red(I)(p −
1)!/(p − k)!. If |Atop(L) ∩G| = 1 for all normalised L ∈ I, then p divides Norm(I) and so p
also divides Red(I). Let A be the set of reduced k × p Latin rectangles that are isotopic to a
Latin rectangle that admits a non-trivial autotopism in G. Hence Rk,p = |C| ≡ |A| (mod p).

If a Latin rectangle L admits a non-trivial autotopism in G, then (ε, β, β) is an autotopism
of L, since p is prime. Therefore, in each row of L the symbols occur in cyclic order, so L is
isotopic to a subrectangle of the Cayley table of Zp. SoA is precisely the set of reduced k× p
Latin rectangles that are isotopic to a subrectangle of the Cayley table of Zp. By Lemma 2.4.2
and Wilson’s Theorem |A| = Zk,p = (p − 2)! ≡ 1 (mod p). �

Theorem 2.4.3 and Corollary 2.3.6 imply that Rk,n+p ≡ (−1)k−1(k − 1)!Rk,n (mod p) for
prime p > k. Together Theorem 2.4.3 and Corollary 2.2.3 show the surprising fact that Rn

(mod n) is an indicator variable for primality of n.

Corollary 2.4.4. Rn ≡ 0 (mod n) for composite n and Rn ≡ 1 (mod n) for prime n.

Corollaries 2.3.6 and 2.4.4 imply that Rk,n+k ≡ −Rk,n (mod k), when n > k. Hence Rp,λp ≡

(−1)λ−1 (mod p) for any prime p and λ > 1, by Theorem 2.4.3.

Corollary 2.4.5. Rk,n ≡ 0 (mod n) if and only if k > gpd(n).

Proof. Let q = gpd(n). If n = q then Theorem 2.4.3 says that Rk,q ≡ 1 . 0 (mod q) for all
1 6 k 6 q = n. So assume n = λq where λ > 2. By Theorem 2.4.3 and repeated application of
Corollary 2.3.6, Rk,n ≡ (−1)(λ−1)(k−1)(k− 1)!λ−1 (mod q). If k 6 q this congruence is non-zero,
so Rk,n . 0 (mod n).

Conversely we will show that Rk,n ≡ 0 (mod n) when k > q. The m < k 6 n case is
precisely Corollary 2.2.3, so assume q < k 6 m.

Suppose px is a prime power divisor of n. If x = 1 then Corollary 2.3.6 implies that
Rk,n ≡ (−1)k−1(k − 1)!Rk,n−pRk,p ≡ 0 (mod p), since p < k. So assume x > 2. If n > 2px then
n > m+ px > k+ px and so Corollary 2.3.3 implies that Rk,n ≡ 0 (mod px). But n > px > 2px
for all n except n ∈ {4, 8, 9}. These cases are resolved by Figure 2.1. �

We now give an exact formula for Rk,n (mod n) for all k, n ∈ N, which even includes
when k > n where Rk,n = 0.

Theorem 2.4.6. If k, n ∈ N, then Rk,n ≡
(
(−1)k−1(k − 1)!

)n−1 (mod n).

Proof. Let a = (−1)k−1(k − 1)!. We want to show that Rk,n ≡ an−1 (mod n). If k > n, then
Rk,n = 0 ≡ an−1 (mod n), so assume k 6 n.

Let x, y ∈ N be such that gcd(x, y) = 1 and Rk,x ≡ ax−1 (mod x) and Rk,y ≡ ay−1 (mod y).
By Theorem 2.3.1, Rk,xy ≡ aRk,x(y−1)Rk,x ≡ a2Rk,x(y−2)R2

k,x ≡ · · · ≡ ay−1Ry
k,x ≡ ay−1ay(x−1) ≡ axy−1

(mod x). By symmetry, Rk,xy ≡ axy−1 (mod y). Since x and y are coprime, Rk,xy ≡ axy−1

(mod xy). Observe that this argument is still valid even if k is greater than x or y. It is
therefore sufficient to show that

Rk,ps ≡ aps−1 (mod ps)
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for an arbitrary prime p and all s ∈ N.
If k > p then Corollary 2.4.5 implies that

Rk,ps ≡ 0 ≡ aps−1 (mod ps).

Therefore assume k 6 p. Observe that Kk,ps ≡ aRk,ps (mod ps) by (1.1). It is sufficient to
show that Kk,ps ≡ aps

(mod ps) since p does not divide a.
When s = 1, Theorem 2.4.3 and Fermat’s Little Theorem imply that Kk,p ≡ a ≡ aps

(mod p). Now, for the sake of induction, assume Kk,ps−1 ≡ aps−1
(mod ps−1). By applying

Theorem 2.3.2 we find that

Kk,ps ≡ Kk,ps−ps−1 Kk,ps−1 ≡ Kk,ps−2ps−1 K2
k,ps−1 ≡ · · · ≡ K p

k,ps−1 ≡
(
cps−1 + aps−1)p

(mod ps)

for some integer c. Using the Binomial Theorem, Kk,ps ≡ aps
(mod ps). �

Theorem 2.4.6 implies that the converse of Theorem 2.4.3 is false, since R5,25 ≡ 1
(mod 25) for example (the exact value of R5,25 is given in Appendix A.3). Furthermore,
if n is a Carmichael number and p is the smallest prime that divides n then Rk,n ≡ 1 (mod n)
for 1 6 k 6 p.

It would also be interesting to find a formula for Rk,n (mod k). We know Rk,n ≡ 0 (mod k)
when k is composite by Corollary 2.2.4 and R2,n ≡ 1 (mod 2) by Theorem 2.4.1. For odd
prime k, the comment following Corollary 2.4.4 implies that Rk,n ≡ (−1)n fk(n) (mod k) for
all n > k, where fk(n) is some polynomial of degree at most k − 1. We can determine fk(n)
(mod k) by Lagrange interpolation using the values of Rk,n (mod k) for k 6 n < 2k. For
example, Figure 2.1 tells us that f3(n) ≡ n2 + n − 1 (mod 3) and f5(n) ≡ n4 + 2n3 + n2 − 1
(mod 5) and also that

(
f7(n)

)
76n611 =

(
6, 5, 2, 3, 2

)
.

2.5 Application to subsets of Latin hypercuboids

2.5.1 Introduction
In this section we introduce a generalisation of Latin rectangles to an arbitrary number of
dimensions, which we call Latin hypercuboids. We use a modified version of the “proof
template” of Section 2.1 to prove congruences satisfied by the number of Latin hypercuboids.

A difficulty of working with Latin hypercuboids in such generality is the necessity of
cumbersome notation. We want our Latin hypercuboids to be of arbitrary dimension. So
we will consider a1 × a2 × · · · × as arrays, for positive integers a1, a2, . . . , as and let ~a =

(a1, a2, . . . , as). Let n = maxi ai. We will usually take our symbol set to be [n] = {1, 2, . . . , n},
although the choice for this set is unimportant for our purposes, provided it possesses a total
ordering. We will assume that n = a1 > a2 > · · · > as > 1 = as+1 = as+2 and so on. Let F =

[a1]× [a2]×· · ·× [as]. We will index a cell in a Latin hypercuboid by ~u = (u1, u2, . . . , us) ∈ F ,
implying 1 6 ui 6 ai for all 1 6 i 6 s. For the sake of the readers’ eyes, we will sometimes
not use a subscript for l~u, taking l~u = l~u = l(~u). A Latin hypercuboid, or Latin ~a-cuboid, is an
array L = (l~u)~u∈F containing n symbols such that, for all 1 6 i 6 s,

l(u1, . . . , ui−1, ui, ui+1, . . . , us) , l(u1, . . . , ui−1, u′i , ui+1, . . . , us)
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for distinct ui, u′i ∈ [ai].
For any n ∈ N, let ~ns = (n, n, . . . , n) be of length s. Latin ~ns-cuboids are an interesting

class of Latin hypercuboid. In particular:

• Latin ~n2-cuboids are Latin squares of order n.

• Latin ~n3-cuboids are called Latin cubes.

• Latin ~ns-cuboids with s > 4 are called Latin hypercubes.

A Latin ~a-cuboid L = (l~u) is called normalised if l(u1, 1, 1, . . . , 1) = u1 for all u1 ∈ [a1]
and is called reduced if l(1, 1, . . . , 1, ui, 1, 1, . . . , 1) = ui for all 1 6 i 6 s and ui ∈ [ai].

In some instances we are interested in the number of Latin ~a-cuboids that satisfy some
property P. If P and Q are properties of Latin ~a-cuboids, then define the properties P ∧ Q,
P ∨ Q and ¬P where ∧, ∨ and ¬ are the Boolean operators “and,” “or” and “not.” Define the
following numbers:

• LP
~a is the number of Latin ~a-cuboids that satisfy P,

• KP
~a is the number of normalised Latin ~a-cuboids that satisfy P,

• RP
~a is the number of reduced Latin ~a-cuboids that satisfy P.

If P is omitted then no further conditions are attached – we can assume P is the property
“is a Latin ~a-cuboid.” Therefore L(n) = n! and R(n,k) is the number of reduced k × n Latin
rectangles.

The history of the enumeration of Latin ~ns-cuboids and the associated terminology has
been discussed by McKay and Wanless [226], who also provided the number of Latin (n, n, n)-
cuboids for n 6 6 and Latin ~ns-cuboids for n, s 6 5, which is reproduced in Figure 2.4.
Krotov, Potapov and Sokolova [196] found a double-exponential lower bound on L~ns for any
fixed n > 5 as s→ ∞.

n R(n,n) R(n,n,n) R(n,n,n,n) R(n,n,n,n,n)

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 22 26 22·1783 24·53·100769
5 23·7 2·20123 22·7·1125127 23·1187·5317061
6 26·3·72 23·34·7·97·217981

References: [80, 144, 167, 172, 202, 226, 241, 262]

F 2.4: Prime factorisation of R~ns for n 6 6 and s 6 5.
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Other generalisations

Many other generalisations of Latin squares and Latin rectangles exist, of which we will
list several examples. In each case, Ln or Lk,n arises as the cardinality of a special subset
of the objects below. The following survey aims to give an appreciation for the variety of
generalisations of Latin squares and Latin rectangles – it is not the author’s intention for it
to be comprehensive. We are motivated by Cipra [58] to “try something harder,” in the hope
that studying generalisations of Latin squares and rectangles will provide insights into Ln or
Lk,n. Denés and Keedwell [71] also gave a discussion on generalised Latin squares.

We begin with frequency squares, which are n × n matrices in which any given symbol
occurs the same number of times in every row and column. They were studied by MacMahon
[209], Hedayat and Seiden [154], Finney [118], Brant and Mullen [30], Denés and Mullen
[75] and Krčadinac [197] for example (see also [71, Sec. 12.5]). Erdős and Spencer [95]
studied transversals of matrices in which “no symbol appears too often” (see also [4]).

Cao, Dinitz, Kreher, Stinson and Wei [45] studied “orthogonality” amongst k×n matrices
with symbols from a set of cardinality s in which each symbol appears (a) in each row either
dn/se or bn/sc times and (b) in each column either dk/se or bk/sc times. For example(

1 1 2 2 3 3
2 2 3 3 1 1

)
and

(
1 2 1 2 3 4
3 4 2 1 4 3

)
.

Drisko [85] studied transversals in k×n row-Latin rectangles, which are k×n rectangular
matrices with n symbols such that each symbol occurs exactly once in every row. Row-Latin
rectangles with k = n are called row-Latin squares and were studied by Norton [250], for ex-
ample. Stein [300] (see also [92]) studied transversals of (a) n×n matrices with symbols from
N, called n-squares and (b) n-squares containing exactly n copies of each symbol 1, 2, . . . , n,
called equi-n-squares.

The Dinitz Conjecture (Theorem 1.2.11) considers n × n matrices (li j), without repeated
symbols in any row or column, such that each li j is an element of a predetermined set Si j of
cardinality n.

Andersen and Hilton [8, 9, 10] studied k × n matrices with x symbols in each cell such
that each symbol occurs at most p times in each row and at most q times in each column.
Cavenagh et al. [50] studied n × n matrices with x not necessarily distinct symbols in each
cell such that each symbol occurs exactly x times in each row and exactly x times in each
column. For example 

1, 2 1, 2 3, 3 4, 4
2, 3 2, 3 4, 4 1, 1
1, 4 3, 4 1, 2 2, 3
3, 4 1, 4 1, 2 2, 3

 .
Brier and Bryant [32] studied r× s× t arrays (l(i, j,u)), on the symbol set [n], such that every

subset of [n] of cardinality t is {l(i, j,u)}u∈[t] for some i ∈ [r] and j ∈ [s]. For example 1 5 2 4 3
2 6 3 5 4
3 1 4 6 5

 ,
 2 6 1 5 4

3 1 2 6 5
4 2 3 1 6

 ,
 3 4 5 6 1

4 5 6 1 2
5 6 1 2 3

 ,
 4 1 3 2 6

5 2 4 3 1
6 3 5 4 2

 .
Nechvatal [245] considered the number of k × n matrices with symbols taken from a set

of cardinality m without repeated symbols in any row or column; these were also mentioned
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in Section 1.2.2. The k = n case of Nechvatal’s generalisation was also studied by Light Jr
[207] and Mészáros [229].

Shapiro [283] considered n × n matrices L = (li j) such that li j , li′ j′ whenever x(i − i′) ≡
y( j − j′) (mod n) for any (x, y) ∈ X in some X ⊂ {0, 1, . . . , n − 1} × {0, 1, . . . , n − 1}. For
example 

5 2 3 1 4
3 1 4 5 2
4 5 2 3 1
2 3 1 4 5
1 4 5 2 3


where X = {(0, 1), (1, 0), (1, 1)}.

Hilton [158], Deng and Lim [76], Tay [311] and Iranmanesh and Ashrafi [166] studied
n × n matrices in which each cell is assigned a set of symbols such that each symbol appears
exactly once in each row and column. Green [140, 141] studied k × n matrices on n symbols
such that each row contains every symbol and each column contains any symbol of B at most
once, for some subset B of the symbol set. Shen, Cai, Liu and Kruskal [284, 285] and Hare
[153] studied n× n matrices L = (li j) in which each symbol appears in every row and column
and the symbol in position li j occurs either exactly (a) k times in the i-th row and l times in
the j-th column or (b) l times in the i-th row and k times in the j-th column. The following
example appears in [285]

2 1 3 4 7 8 5 6 2 1 1 2
3 3 1 1 3 2 1 4 8 5 6 7
6 7 8 5 4 1 4 1 4 2 3 1
6 7 8 5 2 3 2 3 1 3 2 4
4 4 2 2 1 4 3 2 8 5 6 7
1 2 4 3 7 8 5 6 3 4 4 3
5 5 6 6 1 2 3 4 8 6 5 7
1 2 3 4 5 8 7 6 5 7 7 5
6 7 5 8 8 5 8 5 1 2 3 4
7 6 8 5 6 7 6 7 1 2 3 4
1 2 3 4 7 6 5 8 6 8 8 6
8 8 7 7 1 2 3 4 7 5 6 8


where {k, l} = {1, 3}.

Latin squares L = (li j) of order n are said to avoid another n × n matrix M = (mi j) if
li j , mi j for all i, j. Avoidance in Latin squares has become an active area of research, for
example [47, 52, 56, 68, 146, 255, 254, 219].

There are various applications of Latin cubes, for example in parallel array access [116]
and experimental design [117, p. 198] (see also [266]). Latin ~ns-hypercuboids (Latin hyper-
cubes) are equivalent to maximum distance separable (MDS) codes over an alphabet of size
n of length s + 1 and minimum distance 2 [203]. Hence L~ns is the number of such codes.
Laywine and Mullen [203, pp. 224–225] and Soedarmadji [294] showed that L~3s

= 3! · 2s−1

for all s, which amounts to showing that R~3s
= 1 by (2.5).
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A construction

We will now observe a basic construction for Latin hypercuboids. Let X = (x~u) and Y = (y~v)
be a Latin ~a-cuboid and a Latin ~b-cuboid, respectively, where

• ~a = (a1, a2, . . . , as) and F1 = [a1] × [a2] × · · · × [as],

• ~b = (b1, b2, . . . , bt) and F2 = [b1] × [b2] × · · · × [bt],

• ~a~b = (a1, a2, . . . , as, b1, b2, . . . , bt) andF1F2 = [a1]×[a2]×· · ·×[as]×[b1]×[b2]×· · ·×[bt],

• ~u ∈ F1, ~v ∈ F2 and ~w ∈ F1F2 and ~u~v = (u1, u2, . . . , us, v1, v2, . . . , vt).

We construct a Latin ~a~b-cuboid L = (l~w) from X and Y by a direct-product-like construction.
Let n = max

(
{ai}16i6s ∪ {bi}16i6t

)
. We let l~w be the element in [n] congruent to x(~u) + y(~v)

(mod n) whenever ~w = ~u~v.
There are some properties that L inherits from X and Y . For example, L is reduced if X

and Y are reduced. Furthermore, the same L cannot be produced in this way by a different
pair (X,Y) of reduced hypercuboids. Therefore, for any I ⊆ [s], we obtain the primitive lower
bound

R~a > R(ai)i∈I R(ai)i∈[s]\I . (2.3)

For example, (2.3) implies that R~ns > Rbs/2c(n,n) .
If X or Y cannot be completed to a Latin ~ns cuboid, then L cannot be completed to a Latin

~ns+t-cuboid. Horák [159] gave a construction for Latin (n, n, n − 2)-cuboids that cannot be
completed to an (n, n, n)-cuboid when n is a power of 2 and n > 8. Fu [123] constructed a
Latin (n, n, n − 2)-cuboid that cannot be extended to an (n, n, n)-cuboid for all n > 12, which
was extended by Kochol [188] (see also [189]) to include all n > 6. Kochol [190] constructed
a Latin (n, n, n − d)-cuboid that cannot be extended to an (n, n, n)-cuboid, when n > 2d + 1
such that d > 3.

Kochol’s result, combined with our direct-product-like construction, shows that there ex-
ists Latin (n, n, . . . , n, n − d)-cuboids, for all s > 3 and n > 2d + 1 where d > 3, that cannot
be extended to an ~ns-cuboid. This construction was alluded to by McKay and Wanless [226].

Isotopism and parastrophy

The notions of isotopism and parastrophy generalise naturally to Latin hypercuboids. An
ordered (s + 1)-tuple of permutations ~θ = (θ0, θ1, . . . , θs) will denote a mapping of Latin ~a-
cuboids L = (l~u) such that ~θ(L) = (l′

~u) is defined by l′
(
θ1(u1), θ2(u2), . . . , θs(us)

)
= θ0

(
l~u
)

for all
~u ∈ F . For ~θ(L) to be well-defined we require that θi fix [ai] setwise for all 1 6 i 6 s. We
wish to caution the reader, that we now place the symbol permutation θ0 at the first coordinate
in ~θ, contrary to our use of isotopisms for Latin squares and Latin rectangles. The mapping
~θ is called an isotopism, and we say ~θ(L) is isotopic to L. The set of Latin ~a-cuboids isotopic
to L is called the isotopy class of L. If ~θ(L) = L then ~θ is called an autotopism of L.

If ~θ is an isotopism such that θ0 = θ1 = · · · = θs = α for some permutation α then ~θ is
called an isomorphism and will be denoted ~αs. An isomorphism ~αs such that α(1) = 1 and
α fixes each [ai] setwise will map reduced Latin ~a-cuboids to reduced Latin ~a-cuboids. If ~θ
is both an isomorphism and an autotopism of L then ~θ is called an automorphism of L. The
identity permutation is still denoted ε and any isotopism other than ~εs is called non-trivial.
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Clearly, every Latin ~a-cuboid is isotopic to a normalised Latin ~a-cuboid. However, for
some choices of ~a there exist Latin ~a-cuboids that are not isotopic to any reduced Latin ~a-
cuboid, for example the Latin (4, 2, 2)-cuboid[

1 2 3 4
2 3 4 1

]
u3=1

[
3 4 1 2
4 1 2 3

]
u3=2.

If L is a Latin ~a-cuboid that is not isotopic to a reduced Latin ~a-cuboid, then we call L
an irreducible Latin ~a-cuboid. We call ~v ∈ F a reducing cell of a Latin ~a-cuboid L, if the
relation ⊆ is a total ordering on

Q~v(L) :=
{{

l(v1, v2, . . . , vi−1, ui, vi+1, vi+2, . . . , vs) : ui ∈ [ai]
}

: i ∈ [s]
}
.

In the above example Q(1,1,1) =
{
{1, 2, 3, 4}, {1, 2}, {1, 3}

}
and so ⊆ is not a total ordering in this

case. Observe that, if ~v is a reducing cell of L and ~θ is an isotopism that maps ~v to ~w in ~θ(L),
then ~w is a reducing cell of ~θ(L).

Theorem 2.5.1. A Latin ~a-cuboid L = (l~u) is isotopic to a reduced Latin ~a-cuboid if and only
if L has a reducing cell.

Proof. Given a reducing cell ~v ∈ F , we will find an isotopic reduced Latin ~a-cuboid.
Step 1: We choose ~θ = (θ0, θ1, . . . , θs) so that θ1(v1) = θ2(v2) = · · · = θs(vs) = 1. In this

case, since ~v is a reducing cell of L, (1, 1, . . . , 1) is a reducing cell of L′ := ~θ(L).
Step 2: We apply a symbol permutation to L′, to obtain a Latin ~a-cuboid L′′ = (l′′

~u ),
such that l′′(1, 1, . . . , 1) = 1 and Q(1,1,...,1)(L′′) = {[a1], [a2], . . . , [as]}. This is possible since
(1, 1, . . . , 1) is a reducing cell of L′.

Step 3: Finally we apply an isotopism ~θ′′ to L′′ with θ′′0 = ε, to obtain the Latin ~a-cuboid
L∗ = (l∗

~u), so that l∗(1, 1, . . . , 1, ui, 1, 1, . . . , 1) = ui for all i ∈ [s]. This is possible, since
l′′(1, 1, . . . , 1) = 1. Thus we have found a reduced Latin ~a-cuboid L∗ isotopic to L.

Conversely, if ~θ(L) is a reduced Latin ~a-cuboid for some isotopism ~θ, then (1, 1, . . . , 1) is
a reducing cell of ~θ(L). Therefore,

(
θ−1

1 (1), θ−1
2 (1), . . . , θ−1

s (1)
)

is a reducing cell of L. �

Other notions of reducibility exist in the theory of so-called n-ary quasigroups [193, 194,
195, 196].

Lemma 2.5.2. Let P be the property “(
s︷      ︸︸      ︷

1, 1, . . . , 1) is a reducing cell” and let Q = ¬P. Then

L~a = n!K~a = n!
s−1∏
i=1

(ai − 1)!
(ai − ai+1)!

R~a + n!KQ
~a . (2.4)

Proof. It is straightforward to observe that L~a = n!K~a. We will now simplify the terms in the
expression L~a = LP

~a + LQ
~a . This proof is similar to the proof of (1.1).

Given a reduced Latin ~a-cuboid L we can construct Latin ~a-cuboids from L satisfying P
by applying any isotopism ~θ = (θ0, θ1, . . . , θs) where (a) θs = ε and (b) for all 1 6 i 6 s − 1
both θi(1) = 1 and θi fixes [ai] setwise. Thus creating n!

∏s−1
i=1 (ai−1)!, not necessarily distinct,

Latin ~a-cuboids that satisfy P.
Conversely, given a Latin~a-cuboid satisfying P, we can construct reduced Latin~a-cuboids

L = (l~u) by applying any isotopism ~θ where (a) θs = ε, (b) θ0 permutes [n] such that
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l(1, 1, . . . , 1, us) = us for all us ∈ [as] and {l(1,1,...,1,ui,1,1,...,1) : ui ∈ [ai]} = [ai] for all i ∈ [s]
and (c) θi is such that l(1,1,...,1,ui,1,1,...,1) = ui for all 1 6 i 6 s − 1 and ui ∈ [ai]. Thus creating∏s−1

i=1 (ai − ai+1)!, not necessarily distinct, reduced Latin ~a-cuboids.
Hence RP

~a n!
∏s−1

i=1 (ai−1)! = LP
~a

∏s−1
i=1 (ai−ai+1)!. This establishes the coefficient of R~a = RP

~a
in (2.4). For the remaining term LQ

~a = L~a − LP
~a , observe that the group of all isotopisms

consisting only of symbol permutations acts on the set of Latin ~a-cuboids that satisfy Q with
each orbit having size n! and containing a unique normalised representative. �

Equation (2.4) is a generalisation of (1.1) to Latin hypercuboids. If a1 = a2 = · · · = as−1

then every cell of a Latin ~a-cuboid is a reducing cell. Hence KQ
~a = 0 in (2.4) in many

important cases, including Latin rectangles, Latin squares, Latin cubes and Latin hypercubes.
Therefore

L~ns = n!K~ns = n!(n − 1)!s−1R~ns . (2.5)

Additional properties

If L is a Latin ~a-cuboid and M is a subarray of L that is also a Latin ~c-cuboid, then M is
called a ~c-subcuboid of L. Here it is not required that c1 > c2 > · · · > cs. Note that a (c1, c2)-
subcuboid might not be a Latin rectangle, since we defined a k × n Latin rectangle to require
k 6 n.

We will call a ~c-subcuboid proper if ci < n for all i ∈ [s] and at least two of the ci > 1.
This definition is motivated by the definition of proper subsquares in Latin rectangles, in that
we want “proper” to exclude those subarrays that are automatically subcuboids.

If L = (l~u) is a Latin ~a-cuboid, then a diagonal is a set of as entries of L such that if ~u
and ~v are distinct entries in the diagonal then ui , vi for all i ∈ [s]. A diagonal that consists
of as distinct symbols is called a transversal. The reader should be aware that there are other
published definitions for the term transversal in Latin cubes and hypercubes, for example by
Beljavskaja and Murathudjaev [20] and Heinrich [155].

Let L be a Latin ~ns-cuboid. If we fix ui for all i except when i = j then (l~u)u j∈[a j] is called
a line of L. This definition comes from [226] and [80]. Each line can be considered to be a
permutation of [n] and therefore has a sign. The sign of L is the product of the signs of all
sns−1 lines of L. If ε(L) = +1 then L is said to be an even Latin ~ns-cuboid, otherwise L is said
to be an odd Latin ~ns-cuboid. We can generalise (1.6) to give

ε
(~θ(L)

)
= ε

(
L
)
ε sns−1(

θ0
)∏

i∈[s]

εns−1(
θi
)

(2.6)

for any isotopism ~θ.
Define the following properties:  = “is an even Latin ~ns-cuboid” and  = “is an

odd Latin ~ns-cuboid.”
If n is even, then each isotopy class of Latin ~ns-cuboids comprises entirely of Latin ~ns-

cuboids of the same sign. Therefore, when n is even,

LP
~ns

= n!(n − 1)!s−1RP
~ns
, (2.7)

where P ∈ {, }.
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Let L be an arbitrary Latin ~ns-cuboid where n is odd. Choose ~θ = (θ0, θ1, . . . , θs) such that
θ0 = θ1 = · · · = θs−1 = ε and θs is a transposition. Then (2.6) implies that ε

(
L
)

= −ε
(~θ(L)

)
.

Therefore, when n is odd and n > 3,

L~ns
= L~ns

=
1
2

L~ns =
1
2

n!(n − 1)!s−1R~ns (2.8)

by (2.5). Equations (2.7) and (2.8) generalise (1.7) and (1.8) to Latin cubes and Latin hyper-
cubes.

Dougherty and Szczepanski [80] made the following conjecture.

Conjecture 2.5.3. L
~ns

, L
~ns

when n is even and s > 2.

The s = 2 case of Conjecture 2.5.3 is the Alon-Tarsi Conjecture (Conjecture 1.2.9 on
page 21). Drisko [83] and Glynn [134] proved the Alon-Tarsi Conjecture for n = p + 1 and
n = p − 1, respectively, for odd prime p. It is trivial to show that Conjecture 2.5.3 holds for
n = 2 using (2.7) since R~2s

= 1 and we prove the n = 4 case in Corollary 2.5.12. By computer
enumeration, Ian Wanless (private communication) found that R(6,6,6) = 92793745368 ,
3116150784 = R(6,6,6).

2.5.2 Divisors of the number of Latin hypercuboids
We will now introduce the mathematical machinery that we will later use to establish divisi-
bility properties for RP

~a and the related numbers in (2.4). First we generalise Lemma 1.2.7 for
use in an arbitrary number of dimensions.

Lemma 2.5.4. Suppose ~θ is an autotopism of a Latin (a1, a2, . . . , as)-cuboid. If any s of the
following statements are true for some ~u ∈ F , then all s + 1 statements are true.
• u1 is fixed by θ1 • u2 is fixed by θ2 · · · • us is fixed by θs • l~u is fixed by θ0

Usually we will use isotopisms ~θ = (θ0, θ1, . . . , θs) such that θi fixes 1 for all 0 6 i 6 s
when Lemma 2.5.4 is quite useful for studying those cells that have many coordinates equal
to 1. Observe that for any Latin ~a-cuboid L = (l~u) the matrix M = (m(u1,u2)) defined by
m(u1,u2) = l(u1,u2,1,1,...,1) is an a1 × a2 Latin rectangle embedded within L.

We will now modify the “proof template” of Section 2.1 to be applicable to Latin hy-
percubes. Let C be a set of Latin ~a-cuboids and let CP ⊆ C be the subset of all Latin
~a-cuboids in C that satisfy property P. For any L ∈ CP and group of isotopisms G that
acts on C, let AtopG(L) = Atop(L) ∩ G be the group of autotopisms of L in G and let
G(L) = {~θ(L) : ~θ ∈ G} ⊆ C be the orbit of L under the action of G.

Lemma 2.5.5. Let P be a property of Latin ~a-cuboids that is invariant under the action of G.

(a) Suppose |AtopG(L)| = 1 for every L ∈ CP. Then |G| divides |CP|.

(b) Instead, suppose P is satisfied by every L ∈ C such that |AtopG(L)| > 1. Then |C| ≡ |CP|

(mod |G|).

Proof. Since P is invariant under G, CP is closed under the action of G.
Assuming the conditions of (a), the action of G partitions CP into orbits of size |G(L)| =

|G|/|AtopG(L)| = |G| for all L ∈ CP, by the Orbit-Stabiliser Theorem. Hence |G| divides |CP|.
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Now assume the conditions of (b) and let A = C \ CP. It follows that A is also closed
under the action of G and every L ∈ C with |AtopG(L)| > 1 is not in A. Hence we can apply
part (a) of the lemma, with the property “∈ A,” and obtain that |G| divides |A| = |C|−|CP|. �

Lemma 2.5.5 is a generalisation of the template of Section 2.1 which we used to establish
numerous theorems concerning divisibility properties of the number of Latin rectangles.

Theorem 2.5.6. Let C be the set of all Latin ~a-cuboids, where s > 2. Suppose there exists
x in the range 1 6 x 6 n such that either ai 6 x or ai > x + r for all 1 6 i 6 s for some
r 6 dn/2e − 1. Let R = {x + 1, x + 2, . . . , x + r} and HR be the group of all isomorphisms ~αs

such that α fixes [n] \ R pointwise. Let P be a property of Latin ~a-cuboids that is invariant
under HR. Then r! divides |CP|.

Proof. Suppose, seeking a contradiction, that L = (l~u) ∈ CP admits a non-trivial automor-
phism ~αs ∈ HR. Let F denote the fixed points of α and let F∗ = [n]\F denote its complement.
Consider the line X formed with u1 variable, while u2 is some element of [a2] not fixed by α
and ui = 1 for 3 6 i 6 s. Since u3, u4, . . . , us ∈ F and u2 ∈ F∗, Lemma 2.5.4 implies that if
u1 ∈ F then l~u ∈ F∗. Therefore, |F| 6 |F∗| = n − |F| and so |F| 6 n/2. However, we have
assumed that |F| > n − r > n/2, giving a contradiction. Therefore |AtopHR

(L)| = 1 for all
L ∈ CP. By Lemma 2.5.5(a), r! divides |CP|. �

In Theorem 2.5.6, typically we would want r to be as large as possible, however for some
choices of P it might be necessary to choose r less than its maximum allowed value, which
is also acceptable.

Theorem 2.5.7. Suppose n is even and n = a1 = a2 = · · · = as−1 > as > bn/2c. Assume the
conditions of Theorem 2.5.6, except with r = bn/2c and x = 1. For L = (l~u) ∈ C let M be the
subarray of L with bn/2c + 1 6 ui 6 min(n, ai) for all i ∈ [s]. Let Q be the property “M is a
subcuboid.” Then |CP| ≡ |CP∧Q| (mod r!).

Proof. We continue from the proof of Theorem 2.5.6. It remains true that |F| 6 n/2, however,
now we have only assumed that |F| > n/2, hence |F| = n/2. By Lemma 2.5.5(b), it is
sufficient to show, for all L ∈ CP with ~θ ∈ Atop(L), that M is a subcuboid. But this follows
from Lemma 2.5.4, which implies that M must only contained fixed symbols. �

Theorem 2.5.6 provides a factorial divisor for certain subsets of Latin ~a-cuboids. We will
now list some properties P that are invariant under the action of HR. In this case, if as > dn/2e
then (dn/2e − 1)! divides LP

~a by Theorem 2.5.6.

• “is isotopic to L” or “is isomorphic to L,” for any Latin ~a-cuboid L.

• “is reduced” or “is normalised.”

• “has an autotopism group of cardinality t.”

• “contains exactly t Latin ~c-subcuboids.”

• “contains t transversals.”

• “for all i ∈ [as] the entry in cell (i, i, . . . , i) is 1.”
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• “for all i ∈ [as] the entry in cell (i, i, . . . , i) is i.”

• “cannot be extended to a Latin cube.”

In the cases where t was used in the above list, we assume t > 0. Furthermore we may replace
“exactly t” with “> t” or “6 t.” For Latin ~ns-cuboids we may append to the list “is even” and
“is odd.”

We highlight the following case for later use; we find that the sign of a Latin (n, n) -cuboid
(a Latin square of order n), is invariant under HR by (2.6).

Corollary 2.5.8. Both R(n,n) and R(n,n) are divisible by (dn/2e − 1)! for all n.

Furthermore, if P and T are properties invariant under HR, then so are P ∧ T , P ∨ T and
¬P. To illustrate, the number of reduced even Latin squares of order n, that do not contain an
intercalate but contain a transversal, is divisible by (dn/2e − 1)!. Be aware that in some cases
LP
~a may actually be the empty set, where LP

~a = 0 is divisible by every positive integer.
Let m = bn/2c. In some cases, we can prove the factorial divisor m! of LP

~ns
using The-

orem 2.5.7. However this requires that we can evaluate LP∧Q
~ns

(mod m!). We list some ex-
amples of P which are appropriate below. In these cases LP∧Q

~ns
≡ 0 (mod m!) since M can

be replaced by any of the L~ms = m!(m − 1)!s−1R~ms Latin ~ms-cuboids of order m on the same
symbols as M, by (2.4).

• “contains a proper ~ms-subcuboid.”

• “contains a transversal outside of M.”

For the following corollary, we make use of the convention that ai > 2 whenever 1 6 i 6 s.
We continue to assume that n = a1 > a2 > · · · > as.

Corollary 2.5.9. Let P be the property “does not contain a proper subcuboid.” Then (as−2)!
divides RP

~a .

Proof. Let G be the group of isomorphisms ~αs such that α fixes {1, as, as+1, . . . , n} pointwise.
Let CP be the set of reduced Latin ~a-cuboids that do not contain a proper subcuboid. Then G
acts on CP. For all L ∈ CP, |G(L)| = |G| = (as − 2)! otherwise L admits a non-trivial auto-
morphism in G and hence L contains a proper subcuboid, as a consequence of Lemma 2.5.4.
Hence RP

~a = |CP| ≡ 0 (mod |G|) by Lemma 2.5.5(a). �

We also list the following special case of Corollary 2.5.9.

Corollary 2.5.10. The number of reduced Latin squares of order n that do not contain a
proper subsquare is divisible by (n − 2)! for all n > 2.

2.5.3 Latin hypercubes of order four
In this section we prove that R

~4s
≡ 1 (mod 3) and R

~4s
≡ 0 (mod 3) for all s. We are

motivated by Figure 2.4 where we can observe that R(4,4) ≡ R(4,4,4) ≡ R(4,4,4,4) ≡ R(4,4,4,4,4) ≡ 1
(mod 3). Potapov and Krotov [262] proved that

3s+122s+1 6 L~4s
6 (3s+1 + 1)22s+1
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when s > 5. In [194] they showed that Latin ~4s-cuboids can be classified as either “permutibly
reducible” or “semilinear.”

Let Fs =
(
Z2×Z2

)s and ~u = (u1, u2, . . . , us) denote an arbitrary element of Fs. We will now
use Fs to index a Latin ~4s-cuboid. We define a reduced ~4s-cuboid Es = (e~u) by e~u =

∑s
i=1 ui

with addition component-wise modulo 2. For example, E2 is given in Figure 2.5.
00 01 10 11
01 00 11 10
10 11 00 01
11 10 01 00


F 2.5: The Latin (4, 4)-cuboid E2.

Theorem 2.5.11. The only reduced ~4s-cuboid of order 4 that admits the automorphism ~αs

where α =
(
01 10 11

)
is Es.

Proof. For any ~u ∈ Fs, and i ∈ Z2 × Z2, we define ci = ci(~u) by ci = i if there is an
odd number of coordinates of ~u that are 01 and ci = 00 otherwise. The symbol in cell ~u
in Es is therefore c01 + c10 + c11. We inspect the eight possibilities for this sum and find
that α(c01 + c10 + c11) = α(c01) + α(c10) + α(c11) in every case. Therefore, ~αs is indeed an
automorphism of Es.

For brevity, we will call any reduced ~4s-cuboid of order 4 that admits the automorphism
~αs a (4, s, α)-array. Observe that the theorem holds when s 6 2. Assume, for the sake of
induction, that Et is the only (4, t, α)-array for some t > 2. Let M = (m~u) be any (4, t + 1, α)-
array. Let Et+1 = (e~u). We will now show that m~u = e~u for all ~u ∈ Ft+1.

Consider the array C formed when u j = 00 is fixed, for some 1 6 j 6 t + 1, and the ui are
variable when i , j. Then, by the inductive assumption, C is a (4, t, α)-array and so C = Et.
Therefore, if ~u ∈ Ft+1 such that ~u has a coordinate 00, then m~u = e~u.

Now suppose ~u is such that ux = 01, uy = 10 and uz = 11 for some 1 6 x, y, z 6 t + 1.
For j ∈ {x, y, z}, let ~w( j) be ~u except with j-th coordinate changed to 00. Then m~u , m~w( j) =

u1 + u2 + · · · + ut+1 − u j for all j ∈ {x, y, z}. Since m~w(x), m~w(y) and m~w(z) are all distinct, m~u is
uniquely determined. Hence m~u = e~u.

For any ~u ∈ Ft+1, define Γ(~u) = {ui : 1 6 i 6 t + 1}. We have not yet proved that m~u = e~u
for ~u ∈ Ft+1 such that Γ(~u) ∈

{
{01, 10}, {01, 11}, {10, 11}

}
or |Γ(~u)| = 1. It is sufficient to show

that m~u = e~u for all ~u ∈ Ft+1 such that Γ(~u) = {01, 10}, because then (a) the symbols in cell
~u when Γ(~u) ∈

{
{01, 11}, {10, 11}

}
will be determined by the automorphism ~αs and (b) the

symbols in cells ~u when |Γ(~u)| = 1 are then uniquely determined by the remainder of M.
Assume ~u has Γ(~u) = {01, 10}. Choose 1 6 x, y 6 t + 1 such that vx = 01 and vy = 10.

Construct ~w from ~u by changing ux to 00. Construct ~w′ from ~u by changing uy to 00. Then
m~u , m~w = c10 + c01 − 01 and m~u , m~w′ = c10 + c01 − 10. Consequently

m~u ∈
{
c10 + c01, c10 + c01 − 11

}
=


{
00, 11

}
if t is odd{

01, 10
}

if t is even,
(2.9)

since ~u ∈ Ft+1 and Γ(~u) = {01, 10}.
Now let ~v ∈ Ft+1 be such that Γ(~v) = Γ(~u) = {01, 10} and c01(~u) = c01(~v). We will show

that m~u = m~v. It is sufficient to show that m~u = m~v only when ~u differs from ~v at precisely
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two coordinates. Let ~x be one of the vectors that differs from both ~u and ~v at precisely one
coordinate. Then m~x , m~u and m~x , m~v. We know that {m~u,m~v,m~x} is a set of cardinality at
most 2 by (2.9). Therefore if m~u , m~v we reach a contradiction. So m~u = m~v.

Now define ~p, ~q,~r, ~s ∈ Ft+1 by

• ~p = (01, 01, . . . , 01︸           ︷︷           ︸
t

, 10),

• ~q = (10, 10, . . . , 10︸           ︷︷           ︸
t

, 11),

• ~r = (10, 10, . . . , 10︸           ︷︷           ︸
t

, 01),

• ~s = (10, 10, . . . , 10︸           ︷︷           ︸
t−1

, 01, 01).

When t is even, assume, seeking a contradiction, that m~p = 01. It follows that m~q = 10
since ~αs is an automorphism of M. Hence m~r , 10 and therefore m~r = 01 by (2.9). Hence
m~s = 10, contradicting that m~p = m~s (which is true as c01(~p) = c01(~s)). Therefore, by (2.9),
m~p = 10 = e~p.

When t is odd, assume, seeking a contradiction, that m~p = 00. It follows that m~q = 00
since ~αs is an automorphism of M. Hence m~r , 00 and therefore m~r = 11 by (2.9). This
contradicts that m~p = m~s (which is true as c01(~p) = c01(~s)). Therefore, by (2.9), m~p = 11 = e~p.

For each ~u with Γ(~u) = {01, 10}, either m~u = m~p, or ~u belongs to a line in which every other
symbol has already been determined. Hence m~u = e~u for all ~u ∈ Ft+1 with Γ(~u) = {01, 10}. �

Corollary 2.5.12. R
~4s
≡ 1 . 0 ≡ R

~4s
(mod 3).

Proof. LetCx be the set of reduced Latin~4s-cuboids of sign x ∈ {+1,−1}. Let α =
(
01 10 11

)
.

The group 〈α〉, generated by α, acts on C := C+1 ∪ C−1 by isomorphism (α, α, . . . , α). More-
over, (2.6) implies 〈α〉 preserves the sign of L. The group 〈α〉 partitions C into parts of size 3
or 1, with every Latin hypercube in the same part having the same sign. The Latin hypercubes
in parts of size 1 admit the automorphism ~αs.

Theorem 2.5.11 implies that there is a unique part of size 1 containing Es. Each line of Es

is either (00, 01, 10, 11), (01, 00, 11, 10), (10, 11, 00, 01) or (11, 10, 01, 00), which give rise to
even permutations. Hence Es is even for all s and we can deduce that R

~4s
≡ 0 (mod 3) and

R
~4s
≡ 1 (mod 3). �

Corollary 2.5.12 and (2.7) imply a special case of Conjecture 2.5.3 by Dougherty and
Szczepanski [80]. Specifically, L

~4s
, L

~4s
for all s > 1.

2.6 Application to graph decompositions

2.6.1 Introduction
In this section we will apply an analogue of the template of Section 2.1 to find divisors of
the number of various graph decompositions. In this section, we will use Kn to denote the
complete graph on n vertices. Consequently, the notation Kn will not be available for us to use
as the number of normalised Latin squares of order n, but (1.2) allows us to use Ln/n! instead.
We use H to denote a labelled simple graph and G to denote a subgroup of the automorphism
group of H. Let V(H) be the vertex set of H and E(H) be the edge set of H.
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A decomposition D of a graph H is a set of subgraphs of H whose edge sets partition
E(H). Let Aut(H) denote the automorphism group of H. Then Aut(H) acts on the set of all
decompositions of H by permuting the vertex labels. Two decompositions D and D′ of H are
called isomorphic if there exists α ∈ Aut(H) such that α(D) = D′. If α ∈ Aut(H) such that,
for some decomposition D of H, we have α(D) = D then α is called an automorphism of D.
We use Aut(D) to denote the group of automorphisms of D and we use AutG(D) = Aut(D)∩G
for any G 6 Aut(H). Any permutation other than the identity ε is called non-trivial.

Lemma 2.6.1. Let D be a set of decompositions of H that is closed under the action of
Aut(H) and let G 6 Aut(H) such that |AutG(D)| = 1 for all D ∈ D. Then |G| divides |D|.

Lemma 2.6.1 is a special case of the following lemma.

Lemma 2.6.2. Let D be a set of decompositions of H that is closed under the action of
Aut(H) and let G 6 Aut(H). Let T = {D ∈ D : |AutG(D)| > 1} and S ⊆ D such that T ⊆ S
and S is closed under the action of G. Then gcd(|G|, |S|) divides |D|.

Proof. The action of G partitions D \ S into orbits of cardinality |G| by the Orbit-Stabiliser
Theorem. �

2.6.2 One-factorisations
Recall that a one-factor of a graph H is a 1-regular spanning subgraph and a one-factorisation
is a decomposition of H into a set of one-factors. Let f1(n) denote the number of one-
factorisations of Kn. For n > 2, the complete graph Kn admits a one-factorisation if and
only if n is even. We give an example of a one-factorisation of K6 in Figure 2.6.

Recall that a Latin square L = (li j) is called unipotent if lii is independent of i ∈ Zn. From a
one-factorisation of Kn, with vertices labelled by 0, 1, . . . , n−1, we can construct a symmetric
unipotent reduced Latin square L of order n (SURLS) defined by

∑
16c6n−1 cAc where Ac is

the adjacency matrix of the one-factor with 0 and c adjacent. Here we use cAc to denote Ac

with each symbol multiplied by c. Conversely, a SURLS defines a unique one-factorisation
of Kn, with each non-zero symbol defining a one-factor. This bijection is also identified in
[208, 228], for example. Hence f1(n) is the number of SURLS of order n [203, Thm 7.15].
Some values of f1(n) are given in Figure 2.7 (Sloane’s [290] A000438) along with a list of
relevant references.

Theorem 2.6.3. Let n = 2m for some m > 3. Then f1(n) is divisible by every odd d in the
range 1 6 d 6 n − 3. Moreover, m! divides f1(n).

Proof. Let D be the set of all one-factorisations of Kn. Let V(Kn) = {v1, v2, . . . , vn} be the
vertex set of Kn. Suppose α is an automorphism of a one-factorisation D ∈ D. Let F
denote the set of fixed vertices of α and let F∗ = V(Kn) \ F denote its complement. Then D
cannot contain both (a) an edge with both endpoints in F and (b) an edge with precisely one
endpoint in F∗. An example of a one-factor that cannot be in D is illustrated in Figure 2.8.
Consequently |F| must be even or |F| = 1.

Let G be a group of permutations of V(Kn) generated by an r-cycle α, for some odd r.
Since n is even, |AutG(D)| = 1 for all D ∈ D, otherwise we contradict that |F| must be even.
Lemma 2.6.1 implies that |G| divides |D| = f1(n), proving the first claim in the theorem.
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1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6



0 1 2 3 4 5
1 0 3 5 2 4
2 3 0 4 5 1
3 5 4 0 1 2
4 2 5 1 0 3
5 4 1 2 3 0


F 2.6: An example of a one-factorisation of K6 and the corresponding SURLS.

n f1(n) Factorisation References

2 1 1
4 1 1
6 6 2·3
8 6240 25·3·5·13 [77]

10 1225566720 29·33·5·7·17·149 [129]
12 252282619805368320 216·34·5·7·1357857947 [78]
14 98758655816833727741338583040 225·36·5·7·11·10486655975019043 [178]
16 ≈ 1.48·1044

18 ≈ 1.52·1063 [78]

F 2.7: Some values of f1(n) and an approximation for f1(16) and f1(18).

Now suppose instead that G is the group of all permutations of V(Kn) that fix the vertices
v1, v2, . . . , vm. Let S be the set of one-factorisations D ∈ D that admit a non-trivial automor-
phism α ∈ G. We know that gcd(m!, |S|) divides f1(n) by Lemma 2.6.2. Again, we will let F
denote the fixed points of α and let F∗ = V(Kn) \ F denote its complement. So |F| > m.

Suppose v ∈ F and consider some one-factor d ∈ D where v is adjacent to a vertex in F∗.
Then, in the one-factor d, every vertex in F is adjacent to a vertex in F∗, requiring |F| 6 |F∗|.
However, since |F| > m, it must be that |F| = |F∗|. Therefore every one-factorisation D ∈
S contains a one-factorisation of Km,m, the complete bipartite graph with vertex bipartition
{v1, v2, . . . , vm} ∪ {vm+1, vm+2, . . . , vn}. We define the one-factorisations equivalent to D to be
those formed by replacing the one-factorisation of Km,m in D with any other one-factorisation
of Km,m. The number of one-factorisations of Km,m is Lm/m!, the number of normalised Latin
squares of order m, as identified in Section 1.2.2. Therefore Lm/m! divides |S|.

Equation (1.2) with Theorem 2.4.6 implies that (a) (m − 1)! divides Lm/m! and (b) m!
divides Lm/m! if m is composite. When m is an odd prime, the first claim in the theorem
implies that m divides f1(n). In any case, we find that m! divides f1(n). �

Theorem 2.6.3 implies that f1(14) is divisible by 24·32·5·7·11; Figure 2.7 gives the prime



60 2.6. APPLICATION TO GRAPH DECOMPOSITIONS

F F∗

F 2.8: An example of a one-factor that cannot be in D.

factorisation of f1(14).

2.6.3 Cycle decompositions
A survey of cycle decompositions of the complete graph was given by Bryant [40]. Let ck(n)
denote the number of decompositions of Kn into k-cycles. A Steiner triple system of order n
is a decomposition of Kn into triangles (i.e. K3 subgraphs). So c3(n) is the number of Steiner
triple systems of order n. It is well-known that a Steiner triple system of order n exists if and
only if n ≡ 1 or 3 (mod 6) [62]. The non-zero values of c3(n) for 3 6 n 6 19 are given in
Figure 2.9 (Sloane’s A001201) along with a list of relevant references.

Lemma 2.6.4. Let H be a graph with n vertices and let (a1, a2, . . . , at) be a sequence of
integers. Suppose H admits a decomposition D = {d1, d2, . . . , dt} where each di is an ai-cycle.
Then

• 3 6 ai 6 n for all 1 6 i 6 t,

• the number of edges in H is a1 + a2 + · · · + at and

• each vertex of H has even degree.

Lemma 2.6.4 states some obvious necessary conditions for a decomposition D of H,
consisting of di-cycles for 1 6 i 6 t, to exist. Alspach [6] conjectured that the three conditions
in Lemma 2.6.4 are also sufficient in the specific cases H = Kn for odd n and H = Kn − I
for even n (the graph obtained from the complete graph Kn after deletion of the edges in a
one-factor I).

n c3(n) Factorisation References

3 1 1
7 30 2·3·5
9 840 23·3·5·7

13 1197504000 29·35·53·7·11
15 60281712691200 211·34·52·7·11·132·1117 [63, 150, 328]
19 1348410350618155344199680000 225·36·54·72·11·13·17·740429309 [177]

F 2.9: The non-zero values of c3(n) for 3 6 n 6 19.

Theorem 2.6.5. Let n = 2m + 1 for some m > 1. Then c3(n) is divisible by every odd d in the
range 1 6 d 6 n − 2. Moreover, m! divides c3(n).
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Proof. Let D be the set of all Steiner triple systems of Kn. Let V(Kn) = {v1, v2, . . . , vn} be
the vertex set of Kn. Suppose α is an automorphism of a Steiner triple system D ∈ D. Let F
denote the set of fixed vertices of α and let F∗ = V(Kn) \ F denote its complement. Then D
cannot have a triangle with exactly two vertices in F and one in F∗. Therefore every vertex in
F is in exactly |F∗|/2 triangles with the other two vertices in F∗. Thus, if |F| > 0, we require
that (a) |F| · |F∗|/2 6

(
|F∗ |

2

)
and (b) |F∗| is even.

Let G be a group of permutations of V(Kn) that acts on D. If G is the group of per-
mutations that fixes v1, v2, . . . , vm+1, then any α ∈ G cannot satisfy (a). If G is the group
generated by a cycle of odd length less than n, then any α ∈ G cannot satisfy (b). In either
case, Lemma 2.6.1 implies that |G| divides c3(n). �

For example, Theorem 2.6.5 proves that c3(19) is divisible by 27·34·5·7·11·13·17; Fig-
ure 2.9 gives the prime factorisation of c3(19).

Given a Steiner triple system, we may construct a totally symmetric idempotent Latin
square L = (li j) with li j the unique element in the triangle {i, j, li j} when i , j. Such a Latin
square is called a Steiner Latin square. Colbourn and Rosa [62] gave the Steiner Latin square
in Figure 2.10 corresponding to the Steiner triple system {013, 026, 045, 124, 156, 235, 346}.

0 3 6 1 5 4 2
3 1 4 0 2 6 5
6 4 2 5 1 3 0
1 0 5 3 6 2 4
5 2 1 6 4 0 3
4 6 3 2 0 5 1
2 5 0 4 3 1 6


F 2.10: A Steiner Latin square of order 7.

We will now discuss Hamilton cycle decompositions of the complete graph. A Hamilton
cycle of a graph on n vertices is an n-cycle subgraph, so cn(n) is the number of decompositions
of Kn into Hamilton cycles.

In any Hamilton cycle decomposition of Kn, the n(n − 1)/2 edges of Kn are partitioned
in parts of size n. Therefore n must be odd if cn(n) > 0. In fact, it is well-known (see [40]
for example) that there exists a Hamilton cycle decomposition of Kn if and only if n is odd.
Therefore cn(n) > 0 if and only if n is odd.

Theorem 2.6.6. If n > 2 then cn(n) is divisible by (n − 2)!.

Proof. The theorem is trivially true when 2 6 n 6 4, so assume n > 5. Let D be the
set of all Hamilton cycle decompositions of Kn. Let G be the group of permutations of
V(Kn) = {v1, v2, . . . , vn} such that the vertices v1 and v2 are fixed. Then G acts on D. For
all D ∈ D there exists a unique d ∈ D containing the edge between v1 and v2. Therefore,
|Aut(D)| = 1 for all D ∈ D. By Lemma 2.6.1, |G| = (n − 2)! divides cn(n). �

Let D be a Hamilton cycle decomposition of Kn, where n > 3, with vertices labelled
0, 1, . . . , n − 1. Each d ∈ D corresponds to a pair of n-cycles α and α−1 with i and j adjacent
in d implying either α(i) = j or α( j) = i. From D we can therefore construct a sharply
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transitive set S (as defined in Section 1.2.2), with ε ∈ S , such that α ∈ S and α−1 ∈ S
whenever α is an n-cycle defined by some d ∈ D. From S we can construct a unique reduced
Latin square L = (li j) of order n, defined by li j = αi( j), where αi ∈ S is the permutation
satisfying αi(0) = i. This correspondence is illustrated in Figure 2.11.

4

0

1

2 3

41

3

0

2

(01234)
(02413)
(02413)−1

(01234)−1


0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3



F 2.11: A Hamilton cycle decomposition of K5 and the corresponding Latin square.

2.7 On the Alon-Tarsi Conjecture

2.7.1 Introduction
In this section we extend Theorem 1.2.10 by Drisko [83]. We deal only with Latin squares
and take their symbol set to be Zn. Theorem 2.7.2 also improves Theorem 1.1.5 by McKay
and Wanless [225] in some cases, giving a divisor for the number of Latin squares. We follow
the work of [306] and use the definitions of Section 1.2.5. Drisko showed that Lp+1 . Lp+1

(mod p3) when p is an odd prime and made the following remark.

“ This strongly suggests that the conjecture [the Alon-Tarsi Con-
jecture] should hold for all even integers. How might one prove
the other cases? The general results and approach... could still
be applied. The most promising cases seem to be pk + 1,... but
one might also try p + 3 or even pq + 1, where p , q are odd
primes. ”— D [83]

In Corollary 2.7.7 we will prove that Ln+1 ≡ Ln+1 (mod t3) for all 1 6 t 6 n except when
t = n and n is prime, which includes all of the unresolved cases suggested by Drisko. Despite
this obstacle, further progress has been made on the Alon-Tarsi Conjecture [134].

2.7.2 A modified proof template
We specialise the proof template in Section 2.1 to be applicable to Latin squares of a given
sign. We have that G is a group of isotopisms that acts on a set C of Latin squares andA ⊆ C
such that G acts onA and if |Atop(L)∩G| > 1 for some L ∈ C, then L ∈ A. Unless otherwise
specified, we will assume A = {L ∈ C : |Atop(L) ∩ G| > 1}. Here we only require that
µ = |G|.
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Now we require the extra condition that G be sign-preserving on C, that is, ε
(
θ(L)

)
= ε

(
L
)

for all θ ∈ G and L ∈ C. For x ∈ {+1,−1} we define Cx = {L ∈ C : ε(L) = x} and
Ax = {L ∈ A : ε(L) = x}. If G is sign-preserving on C, then G acts on both C+1 and
C−1 individually. Similarly, since A is closed under the action of G, if G is sign-preserving
on C, then G acts on both A+1 and A−1 individually. Moreover, |Cx| ≡ |Ax| (mod |G|) for
x ∈ {+1,−1}. In particular, when C is the set of all reduced Latin squares of order n and G is
sign-preserving on C, we have that Rn ≡ |A+1| (mod |G|) and Rn ≡ |A−1| (mod |G|).

To ensure that G is sign-preserving, we take G to consist only of isomorphisms; see (1.6).
If C is the set of all reduced Latin squares of order n, to ensure that G acts on C, we insist that
each (α, α, α) ∈ G has α(0) = 0.

We illustrate the use of the modified proof template in the following example.

Example 2.7.1. R9 ≡ R9 (mod 9).

Proof. Let C be the set of all reduced Latin squares of order 9. Let C1 be the group gen-
erated by (α1, α1, α1) where α1 = (0)(1)(2)(3, 4, 5)(6, 7, 8) and let C2 be the group gener-
ated by (α2, α2, α2) where α2 = (0)(1)(2)(3, 4, 5)2(6, 7, 8). Let G be the group generated by
(α1, α1, α1) and (α2, α2, α2). So G is a sign-preserving group of order |G| = 9 and G acts on
C. Hence R9 ≡ |A+1| (mod 9) and R9 ≡ |A−1| (mod 9).

Latin squares L ∈ A satisfy either Atop(L)∩G = C1 or Atop(L)∩G = C2. It is impossible
for G 6 Atop(L) since then (0)(1)(2)(3)(4)(5)(6, 7, 8) ∈ Atop(L), when Lemma 1.2.8 implies
L has a subsquare of order 6, contradicting Lemma 1.2.4. Using a backtracking algorithm,
we found that the number of L ∈ Ax with Atop(L) ∩ G = Ci is 943488 in all four cases:
i ∈ {1, 2} and x ∈ {+1,−1}. Hence |A+1| ≡ 0 ≡ |A−1| (mod 9).

Another way to prove |A+1| = |A−1| is by switching partial rows. If L ∈ A then the first
three rows of L = (li j) have the following form, by Lemma 1.2.8.

0 1 2 3 4 5 6 7 8
1 2 0 · · · a b c
2 0 1 · · · d e f

Case I: If {a, b, c} = {d, e, f } then we can switch the partial rows (a, b, c) ↔ (d, e, f ) to
create a Latin square L′ which has ε(L′) = −ε(L). See [322] for details on the effect of cycle
switching on the sign of a Latin square.

Case II: If {a, b, c} = {6, 7, 8} and {d, e, f } = {3, 4, 5}, then we can switch the partial rows
(6, 7, 8)↔ (a, b, c) and then apply an isotopism of the form

(
ε, (6, 7, 8)r, ε

)
so that we form a

reduced Latin square L′. Again ε(L′) = −ε(L) by (1.6).
Case III: The case {a, b, c} = {3, 4, 5} and {d, e, f } = {6, 7, 8} is handled as in Case II but

with a, b, c replaced by d, e, f .
Combining the three cases, we form a partition ofA into parts {L, L′} which have ε(L′) =

−ε(L). Hence |A+1| = |A−1|. �

2.7.3 Congruences for Latin squares
We begin this section with the following theorem, which arose in the study of Rn and Rn ,
but gives a divisor for Rn. The proofs of the subsequent three theorems are related.
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Theorem 2.7.2. Let n > 1, p be an odd prime and c > 1 such that n/2 > (c − 1)p. Then
gcd

(
(n − cp − 1)!2Rn−cp, pc) divides Rn.

Proof. This proof follows the template of Section 2.7.2. Let C be the set of all reduced Latin
squares of order n. For t ∈ {0, 1, . . . , c − 1} define αt to be the permutation (1 + pt, 2 +

pt, . . . , p + pt). Let G be the group of isomorphisms generated by the (αt, αt, αt), so |G| = pc.
Consider the structure of any L ∈ C which admits a non-trivial automorphism θ ∈ G.

By Lemma 1.2.8 the rows and columns whose indices are fixed by θ form a subsquare M of
order at least n− cp. Furthermore, the structure of G implies that the order of M is congruent
to n (mod p). Lemma 1.2.4 implies that the order of M is no more than n/2 = n − n/2 <
n − (c − 1)p, by assumption. Hence the order of M must be exactly n − cp and therefore M
must be formed by the rows and columns whose indices are 0, cp + 1, cp + 2, . . . , n − 1. Let
A = {L ∈ C : M is a subsquare of L}.

We will partitionA into equivalence classes of cardinality (n− cp− 1)!2Rn−cp. Two Latin
squares L and L′ inA are equivalent if L′ can be constructed from L by the following steps.

(a) Apply some permutation to the set of partial rows {(li1, li2, . . . , li(cp)) : cp+1 6 i 6 n−1}.

(b) Apply some permutation to the set of partial columns {(l1 j, l2 j, . . . , l(cp) j) : cp + 1 6 j 6
n − 1}.

(c) Replace the subsquare M by any of the Rn−cp reduced subsquares on the same symbol
set.

The operations (a)–(c) are independent and generate unique Latin squares that have M as a
subsquare. Hence each equivalence class is of cardinality (n − cp − 1)!2Rn−cp. �

Theorem 2.7.2 slightly improves some cases of Theorem 1.1.5 by McKay and Wanless
[225]. Specifically, for some primes p there is a finite list of values of n for which we can
now prove that pa+1 divides Rn, for some a, using Theorem 2.7.2, whereas Theorem 1.1.5
only proves that pa divides Rn. The first such examples are when p = 3, when Theorem 2.7.2
implies that 32 divides R10 and 33 divides R15 and R16 whereas Theorem 1.1.5 shows only that
3 divides R10 and 32 divides R15 and R16.

Theorem 2.7.3. Let n > 1, p be a prime and c > 2 be an even integer such that n/2 > (c−1)p.
Then gcd

(
(n − cp − 1)!2, pc) divides Rn and Rn .

Proof. The proof is similar to that of Theorem 2.7.2, but we do not use operation (c) in
partitioningA. The sign of a Latin square is invariant under the operations (a) and (b), since
cp is even. Hence (n − cp − 1)!2 divides |A+1| and |A−1|. �

Theorem 2.7.4. Let n > 1, p be an odd prime and c > 1 be an odd integer such that
n/2 > (c − 1)p and n > cp + 3. Then Rn ≡ Rn (mod pc).

Proof. The proof is similar to that of Theorem 2.7.2, except that equivalence onA is instead
defined by switching the pair of partial rows

(l(cp+1)1, l(cp+1)2, . . . , l(cp+1)(cp))↔ (l(cp+2)1, l(cp+2)2, . . . , l(cp+2)(cp)),

which both exist since n > cp + 3. Since cp is odd, this equivalence partitions A into parts
{L, L′}, in which ε(L) = −ε(L′). Hence |A+1| = |A−1|. �
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Theorem 2.7.5. Let p be a prime and n > p + 2. Then Rn ≡ Rn (mod p).

Proof. Figure 1.14 and Corollary 2.5.8 implies that the theorem is true when p = 2, so
assume that p is an odd prime. Theorem 2.7.4 implies that this case is true when n > p + 3,
so assume n = p + 2. The remainder of this proof is similar to that of Theorem 2.7.2 except
that we have assumed c = 1 and we define A = {L ∈ C : (α, α, α) ∈ Aut(L)}, where
α = (0)(1, 2, . . . , p)(p + 1). From L ∈ A we construct L′ in the following way.

(a) Switch the partial columns (l10, l20, . . . , lp0) ↔ (l1(p+1), l2(p+1), . . . , lp(p+1)) to obtain the
Latin square L∗.

(b) Apply the unique isotopism of the form θ = (τ, ε, ε) so that L′ = θ(L∗) is reduced.

We observe that τ = αa for some a since (α, α, α) ∈ Aut(L) and α fixes 0 and p + 1. Hence
ε
(
L∗

)
= ε

(
θ(L∗)

)
since α is an even permutation. However step (a) causes ε(L) = −ε(L∗),

hence ε(L) = −ε(L′). Finally, observe that L′ ∈ A. Hence we have partitionedA into {L, L′}
where ε(L) = −ε(L′). It follows that |A+1| = |A−1|. �

We can now combine previous results to give the following theorem.

Theorem 2.7.6. If 2 6 t 6 n − 1, then Rn . Rn (mod t) if and only if t = n − 1 is prime.

Proof. Case I: t = n−1 is prime. Figure 1.14 lists R3 . R3 (mod 2). If t is an odd prime,
then Theorem 1.2.10 and (1.7) imply that Rn . Rn (mod t).

Case II: t is a prime such that t 6 n − 2. This case is precisely Theorem 2.7.5.
Case III: t is composite. Corollary 2.5.8 implies that Rn ≡ 0 ≡ Rn (mod t) unless

possibly if
(t, n) ∈ {(4, 5), (4, 6), (4, 7), (4, 8), (9, 10), (9, 11), (9, 12)}.

The t = 4 cases are resolved in Figure 1.14. The t = 9 cases are resolved by Theorem 2.7.3
when c = 2 and p = 3. �

In [83], Drisko worked with Lp+1 and Lp+1 modulo p3 for prime p. For comparison, we
give the following theorem which is implied by Theorem 2.7.6, (1.7) and (1.8).

Corollary 2.7.7. Let t 6 n. Then Ln+1 . Ln+1 (mod t3) if and only if t = n is prime.

As for Rn and Rn modulo n, we give the following theorem.

Theorem 2.7.8. Rn ≡ Rn (mod n) if n is composite.

Proof. Corollary 2.5.8 implies that Rn ≡ 0 ≡ Rn (mod n) whenever (dn/2e − 1)! ≡ 0
(mod n). When (dn/2e − 1)! . 0 (mod n) is precisely when n ∈ {8, 9} ∪ {2p : p is a prime}.
Figure 1.14 shows that Rn ≡ Rn (mod n) when n ∈ {4, 8}. Example 2.7.1 resolves the
n = 9 case.

Now assume that n = 2p for some odd prime p. The rest of this proof follows the template
of Section 2.7.2. Let C be the set of all reduced Latin squares of order n. Let G 6 In be the
group of isomorphisms generated by θ := (α, α, α) where α = (0)(1, 2, . . . , p)(p + 1)(p +

2) · · · (n − 1).
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Let P = {1, 2, . . . , p} and P∗ = Zn \ P. If L = (li j) ∈ A, then Lemma 1.2.8 implies that the
submatrix formed by the rows and columns whose indices are in P∗ is a subsquare of L. We
can therefore switch the two partial columns

(l1(p+1), l2(p+1), . . . , lp(p+1))↔ (l1(p+2), l2(p+2), . . . , lp(p+2))

to generate a distinct Latin square L′ ∈ A for which ε(L) = −ε(L′). These columns exist
since p > 3 implying n > p + 3. Hence |A+1| = |A−1|. �

A result of Glynn [134] implies that Rn . Rn (mod n + 1) if n + 1 is an odd prime.



CHAPTER 3

Orthomorphisms and partial orthomorphisms

An orthomorphism of Zn is a permutation σ : Zn → Zn such that the mapping σ∗ : Zn → Zn,
defined by σ∗(i) ≡ σ(i) − i (mod n) for all i ∈ Zn, is also a permutation. In fact, orthomor-
phisms are defined on any group (G,+) similarly: an orthomorphism σ is a permutation of G
such that i 7→ σ(i)− i is also a permutation. The interested reader should consult Evans [109].
However, we will focus only on orthomorphisms of Zn. If σ is an orthomorphism, then σ∗ is
called a complete mapping. An orthomorphism σ is called canonical if σ(0) = 0. Let zn be
the number of canonical orthomorphisms of Zn. Then the total number of orthomorphisms of
Zn is nzn.

In this chapter we mainly follow the work in [304] and [305], although the work in Sec-
tion 3.3.5 does not appear in either of these papers. We find that Latin rectangles with cyclic
automorphisms give rise to partial orthomorphisms. This enables us, in Theorem 3.2.1, to
give a congruence relating the number of partial orthomorphisms ω(n, d) to the number of
Latin rectangles Rk,n. We compute several small values of ω(n, d) which gives some previ-
ously unknown congruences for Rn, as given in Figure 3.4.

In Section 3.2.2 we employ the theory of systems of linear congruences to study the
number ω(n, d) of partial orthomorphisms of Zn of deficit d. In particular, we show that
ω(n, n − a) is determined by a finite set of polynomials for each a. In Section 3.2.3 we use
a graph theoretic approach to find these polynomials for 1 6 a 6 6 and give an asymptotic
formula for ω(n, n − a) for fixed a as n→ ∞.

In Section 3.3 we introduce d-compound orthomorphisms and study their properties. For
example, Property 3.3.1 and (3.13) classifies and enumerates the d-compound orthomor-
phisms of Zdt. Through the study of d-compound orthomorphisms we are able to find several
interesting corollaries. In Corollary 3.3.7, we show that Rn+1 ≡ zn ≡ −2 (mod n) for prime
n and Rn+1 ≡ zn ≡ 0 (mod n) for composite n, extending a result of Clark and Lewis [59].
In Theorem 3.3.8 we give a congruence for zn which we use to compute zn (mod 3) for all
n 6 60. Moreover, if n > 5 and n . 1 (mod 3) then zn ≡ 0 (mod 3). In Theorem 3.3.9 we
additionally show that zn ≡ 1 (mod 3) if n = 2 · 3k + 1 is prime. This extends a result of
McKay, McLeod and Wanless [221] who proved the following theorem.

Theorem 3.0.9. If L is the Cayley table of a group G of order n . 1 (mod 3), then the
number of transversals of L is divisible by 3.
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In Section 3.1 we will see that, when G = Zn, Theorem 3.0.9 implies that nzn ≡ 0 (mod 3)
when n . 1 (mod 3) (although this is obviously true when 3 divides n).

We introduce two classes of d-compound orthomorphism, called compatible and polyno-
mial. Let λn and πn be the number of canonical compatible and canonical polynomial ortho-
morphisms respectively. We find a formula for λn in Theorem 3.3.14 and in Theorem 3.3.15
we show that λn = πn for odd n if and only if n = 3a5b p1 p2 · · · pr for a 6 3, b 6 2, r > 0 and
distinct primes pi > 7.

In Section 3.3.4 we give some new sufficient conditions for a partial orthomorphism to
have a completion to a d-compound orthomorphism. Grüttmüller [142, 143] and Cavenagh,
Hämäläinen and Nelson [51] have also researched this area. The new conditions, Theo-
rems 3.3.20 and 3.3.21, provide an inductive-like step for arbitrary sized domains. Theo-
rem 3.3.23 gives necessary and sufficient conditions for when two d-compound orthomor-
phisms are orthogonal.

3.1 Introduction
Euler [97, pp. 103–105] showed that zn = 0 if and only if n is even1 and listed the ortho-
morphisms of Zn for all n 6 7 [97, pp. 100–109]. The value of zn for odd n 6 25 is listed
in Figure 3.2 (Sloane’s [290] A003111), sourced from McKay, McLeod and Wanless [221]
who give credit to Shieh [286], Hsiang, Shieh and Chen [161] and Shieh via private corre-
spondence. They also note the curious values of zn (mod 8).

Bounds on zn were found by Cooper and Kovalenko [65, 67, 192], McKay, McLeod and
Wanless [221] and Cavenagh and Wanless [53]. Hence

(3.246)n < zn 6 (0.614)nn! (3.1)

for sufficiently large odd n. There are conjectured bounds on zn by Vardi [318] (Conjec-
ture 3.1.1) and Clark and Lewis [59] (Conjecture 3.1.2). See [221] and [324] for more details.
Some estimates for zn were given by Cooper, Gilchrist, Kovalenko and Novakovic [66] and
Kuznetsov [198, 199]. Kuznetsov referred to a complete mapping as a “good permutation.”
The reader should be aware that the papers [66] and [67] have received varying citations,
likely due to differences in translation. Hsiang, Hsu and Shieh [160] considered the complex-
ity of the orthomorphism counting problem.

Conjecture 3.1.1. There exists c1, c2 ∈ R with 0 < c1 < c2 < 1 such that cn
1n! 6 nzn 6 cn

2n!
for all odd n > 3.

Conjecture 3.1.2. zn > (n − 2) · (n − 4) · · · 3 · 1 for odd n.

If σ is an orthomorphism, we define its difference equation ∂σ by ∂σ(i) ≡ σ(i)−σ(i− 1)
(mod n) for all i ∈ Zn. The difference equation of a canonical orthomorphism is sufficient
information to determine the orthomorphism itself.

Two Latin squares L = (li j) and L′ = (l′i j) of order n are called orthogonal if the cardinality
of {(li j, l′i j) : i, j ∈ Zn} is n2, that is, each ordered pair of symbols (s, t) ∈ Zn × Zn satisfies

1Euler’s result will be generalised later by Theorem 4.3.16 in the context of automorphisms of Latin squares.
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(s, t) = (li j, l′i j) for unique i, j ∈ Zn. A set S of Latin squares is called a set of mutually-
orthogonal Latin squares, or MOLS for short, if any two distinct L, L′ ∈ S are orthogonal. If
L and L′ are orthogonal, then L′ is said to be an orthogonal mate of L.

Motivation for studying orthomorphisms of groups stems from the search for sets of
MOLS. It was for this reason that Euler [97, pp. 100–131] studied orthomorphisms of Zn,
which he called formules directrices.

Mann [215] showed that the Cayley table of a finite group G has an orthogonal mate if
G admits a complete mapping. Evans [109, p. 1] attributed [215] as the origin of complete
mappings and [173] as the origin of the term “orthomorphism.”

The relationship between MOLS and orthomorphisms was studied extensively by Evans
[101, 102, 103, 104, 105, 106, 107, 108, 110], and also by Johnson, Dulmage and Mendelsohn
[173], Franklin [120, 121] and Wanless [323]. See Bedford [18, 19] for a survey of results on
the applications of orthomorphisms to orthogonal Latin squares.

We list some important transformations of orthomorphisms in Figure 3.1. For example,
for any given orthomorphism σ there exists a unique g such that i 7→ σ(i) + g is a canonical
orthomorphism – it is when g = −σ(0). We denote the translation of σ by Tg[σ] where
Tg[σ](i) ≡ σ(i + g) − σ(g) (mod n) for any g ∈ Zn. Equivalently, Tg[σ] = α−σ(g) ◦ σ ◦ αg

where α = (0, 1, . . . , n − 1). We let G denote the group of translations. The translation Tg[σ]
has difference equation ∂Tg[σ] such that ∂Tg[σ](i) = ∂σ(i + g).

Let A = (ai j) be the Latin square of order n defined by ai j ≡ −i − j (mod n). Any
orthomorphism σ : Zn → Zn corresponds to a transversal of A consisting of the entries(
i, σ(i) − i,−σ(i)

)
for all i ∈ Zn. Since A is a totally symmetric Latin square, the parastrophy

group generates six, not necessarily distinct, orthomorphisms from σ. These transformations
are also listed in Figure 3.1.

Elevation i 7→ σ(i) + g for any g ∈ Zn

Translation i 7→ σ(i + g) − σ(g) for any g ∈ Zn

Reflection i 7→ σ(−i) + i
Inversion σ(i) 7→ i

Parastrophy i 7→ σ(i) ε
i 7→ −σ(i) + i (cs)

−σ(i) 7→ −i (rs)
−σ(i) 7→ −σ(i) + i (rcs)

σ(i) − i 7→ −i (rsc)
σ(i) − i 7→ σ(i) (rc)

F 3.1: Transformations of an orthomorphism σ of Zn.

A partial orthomorphism is an injection ν : S → Zn for some S ⊆ Zn such that i 7→ ν(i)− i
is also an injection. We say ν has deficit d := n − |S |. Hence an orthomorphism is a partial
orthomorphism of deficit 0. This terminology comes from Wanless [323] who also studied
partial orthomorphisms in connection with Latin squares that admit cyclic automorphisms
(see also [41]). Let ω(n, d) be the number of partial orthomorphisms of deficit d. Not all
partial orthomorphisms can be embedded in an orthomorphism, for example the partial or-
thomorphism of Z5 such that 0 7→ 0, 1 7→ 2 and 2 7→ 1.
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Sometimes we will use partial orthomorphisms ν : S → Zn that satisfy ν(i) < {0, i} for all
i ∈ S , which we will call (n, d)-partial orthomorphisms (where d is the deficit). Let χ(n, d) be
the number of (n, d)-partial orthomorphisms. For an (n, d)-partial orthomorphism ν to exist, d
must satisfy 1 6 d 6 n. We will take χ(n, n) = 1 when n > 1 and χ(n, d) = 0 when d > n > 1.

Example 3.1.3. There exists an (n, d)-partial orthomorphism for all 1 6 d 6 n. Hence
χ(n, d) > 0 for all 1 6 d 6 n.

Proof. A simple example of an (n, 1)-partial orthomorphism ν for odd n is i 7→ 2i (mod n)
for 1 6 i < n. For even n let ν be defined by i 7→ 2i + 1 (mod n) for 0 6 i < n/2 and i 7→ 2i
(mod n) for n/2 < i < n. By restricting the domain of ν we can construct an (n, d)-partial
orthomorphism for any 1 6 d 6 n. �

For even n > 2, χ(n, 1) > 0 whereas zn = 0. Some values of χ(n, 1) are listed in Figure 3.2
(Sloane’s [290] A006609). Notice the curiously large power of 2 dividing χ(n, 1) for even n,
which we are currently unable to explain.

The following theorem was given by Wanless [323].

Theorem 3.1.4. For even n > 2, the domain of any (n, 1)-partial orthomorphism ν is Zn \

{n/2}. For odd n > 1, every (n, 1)-partial orthomorphism σ has domain S = Zn \ {0}.
Therefore χ(n, 1) = zn for odd n.

Corollary 3.1.5. χ(n, 1) ≡ zn ≡ n (mod 2) for n > 3.

Proof. A proof that zn ≡ n (mod 2), for all n, was attributed to Levitskaya [204] by No-
vakovich [252]; there were also proofs given by Clark and Lewis [59] and McKay, McLeod
and Wanless [221]. Theorem 3.1.4 asserts that χ(n, 1) = zn for odd n.

Give an (n, 1)-partial orthomorphism of Zn for even n > 2, Theorem 3.1.4 implies that
we can define another (n, 1)-partial orthomorphism by ν(i) − i + n/2 7→ ν(i) for all i ∈ S .
These two (n, 1)-partial orthomorphisms are the same only if i ≡ ν(i) − i + n/2 (mod n) for
all i ∈ S , which is impossible if ν(i) + n/2 is odd for any i ∈ S . Therefore, for even n > 4,
χ(n, 1) ≡ zn ≡ n (mod 2). �

A set Q of cardinality n together with two binary operations • and ⊗ is called a neofield
of order n, denoted (Q, •,⊗), if

• (Q, •) is a loop with identity e,

• (Q \ {e},⊗) is a group and

• ⊗ is both left and right distributive over •.

A neofield (Q, •,⊗) is called cyclic if (Q \ {e},⊗) is a cyclic group.
Keedwell [179, 180] showed that orthogonal Latin squares can be generated from certain

types of cyclic neofields. Bedford [17] (see also [181]) constructed orthogonal Latin squares
using left neofields (left neofields are the same as neofields except that it is not assumed that
⊗ is right distributive over •). See Paige [258] and Hsu [162] for more information about
neofields. Drisko [83] (see Sections 1.2.5 and 2.7) used cyclic neofields to establish a result
on the number of even and odd Latin squares. Evans [109, p. 14] (see also Paige [257]) gave
results tantamount to the following theorem.

Theorem 3.1.6. For all n > 1, χ(n, 1) is the number of cyclic neofields of order n + 1.
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n χ(n, 1) Factorisation (mod 3) (mod 8) (mod n)

1 1 1 1 1 0
2 1 1 1 1 1
3 1 1 1 1 1
4 2 2 2 2 2
5 3 3 0 3 3
6 8 23 2 0 2
7 19 19 1 3 5
8 64 26 1 0 0
9 225 32·52 0 1 0

10 928 25·29 1 0 8
11 3441 3·31·37 0 1 9
12 17536 27·137 1 0 4
13 79259 79259 2 3 11
14 454016 27·3547 2 0 10
15 2424195 33·5·17957 0 3 0
16 15628288 211·13·587 1 0 0
17 94471089 3·31490363 0 1 15
18 679156224 29·3·139·3181 0 0 6
19 4613520889 2837·1626197 1 1 17
20 36563599360 214·5·446333 1 0 0
21 275148653115 3·5·72·3347·111847 0 3 0
22 ? ?
23 19686730313955 3·5·1312448687597 0 3 21
24 ? ?
25 1664382756757625 53·13315062054061 2 1 0

F 3.2: Some values of χ(n, 1) and its prime factorisation. When n is odd zn = χ(n, 1)
and when n is even zn = 0.
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3.1.1 Equivalences
We will now identify some of the combinatorial objects equivalent (in some sense) to ortho-
morphisms. Let α = (0, 1, . . . , n− 1) and β = (0)(1, 2, . . . , n). If L is a Latin square of order n
such that (α, α, α) is an automorphism, then L is called a diagonally cyclic Latin square or a
DCLS. If L is a reduced Latin square of order n+1 such that (β, β, β) is an automorphism, then
L is called a reduced bordered diagonally cyclic Latin square or a reduced BDCLS. Note that
the first row of a DCLS and the second row of a reduced BDCLS are sufficient to completely
determine the square. See [323] for more information about diagonally cyclic Latin squares.

If n is odd, then there exists a natural bijection between canonical orthomorphisms σ of
Zn and the following combinatorial objects:

• Idempotent DCLSs of order n.

– We can construct an idempotent DCLS L = (li j) from σ by assigning the first
row such that l0 j = σ( j) for j ∈ Zn. Conversely, the first row of an arbitrary
idempotent DCLS uniquely defines a canonical orthomorphism.

• Reduced unipotent BDCLSs of order n + 1.

– We can construct a reduced BDCLS L = (li j) of order n + 1 from σ by assigning
l1 j = σ( j − 1) + 1 for all 2 6 j 6 n, which is sufficient information to uniquely
determine L. Theorem 3.1.4 ensures that any reduced BDCLS of order n + 1 is
unipotent, since n is odd. Conversely, given a unipotent reduced BDCLS of order
n + 1, the permutation σ, defined by l1 j = σ( j − 1) + 1 for all 2 6 j 6 n and
σ(0) = 0, is a canonical orthomorphism.

• Transversals containing the entry (0, 0, 0) of the Cayley table of Zn.

– In the Cayley table of Zn the diagonal consisting of the entries
(
i, σ(i) − i, σ(i)

)
for i ∈ Zn is a transversal. Conversely, given a transversal of the Cayley table of
Zn containing the entry (0, 0, 0), the permutation σ, defined such that σ(i) is the
symbol in the transversal in row i, is a canonical orthomorphism.

• The canonical orthomorphism’s difference equation ∂σ and the fixed point σ(0) = 0.

• A placement of n non-attacking semiqueens on a toroidal n × n chess board (see [21,
271]). Semiqueens can move horizontally, vertically or along one diagonal but not the
other diagonal. The board “wraps around” both horizontally and vertically.

– Consider a transversal of the Cayley table of Zn. Any entry in a transversal pre-
vents another entry in the same row, same column and of the same symbol. Since
the symbols of the Cayley table of Zn are arranged cyclically the prevented entries
are traced out by a semiqueen.

Cavenagh and Wanless [53] also noted that orthomorphisms are equivalent to so-called magic
juggling sequences [261, p. 35].
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3.2 Latin rectangles and partial orthomorphisms
This section follows the work of [305]. We introduce a congruence in Theorem 3.2.1 that
motivates the subsequent study of the enumeration of partial orthomorphisms.

3.2.1 A congruence for the number of Latin rectangles
We are motivated by Theorem 1.1.5, which implies that Rn ≡ 0 (mod p) for all primes
p 6 bn/2c, and Corollary 2.4.4, which shows that Rp ≡ 1 (mod p) for prime p. The Latin
squares case of the following theorem gives a formula for Rn (mod p) for primes p < n.

Theorem 3.2.1. Let p be a prime such that n > k > p + 1. Then

Rk,n ≡ χ(p, n − p)
(n − p)!(n − p − 1)!2

(n − k)!
Rk−p,n−p (mod p).

Proof. When n > 2p, the theorem states Rk,n ≡ 0 (mod p) which was proved in Theo-
rems 2.2.1 and 2.2.2, so assume n < 2p.

We will use X to denote the symbol set and column indices of the k × n Latin rectangle L
and Y ⊆ X to denote the row indices of L. We will assume that e is the minimum element of
X and e ∈ Y. A Latin rectangle L = (li j) is called reduced if le j = j for all j ∈ X and lie = i
for all i ∈ Y.

Let X = {e} ∪ Zp ∪ X where X = {x1, x2, . . . , xn−p−1} and Y = {e} ∪ Zp ∪ Y where
Y = {x1, x2, . . . , xk−p−1}, requiring k > p + 1. We wish to enumerate the reduced k × n Latin
rectangles L modulo p.

Let α be the p-cycle (0, 1, . . . , p − 1) and G be the group of isomorphisms generated by
θ := (α, α, α). Since α fixes e, the group G acts on the set of reduced k × n Latin rectangles,
partitioning it into orbits of cardinality either 1 or p, as p is prime. An orbit has cardinality
1 only if the Latin rectangle in that orbit admits the automorphism θ. Hence it is sufficient to
enumerate only the reduced k × n Latin rectangles L = (li j) that admit the automorphism θ.

Let M be the submatrix formed by the rows {e} ∪ Y and columns {e} ∪ X. Then M is a
(k − p) × (n − p) subrectangle of L by Lemma 1.2.7. Therefore L is uniquely determined by
M and the entries (0, j, l0 j) for j ∈ X \ {e} and (i, 0, li0) for i ∈ Y .

We will now identify a (p, n − p)-partial orthomorphism ν within L. Let S = {s ∈ Zp :
l0s ∈ Zp}. Then ν : S → Zp defined by ν(s) = l0s is a partial orthomorphism since θ
is an automorphism of L. Furthermore, ν is a (p, p − |S |)-partial orthomorphism because
ν(s) , l0e = 0 and ν(s) , les = s for all s ∈ S . Since θ is an automorphism of L, the
entries (0, j, l0 j) for j ∈ X all have l0 j ∈ Zp \ {0}. Therefore |S | = 2p − n > 0 and so ν is a
(p, n − p)-partial orthomorphism.

We can construct any reduced k × n Latin rectangle L = (li j) with automorphism θ in the
following way. Choose a (p, n − p)-partial orthomorphism ν from the χ(p, n − p) available.
There are (n − p)! ways to choose the symbols l0 j for j ∈ Zp such that l0s = ν(s) for all s
in the domain of ν and the remaining cells contain the symbols X. After these designations,
row 0 can be completed in (n − p − 1)! ways so that l0e = 0. The automorphism θ determines
the remaining rows indexed by Zp from row 0. After these designations, column 0 can be
completed in (n − p − 1)!/(n − k)! ways so that le0 = 0. The automorphism θ determines the
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remaining columns indexed by Zp from row 0. Regardless of the previous choices, there are
Rk−p,n−p choices for the subrectangle M so that L is a reduced k × n Latin rectangle.

As previously mentioned, the above choices uniquely determine L. Therefore there are
exactly χ(p, n − p)(n − p)!(n − p − 1)!2Rk−p,n−p/(n − k)! reduced k × n Latin rectangles that
admit the automorphism θ. �

The following corollary is a special case of Theorem 3.2.1 when n = k = p + d for some
prime p.

Corollary 3.2.2. Let p be prime. Then Rp+d ≡ d!(d − 1)!2χ(p, d)Rd (mod p).

Corollary 3.2.2 implies that Rp+1 ≡ χ(p, 1) (mod p) for primes p. Clark and Lewis [59]
showed that zp ≡ −2 (mod p) when p is an odd prime. Hence

Rp+1 ≡ χ(p, 1) = zp ≡ −2 (mod p)

when p is an odd prime, by Theorem 3.1.4. In Corollary 3.3.7 we will show that Rn+1 ≡ zn ≡ 0
(mod n) for composite n.

Figure 3.3 lists some values of χ(p, d) when p is a small odd prime number. These were
obtained by two independent computer enumerations, by Ian Wanless (private communica-
tion) and the author, except for χ(17, d) where d 6 6 and χ(19, d) where 10 6 d 6 12, which
were only computed by Wanless. We did not compute χ(19, d) for 2 6 d 6 9. Figure 3.4 lists
the congruences for Rn that can be obtained from Figure 3.3 and Corollary 3.2.2. The limiting
factors in extending Figure 3.4 are knowledge of Rn (mod p) and χ(p, p− a) (mod p), when
p is prime. The only known values of Rn are when n 6 11, which are given in Figure 1.1.

Let p be a prime. We know that Rn ≡ 0 (mod p) when n > 2p by Theorem 1.1.5 and
that Rp ≡ 1 (mod p) by Corollary 2.4.4. We now also know the value of Rn (mod p) when
p < n < 2p by Theorem 3.2.1. We currently do not know the value of Rn (mod p) when
n < p except for n 6 11, where we know Rn exactly. Our methodology cannot be extended to
encompass the p > n case since it is limited by the use of a group of isotopisms of cardinality
that divides n!3.

We can use the following theorem to further check our computer enumerations of χ(n, d)
in Figure 3.3.

Theorem 3.2.3. Let 1 6 d < n. Then d2/ gcd(n, d) divides χ(n, d).

Proof. We will partition the set of (n, d)-partial orthomorphisms into parts of cardinalities
that are divisible by d2/ gcd(n, d). Suppose ν : S → U is an arbitrary (n, d)-partial ortho-
morphism, where U ⊆ Zn is the range of ν. For all x, y ∈ Zn let Sx = {s + x : s ∈ S } and
Uy = {u + y : u ∈ U}. Define νx,y : Sx → Uy to be the map defined by νx,y(s + x) ≡ ν(s) + y
(mod n) for each s ∈ S .

Call ν equivalent to νx,y if νx,y is an (n, d)-partial orthomorphism, thus defining an equiva-
lence relation on the set of (n, d)-partial orthomorphisms. Let N denote the equivalence class
containing ν. It is sufficient to show that d2/ gcd(n, d) divides |N |.

To construct an (n, d)-partial orthomorphism that is equivalent to ν, we may choose any
y ∈ Zn \ {−ν(s) : s ∈ S } then choose any x ∈ Zn \ {ν(s)− s+y : s ∈ S }. Other choices for x and
y would violate νx,y being an (n, d)-partial orthomorphism. This gives d2 legal (n, d)-partial
orthomorphisms, but they are not necessarily all distinct. However, for each x ∈ Zn there can
be at most one value of y ∈ Zn such that ν = νx,y.
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p = 3 5 7 11 13 17 19

d = 1 1 3 19 3441 79259 94471089 4613520889
2 4 40 516 223940 7101048 14292413536
3 1 54 1629 1971945 89669682 318490001352
4 16 1360 5117280 341843440 2202786643008
5 1 375 5189450 524957175 6346143586100
6 36 2387448 380112048 8972410104288
7 1 540470 142551780 6899440472008
8 62400 29289024 3090449262976
9 3645 3392685 845070847830

10 100 222200 145573463200 80083309009000
11 1 7986 16101920120 12742629618906
12 144 1152470592 1361619013248
13 1 53126164 98471150232
14 1544480 4815882288
15 27000 157499100
16 256 3355392
17 1 44217
18 324

F 3.3: Some values of χ(p, d) for prime p in the range 3 6 p 6 19.

Suppose that ν = νx,y = νx′,y′ for some x, y, x′, y′ ∈ Zn. Then ν = νax+bx′,ay+by′ for all
a, b ∈ Z. Using Euclid’s Algorithm we may choose a, b such that ax + bx′ = gcd(x, x′).
Therefore, there exists x∗, y∗ ∈ Zn such that ν = νx∗,y∗ and if ν = νx,y for some x, y ∈ Zn then
x = cx∗ and y = cy∗ for some c ∈ Zn.

Let X be the subgroup of Zn generated by x∗. Then |N| = d2/|X|. Lagrange’s Theorem
implies that |X| divides n. We will now show that |X| divides d. The group X acts on S via
the map s 7→ s + x (mod n) for all x ∈ X, s ∈ S . Every orbit of S under X has size |X| and
therefore |X| divides n − d. It follows that |X| divides d. Therefore, d2/ gcd(n, d) divides |N |
and since ν was arbitrary, d2/ gcd(n, d) divides χ(n, d). �

To illustrate Theorem 3.2.3, χ(6, 3) = 300 is divisible by 3 (though not by 32). The (6, 3)-
partial orthomorphism ν defined by ν(0) = 1, ν(2) = 5 and ν(4) = 3 is in the equivalence
class {σ,σ2,4, σ4,2}.

3.2.2 Enumeration of partial orthomorphisms
Recall that ω(n, d) is the number of partial orthomorphisms of Zn of deficit d. Observe that
ω(n, 0) = nzn, so assume 1 6 d < n. In the proof of Theorem 3.2.3, the set Cν := {νx,y : x, y ∈
Zn} has size n2/|X| and contains d2/|X| (n, d)-partial orthomorphisms. Since 1 6 d < n, every
partial orthomorphism is contained in Cν for some (n, d)-partial orthomorphism ν. Therefore,
the Cν partition the set of partial orthomorphisms of Zn. It follows that

ω(n, d) =
n2

d2χ(n, d). (3.2)
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d (mod 3) (mod 5) (mod 7) (mod 11) (mod 13) (mod 17) (mod 19)

p − 1 R5 ≡ 2 R9 ≡ 1 R13 ≡ 0 R21 ≡ 2 R25 ≡ −R12 R33 ≡ −R16 R37 ≡ −R18

p − 2 R4 ≡ 1 R8 ≡ 1 R12 ≡ 0 R20 ≡ 6 R24 ≡ 6 R32 ≡ R15 R36 ≡ R17

p − 3 R7 ≡ 0 R11 ≡ 3 R19 ≡ 7 R23 ≡ 6 R31 ≡ R14 R35 ≡ 17R16

p − 4 R6 ≡ 3 R10 ≡ 1 R18 ≡ 9 R22 ≡ 3 R30 ≡ 5R13 R34 ≡ 16R15

p − 5 R9 ≡ 3 R17 ≡ 10 R21 ≡ 8 R29 ≡ 3R12 R33 ≡ 13R14

p − 6 R8 ≡ 5 R16 ≡ 3 R20 ≡ 11 R28 ≡ 1 R32 ≡ 17R13

p − 7 R15 ≡ 6 R19 ≡ 8 R27 ≡ 8 R31 ≡ 0
p − 8 R14 ≡ 5 R18 ≡ 5 R26 ≡ 2 R30 ≡ 2
p − 9 R13 ≡ 4 R17 ≡ 7 R25 ≡ 7 R29 ≡ 7

p − 10 R12 ≡ 9 R16 ≡ 4 R24 ≡ 15 R28 ≡ 5χ
p − 11 R15 ≡ 12 R23 ≡ 0 R27 ≡ 2χ
p − 12 R14 ≡ 11 R22 ≡ 11 R26 ≡ 8χ
p − 13 R21 ≡ 2 R25 ≡ 12χ
p − 14 R20 ≡ 3 R24 ≡ 2χ
p − 15 R19 ≡ 0 R23 ≡ 17χ
p − 16 R18 ≡ 15 R22 ≡ 5χ

F 3.4: Congruences implied by Figure 3.3 and Corollary 3.2.2, where χ = χ(p, d).

Let ω0(n, d) be the number of partial orthomorphisms σ of deficit d such that σ(0) = 0. Then

ω0(n, d) =
(n − d)

n2 ω(n, d) =
(n − d)

d2 χ(n, d). (3.3)

While we use χ for the purposes of Theorem 3.2.1, for computer enumeration it is usually
easiest to find ω0. However, for the remainder of this section we will discuss the properties
of ω, and these properties can be transferred to χ and ω0 by (3.3).

Given a partial orthomorphism σ on domain S = {s1, s2, . . . , sa} we can define a pair of
vectors ~s = (s1, s2, . . . , sa) and ~u = (u1, u2, . . . , ua) such that σ(si) = ui for all 1 6 i 6 a. In
fact σ defines a! such pairs of vectors. For any ~s, ~u ∈ Za

n, let I(~s, ~u) = 1 if si 7→ ui defines a
partial orthomorphism and I(~s, ~u) = 0 otherwise. Hence

a!ω(n, n − a) =
∑
~s,~u∈Za

n

I(~s, ~u)

for all a < n. Of the n2a pairs (~s, ~u) ∈ Za
n × Z

a
n we have I(~s, ~u) = 0 if and only if at least one of

the following is true:

(a) ui = u j for some 1 6 i < j 6 a,

(b) si = s j for some 1 6 i < j 6 a,

(c) ui − si = u j − s j for some 1 6 i < j 6 a.

Let J be the set of 3a(a − 1)/2 equations of the form (a)–(c) above. For each j ∈ J let E j

denote the set of all (~s, ~u) ∈ Za
n × Z

a
n such that equation j is satisfied. Hence

a!ω(n, n − a) = n2a −

∣∣∣∣∣∣∣⋃j∈J

E j

∣∣∣∣∣∣∣ .
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Applying Inclusion-Exclusion yields

a!ω(n, n − a) =
∑
E⊆J

(−1)|E|ρ(E, n), (3.4)

where ρ(E, n) :=
∣∣∣∩ j∈EE j

∣∣∣ and ρ(∅, n) := n2a. The subset E corresponds to a system of linear
congruences, which can be written in matrix form XAT = 0 where

X = (s1, s2, . . . , sa, u1, u2, . . . , ua),

A = A(E) is a (−1, 0,+1)-matrix and 0 is the vector of |E| zeroes. The number of solutions of
a system of linear congruences was given, for example, by Butson and Stewart [42]. In our
case, the number of solutions for a given E and n is

ρ(E, n) = gcd(e1, n) gcd(e2, n) · · · gcd(er, n)n2a−r, (3.5)

where e1, e2, . . . , er are the invariant factors of A. In Figure 3.6 we will give an example of
E ⊂ J with ρ(E, n) = n2 gcd(2, n) and the corresponding matrix A(E). In Example 3.2.10 we
will construct examples where ρ involves multiple gcd’s.

Theorem 3.2.4. For any a in the range 1 6 a < n there exists µ > 1 such that

ω(n, n − a) =

2a∑
i=2

(−1)i

a!
cini

for integer coefficients ci = ci(a, n) that vary only with a and the value of n (mod µ).

Proof. It follows from (3.4) and (3.5) that ω(n, n − a) =
∑2a

i=0
(−1)i

a! cini for integer coefficients
ci = ci(a, n) that vary only with a and the value of n (mod µ) for some µ depending on the
invariant factors of A(E) for E ⊆ J.

For any E ⊂ J, if (~s, ~u) is a solution to the system of linear congruences A(E) then so
is (~s + 1, ~u) and (~s, ~u + 1), where 1 is the vector of a ones and addition is component-wise
modulo n. Thus we can partition the solutions to A(E) into equivalence classes of the form
{(~s + k11, ~u + k21) : k1, k2 ∈ Zn}. Therefore n2 divides ρ(E, n) for all E ⊂ J. This implies that
c0 = c1 = 0. �

Figure 3.5 gives the coefficients ci = ci(a, n) of Theorem 3.2.4 for 1 6 a 6 6. We discuss
how these values were obtained in Section 3.2.3.

Corollary 3.2.5. Let p be a prime and 1 6 a < p. Then

R2p−a ≡
(−1)ac2(a, p)
a!(a − 1)!3 Rp−a (mod p).

Proof. When n = 2p − a, (3.2) implies that χ(p, n − p) ≡ (n−p)2

p2 ω(p, n − p) ≡ (n − p)2c2(a, p)
(mod p) as in Theorem 3.2.4. Theorem 3.2.4 also ensures that ω(p, n − p) is divisible by p2.
The result now follows from Theorem 3.2.1 and Wilson’s Theorem. �

Let p be a prime. Then it follows from Corollary 3.2.5, Figure 3.5 and (3.2) that
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a = 1 2 3 4 5 6

c2a 1 1 1 1 1 1
c2a−1 3 9 18 30 45
c2a−2 2 30 135 395 915
c2a−3 42 534 2970 11055
c2a−4 20 1154 13862 87682
c2a−5 1260 40740 475290
c2a−6 516 + 6 gcd(2, n) 72580 + 30 gcd(2, n) 1773420 + 90 gcd(2, n)
c2a−7 69840 + 360 gcd(2, n) 4459740 + 2430 gcd(2, n)
c2a−8 26112 + 960 gcd(2, n) 7131232 + 24300 gcd(2, n)
c2a−9 6360480 + 106200 gcd(2, n)

c2a−10 2227680 + 168480 gcd(2, n)
+1440 gcd(3, n)

F 3.5: The coefficients ci = ci(a, n) in Theorem 3.2.4 for 1 6 a 6 6.

• R2p−1 ≡ −Rp−1 (mod p) if p > 2,

• R2p−2 ≡ Rp−2 (mod p) if p > 3,

• R2p−3 ≡ −
5

12Rp−3 (mod p) if p > 5,

• R2p−4 ≡
29
288Rp−4 (mod p) if p > 5,

• R2p−5 ≡ −
47

2880Rp−5 (mod p) if p > 7,

• R2p−6 ≡
37

19200Rp−6 (mod p) if p > 7.

It is easy to find an exponential upper bound on the invariant factors of arbitrary A(E),
given that | det(M)| 6

∏
j
∑

i |mi j| for any square matrix M = (mi j). We next show that the
invariant factors can be exponentially large.

Example 3.2.6. For all q > 0 there exists a set of equations Eq with a = 3q + 1 such that
ρ(Eq, n) = n2 gcd(2q, n).

Proof. Recall that we are allowed three types of equations in Eq, they are: (a) ui = u j,
(b) si = s j and (c) ui − si = u j − s j for some 1 6 i < j 6 a. We choose the equations of type
(a) and (b) in Eq so that ~s and ~u must have the form

~s = (a1, a1, a2, a2, a2, a3, a3, . . . aq, aq+1, aq+1)
~u = (b1, b2, b2, b1, b3, b3, b2, . . . bq+1, bq+1, bq)

.

Now add to Eq equations of type (c) such that bi+1 − ai = bi − ai+1 for all 1 6 i 6 q and
bi+1 − ai = bi+2 − ai+2 for all 1 6 i 6 q − 1 and b1 − a1 = b2 − a2. This completes the
construction of Eq.

For all 1 6 i 6 q define xi = ai − ai+1 and yi = bi − bi+1. Then the equations of type (c) in
Eq are equivalent to (i) xi = −yi for all 1 6 i 6 q, (ii) xi + xi+1 = yi+1 for all 1 6 i 6 q − 1 and
(iii) x1 = y1. From (i) and (ii) we deduce that xi = 2yi+1 for all 1 6 i 6 q − 1. Since x1 = y1

and x1 = −y1 we have 2x1 = 2y1 = 0. Therefore 2qxq = −2q−1xq−1 = · · · = (−1)q−12x1 = 0.
If we choose xq ∈ Zn such that 2qxq ≡ 0 (mod n) then we can determine the value of xi

and yi for all 1 6 i 6 q. Therefore (~s, ~u) is uniquely determined by the value of a1, b1 and xq.
In Zn there are n possible values for a1 and b1 and gcd(2q, n) values of xq satisfying 2qxq ≡ 0
(mod n). �
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Let µa be the smallest µ possible in Theorem 3.2.4 for a given value of a. Example 3.2.6
suggests that µa increases at least exponentially with a, although it is plausible that a depen-
dence modulo 2q might cancel in (3.4). In Example 3.2.10 we will give a further indication
that µa is likely to grow quickly.

3.2.3 A graph theoretic approach
In this section we introduce a graph theoretic interpretation of the systems of linear congru-
ences in Section 3.2.2. This will aid us in the computation of ω(n, n − a). We will work with
simple graphs G, that is, undirected graphs without loops and parallel edges, on the vertex
set V(G) which will typically be [a] := {1, 2, . . . , a}. Let E(G) be the edge set of G.

Throughout this section, by an edge-colouring δ of a graph G we will mean a map

δ : E(G)→ {red, blue, green, black}.

By a vertex-colouring φ of the edge-coloured graph (G, δ) we will mean a map

φ : V(G)→ Zn × Zn

such that if we let φ
(
i
)

=
(
φ1(i), φ2(i)

)
for every vertex i then for all edges i j in E(G) we have:

• φ1(i) = φ1( j) if δ(i j) = red,

• φ2(i) = φ2( j) if δ(i j) = blue,

• φ2(i) − φ1(i) = φ2( j) − φ1( j) if δ(i j) = green and

• φ(i) = φ( j) if δ(i j) = black.

We do not require δ or φ to be proper colourings. Let ρ(G, δ, n) be the number of vertex-
colourings of (G, δ).

Given E ⊆ J, as in Section 3.2.2, let (G, δ)E be the edge-coloured graph on vertex set [a]
with edges defined in the following way:

I: If ui = u j is in E then add a red edge between i and j.

II: If si = s j is in E then add a blue edge between i and j.

III: If ui − si = u j − s j is in E then add a green edge between i and j.

IV: Replace any parallel edges resulting from I–III with a single black edge.

Then ρ(E, n) = ρ(G, δ, n) where (G, δ) = (G, δ)E. In Figure 3.6 we give an example of a set of
equations E ⊂ J with its corresponding matrix A(E) and edge-coloured graph (G, δ)E.

For any (G, δ), let JG,δ = {E ⊆ J : (G, δ)E = (G, δ)} and let b(δ) be the number of black
edges. A black edge arises if all three of I, II and III occur. It can also arise in 3 distinct ways
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when precisely two of I, II and III occur. In the former case |E| is 1 larger than in the latter
case. Hence, by (3.4),

a!ω(n, n − a) =
∑
(G,δ)

∑
E∈JG,δ

(−1)|E|ρ(G, δ, n)

=
∑
(G,δ)

ρ(G, δ, n)
∑
E∈JG,δ

(−1)|E|

=
∑
(G,δ)

ρ(G, δ, n)(−1)|E(G)|+b(δ)
∑
x>0

(
b(δ)

x

)
(−1)x3b(δ)−x

=
∑
(G,δ)

ρ(G, δ, n)(−1)|E(G)|(−2)b(δ) (3.6)

using the Binomial Theorem, where the dummy variable x counts the number of black edges
where I, II and III all hold.

equations s1 s2 s3 s4 u1 u2 u3 u4

u1 = u2 0 0 0 0 1 −1 0 0
u3 = u4 0 0 0 0 0 0 1 −1
s1 = s3 1 0 −1 0 0 0 0 0
s2 = s4 0 1 0 −1 0 0 0 0

u1 − s1 = u4 − s4 −1 0 0 1 1 0 0 −1
u2 − s2 = u3 − s3 0 −1 1 0 0 1 −1 0

1 2

3 4

F 3.6: A set of equations E ⊂ J, its corresponding matrix A(E) and corresponding graph
(G, δ)E. Red edges are solid, blue edges are dashed and green edges are dotted.

For computational purposes, we split (3.6) as follows:

a!ω(n, n − a) =
∑
G∈I

a!
|Aut(G)|

∑
δ

(−1)|E(G)|(−2)b(δ)ρ(G, δ, n), (3.7)

where I is a set containing one representative from each isomorphism class of (uncoloured)
graphs on a vertices and Aut(G) is the automorphism group of the graph G. In the second
summation in (3.7) we sum over all edge-colourings δ of G of which there are 4|E(G)|, which
requires a lengthy computation when |E(G)| is large. However, when |E(G)| is large there
are comparatively few vertex-colourings. This means that (3.7) is particularly useful for
computing the leading terms in ω(n, n − a), which is what we will do in Theorem 3.2.9.

For any graph G without isolated vertices, define

PG(a) = n2(a−v)
∑
δ

(−2)b(δ)ρ(G, δ, n), (3.8)

where v is the number of vertices of G and the sum is over all edge-colourings of G. Suppose
G is the graph formed by removing every isolated vertex from a graph H with a vertices.
Then ρ(H, δ, n) = n2(a−v)ρ(G, δ, n), so the contributions to (3.7) by H can be handled using
PG(a). For all e > 0 and v > 0, let Γe,v be a set containing one representative from each
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isomorphism class of graphs on v vertices with e edges without isolated vertices. Then it
follows from (3.7) and (3.8) that

a!ω(n, n − a) =
∑
v>0

∑
e>0

∑
G∈Γe,v

(−1)e

|Aut(G)|
a(a − 1) · · · (a − v + 1)PG(a). (3.9)

We will now identify a necessary condition for a graph G to contribute to the coefficient
of n2a−i in ω(n, n − a). A spanning forest of G is a subgraph consisting of a spanning tree in
each connected component of G.

Lemma 3.2.7. The coefficient of n2a−i in PG(a) can be non-zero only if G contains a spanning
forest of between di/2e and i edges inclusive. Moreover, for all i > 0, c2a−i(a, n) is a multivari-
ate polynomial of degree at most 2i in a with variables a, gcd(2, n), gcd(3, n), . . . , gcd(c, n) for
some c > 1.

Proof. Each (G, δ) = (G, δ)E for some E ∈ JG,δ. Consequently ρ(G, δ, n) has the form

gcd(e1, n) gcd(e2, n) · · · gcd(er, n)n2a−r = O(1)n2a−r

for some integers e1, e2, . . . , er, corresponding to (3.5).
Let (F, δF) be a spanning forest of (G, δ), where δF(i j) = δ(i j) for all edges i j of F. Let

f be the number of edges of F. Any vertex-colouring of (G, δ) is also a vertex-colouring of
(F, δF). Hence ρ(G, δ, n) 6 ρ(F, δF , n) 6 n2a− f for all n.

Let δblack be the edge-colouring of G with all black edges. Any vertex-colouring of
(G, δblack) is also a vertex-colouring of (G, δ). Hence ρ(G, δ, n) > ρ(G, δblack, n) > n2a−2 f

for all n. Thus n2a− f > ρ(G, δ, n) > n2a−2 f for all n, implying f 6 r 6 2 f .
The second statement in the lemma now follows from (3.5), (3.8) and (3.9). �

For Corollary 3.2.5, c2(a, p) can therefore be calculated by studying only the graphs
containing a spanning forest of between a − 1 and 2a − 2 edges inclusive. The converse
of the first statement in Lemma 3.2.7 is false; a counter-example is given in Figure 3.7. The
complete graph on 4 vertices does not contribute to the coefficient of n2a−4 due to cancellation.

Lemma 3.2.7 implies that c2a−i(a, n) = 0 when a ∈ {0, 1, . . . , di/2e} for all i > 1 and all
n. Furthermore, in Theorem 3.2.9 we find that these are the only integer zeroes of c2a−i(a, n)
when 2 6 i 6 4.

Suppose a graph G has a non-zero coefficient of a2in2a−i in the summand in (3.9). Then G
does not have any isolated vertices, G has at most i edges by Lemma 3.2.7 and G has at least
2i vertices by (3.9). So G is a one-factor on 2i vertices. For an edge-colouring δ of G to have
a non-zero coefficient of n2a−i in PG(a) in (3.8), it must not have a black edge. There are 3i

edge-colourings δ of G without black edges. In Lemma 3.2.7 we observed that c2a−i(a, n) has
degree at most 2i in a. Therefore

c2a−i(a, n) ∼
3i

|Aut(G)|
a(a − 1) · · · (a − 2i + 1) ∼

3ia2i

i! 2i ,

for fixed i as a→ ∞ independent of n. This additionally implies that c2a−i(a, n) has a positive
leading term.

Lemma 3.2.8. Let G and H be graphs and let R be any graph formed by identifying a vertex
of G and a vertex of H. Then 1

n2a PG(a)PH(a) = PG∪H(a) = n2PR(a).
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Proof. To begin, observe that ρ(G ∪ H, δ, n) = ρ(G, δG, n)ρ(H, δH, n), where δ is an edge-
colouring of G ∪ H and δG and δH are the edge-colourings on G and H induced by δ, respec-
tively. Therefore (3.8) implies

PG∪H(a) = n2(a−v)
∑
δG

∑
δH

(−2)b(δG)+b(δH)ρ(G, δG, n)ρ(G, δH, n) (3.10)

= n2(a−v)

∑
δG

(−2)b(δG)ρ(G, δG, n)


∑
δH

(−2)b(δH)ρ(H, δH, n)


=

1
n2a PG(a)PH(a),

where v is the number of vertices in G ∪ H, δ is any edge-colouring of G ∪ H and δG and δH

are any edge-colourings on G and H.
To prove that PG∪H(a) = n2PR(a), first let δG and δH be any edge-colourings of G and H,

respectively. Let g be a vertex of G and h be a vertex of H. Let φ be a vertex-colouring of
(H, δH). For each k1, k2 ∈ Zn the map i 7→ φ(i) + (k1, k2) is also a vertex-colouring of (H, δH).
Thus we can partition the vertex-colourings of (H, δH) into n2 parts of size 1

n2ρ(H, δH, n) ac-
cording to the colour of h.

Given a vertex-colouring of (G, δG), there are therefore 1
n2ρ(H, δH, n) vertex-colourings of

(H, δH) such that g and h receive the same colour. Let δR be the edge-colouring of R induced
by δG and δH. So

ρ(R, δR, n) =
1
n2ρ(G, δG, n)ρ(H, δH, n). (3.11)

By (3.8),
n2PR(a) = n2(a−v)

∑
δG

∑
δH

(−2)b(δG)+b(δH)ρ(G, δG, n)ρ(H, δH, n)

which is (3.10). �

A graph is called biconnected if it is a connected graph and the deletion of any vertex
leaves the graph connected. Lemmata 3.2.7 and 3.2.8 and (3.9) together imply that to find an
equation for c2a−i(a, n) we only need:

(a) A list of graph isomorphism class representatives G without isolated vertices, contain-
ing a spanning forest of between di/2e and i edges inclusive,

(b) |Aut(G)| for the graphs listed in (a) and

(c) PG(a) for the graphs listed in (a) that are biconnected.

Obtaining these items can be made easier with use of nauty [220], GAP [127] and GRAPE
[295], for example.

We have now developed the theory for the enumeration of partial orthomorphisms that
will enable us to find the leading terms in a formula for ω(n, n − a) in Theorem 3.2.9. Using
(3.8) and (3.9) we computed all of the coefficients ci(a, n) for 1 6 a 6 5 as given in Figure 3.5.
These were independently verified by Ian Wanless (private communication) by computer
enumeration and polynomial fitting. For a = 6, after using Theorem 3.2.9 we are left with six
unknown coefficients. Ian Wanless (private communication) found χ(n, n − 6) by computer
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enumeration for n 6 51 which provided more than enough data points to use polynomial
fitting to obtain the coefficients for a = 6 in Figure 3.5. The excess data points provided a
check of the result. The author verified these values by an independent computer enumeration
for n 6 25.

The following theorem gives the polynomial c2a−i for 0 6 i 6 4.

Theorem 3.2.9. a!ω(n, n−a) = n2a− 3
2a(a−1)n2a−1 + 1

8a(a−1)(9a2−13a−2)n2a−2− 1
16a(a−

1)(a − 2)(9a3 − 12a2 − 5a − 8)n2a−3 + 1
1920a(a − 1)(a − 2)(405a5 − 1485a4 + 825a3 − 483a2 +

2346a + 3304)n2a−4 + O(n2a−5) for fixed a as n→ ∞.

Proof. Figure 3.7 contains the graphs G, as identified by Lemma 3.2.7, such that PG(a) has
a leading term at least n2a−3. Therefore we can use (3.9) to obtain the first four coefficients.
The data for the coefficient of n2a−4 can be found in Appendix A.5. �

G v e |Aut(G)| PG(a)

0 0 1 n2a

2 1 2 3n2a−1 − 2n2a−2

3 2 2 9n2a−2 − 12n2a−3 + 4n2a−4

3 3 6 3n2a−2 + 6n2a−3 − 8n2a−4

4 2 8 9n2a−2 − 12n2a−3 + 4n2a−4

4 3 2 27n2a−3 − 54n2a−4 + 36n2a−5 − 8n2a−6

4 3 6 27n2a−3 − 54n2a−4 + 36n2a−5 + 8n2a−6

4 4 2 9n2a−3 + 12n2a−4 − 36n2a−5 + 16n2a−6

4 4 8 3n2a−3 + 54n2a−4 − 120n2a−5 + 64n2a−6

4 5 4 3n2a−3 + 18n2a−4 − 12n2a−5 − 8n2a−6

4 6 24 3n2a−3 + 36n2a−5 + (6 gcd(2, n) − 44)n2a−6

5 3 4 27n2a−3 − 54n2a−4 + 36n2a−5 + 8n2a−6

5 4 12 9n2a−3 + 12n2a−4 − 36n2a−5 + 16n2a−6

6 3 48 27n2a−3 − 54n2a−4 + 36n2a−5 + 8n2a−6

F 3.7: The value of PG(a) for all G ∈ Γe,v such that PG(a) has degree at least 2a− 3 in n.

Another outcome of Lemma 3.2.8 is that it allows us to build explicit examples that realise
the full generality of (3.5).

Example 3.2.10. Let (mi) be a finite sequence of positive integers. Then there exists an edge-
coloured graph (M∗, δ∗) such that ρ(M∗, δ∗, n) = n2 ∏

i gcd(mi, n).

Proof. We begin by identifying, for each m > 1, an edge-coloured graph (G, δ) that has
ρ(G, δ, n) = n2 gcd(m, n). If m = 1 we can take the graph consisting of one vertex, so assume
m > 2.

Let the vertex set of G be {v1, v2, . . . , vm} ∪ {v′1, v
′
2, . . . , v

′
m}. Thus G has 2m vertices. Join

the vertices v1, v2, . . . , vm by a red path. Join the vertices v′1, v
′
2, . . . , v

′
m by a red path. For
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each 1 6 j 6 m, join v j to v′j with a blue edge. Let γ be the m-cycle (1, 2, . . . ,m). For each
1 6 j 6 m, join v j to v′γ( j) with a green edge. This completes our construction. We illustrate
this construction in Figure 3.8 when m = 5.

F 3.8: An edge-coloured graph (G, δ) with ρ(G, δ, n) = n2 gcd(5, n).

Now consider the number of vertex-colourings of (G, δ). By the placement of the red and
blue edges, for each 1 6 j 6 m, we can let (s j, x) be the colour of vertex v j and let (s j, y)
be the colour of vertex v′j. The green edges imply that x − s j = y − sγ( j) for all 1 6 j 6 m.
Hence

∑
16 j6m x− s j =

∑
16 j6m y− sγ( j) =

∑
16 j6m y− s j and so mx ≡ my (mod n). Furthermore

s1 − sγ(1) = s2 − sγ(2) = · · · = sm − sγ(m) = x − y. Therefore the values of x, y and s1 determine
the entire vertex-colouring. We can choose any value for x and s1 in Zn and then we can
choose y ∈ Zn such that mx ≡ my (mod n). Hence ρ(G, δ, n) = n2 gcd(m, n).

For each i, let (Mi, δi) be a graph with ρ(Mi, δi, n) = n2 gcd(mi, n). Pick one vertex of each
Mi and construct a new graph (M∗, δ∗) by identifying those vertices. Now (3.11) implies the
stated result. �

We will finish this section by identifying another property of the coefficients of the poly-
nomials in Theorem 3.2.4.

Theorem 3.2.11. For 0 6 i 6 5, c2a−i is a polynomial in a of degree 2i and c2a−6 =

6
(

a
4

)
gcd(2, n) + f (a) for some polynomial f of degree 12.

Proof. Recall that ρ(G, δ, n) has the form given in (3.5) for any edge-coloured graph (G, δ).
Let (G∗, δ∗) be the graph in Figure 3.6 with the addition of some isolated vertices. Let a be
the number of vertices in G∗. Then ρ(G∗, δ∗, n) = n2a−6 gcd(2, n).

Assume that (G, δ) is an edge-coloured graph such that ρ(G, δ, n) is not a power of n but
is divisible by n2a−r where r 6 6.

Case I: G is connected. Since r is at least the number of edges in the largest forest in G,
Lemma 3.2.7 implies that G has no more than 7 vertices. We inspect the connected graphs
G with no more than 7 vertices and find that (G, δ) must be isomorphic to (G∗, δ∗) without
isolated vertices.

Case II: G is disconnected. Lemma 3.2.8 and Case I imply that G has a component
isomorphic to G∗. In fact, since r 6 6, (G, δ) is isomorphic to (G∗, δ∗).

There are 6
(

a
4

)
graphs (G, δ) isomorphic to (G∗, δ∗), and each of them satisfies ρ(G, δ, n) =

n2a−6 gcd(2, n). The result now follows from (3.6). �

By combining the results of Figure 3.4, Theorem 1.1.5 and Theorem 2.7.2 we obtain, for
example, that
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• R12 ≡ 50400 (mod 55440),

• R13 ≡ 342720 (mod 720720),

• R14 ≡ 428400 (mod 720720),

• R15 ≡ 8830080 (mod 17297280),

• R16 ≡ 7136640 (mod 17297280),

• R17 ≡ 95437440 (mod 882161280).

3.3 Compound orthomorphisms
In this section we identify a special class of orthomorphisms which we will use to provide
another congruence for Rn. We follow the work of [304].

Suppose d is a divisor of n. If σ is an orthomorphism such that σ(i) ≡ σ( j) (mod d)
whenever i ≡ j (mod d) then we call σ a d-compound orthomorphism. All orthomorphisms
of Zn are trivially 1-compound and n-compound. We call σ a compound orthomorphism if it
is d-compound for some proper divisor d of n. If D is a subset of the divisors of n, we say σ
is D-compound if σ is d-compound for all d ∈ D.

As we shall see, compound orthomorphisms are a natural and useful class of orthomor-
phism. A construction of van Rees [316] for “toroidal Latin queen squares” gives rise to a
Latin square in which every row, column and broken diagonal (forward and backward) de-
fines a compound orthomorphism. Evans [100, 112] has used 3-compound orthomorphisms
in the construction of orthogonal orthomorphisms of Z3p for prime p. We will discuss or-
thogonal orthomorphisms in Section 3.3.5.

Let n be an odd number. If c ∈ Zn such that gcd(c, n) = 1 and gcd(c − 1, n) = 1 we
can define an orthomorphism ηc,n by ηc,n(i) ≡ ci (mod n) for all i ∈ Zn, which is called a
linear orthomorphism. Recall that the translation Td[σ] of an orthomorphism σ is defined by
Td[σ](i) = σ(i + d) − σ(d). Linear orthomorphisms ηc,n satisfy Tg[ηc,n] = ηc,n for all Tg ∈ G

where G is the group of translations. Clark and Lewis [59] showed that the number of linear
orthomorphisms of Zn is given by ∏

p∈Pn

pa−1(p − 2) (3.12)

where Pn is the set of prime divisors of n and a = a(p, n) is the largest integer such that pa

divides n.
Suppose n = dt is odd. Let µ be a canonical orthomorphism of Zd. For all i ∈ Zd, let

σi be an orthomorphism of Zt and ensure σ0 is canonical. Define the canonical d-compound
orthomorphism κ = κd,t[σ0, σ1, . . . , σd−1; µ] of Zn by

κ(i) ≡ µ(i) + dσi(bi/dc) (mod n) (3.13)

for all i ∈ Zn. When d = 1 we have κ = σ0 and when t = 1 we have κ = µ.
Formally, the ranges of µ and σi are Zd and Zt respectively, but we will implicitly equate

them with {0, 1, . . . , d − 1} ⊂ Zn and {0, 1, . . . , t − 1} ⊂ Zn respectively by replacing each con-
gruence class by its least non-negative representative. There are some examples of compound
orthomorphisms of Z27 in Figure 3.9.

We now argue that any κ defined by (3.13) is indeed an orthomorphism by showing κ(i)−
i , κ( j) − j whenever i , j. If i . j (mod d) then κ(i) − i ≡ µ(i) − i . µ( j) − j ≡ κ( j) − j
(mod d) since µ is an orthomorphism of Zd. So assume i ≡ j (mod d) and i , j. Without loss
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of generality, let i = dk1 + c and j = dk2 + c where k1 = bi/dc and k2 = b j/dc. Observe k1 . k2

(mod t). So κ(i)− i ≡ µ(c) + dσc(k1)−dk1 − c (mod n) and κ( j)− j ≡ µ(c) + dσc(k2)−dk2 − c
(mod n). Therefore κ(i) − i . κ( j) − j (mod n) since σc(k1) − k1 . σc(k2) − k2 (mod t).

κ = κ3,9[(0)(14287356), (0)(13645)(287), (0)(18)(256)(374); η2,3]
κ′ = κ9,3[η2,3, η2,3, η2,3, η2,3, η2,3, η2,3, η2,3, η2,3, η2,3; (0)(15382)(467)]
κ′′ = κ3,9[η2,9, (01)(28)(37)(46)(5), (053268)(1)(47); η2,3]

= κ9,3[η2,3, η2,3, (01)(2), η2,3, η2,3, η2,3, (01)(2), (02)(1), (02)(1); (0)(154278)(36)]

F 3.9: Some compound orthomorphisms of Z27 using the notation (3.13).

We will now identify some properties of compound orthomorphisms. The following prop-
erty shows that (3.13) is sufficient to describe all canonical d-compound orthomorphisms.

Property 3.3.1. Let n = dt. Every canonical d-compound orthomorphism κ of Zn is of the
form (3.13). Hence there are exactly td−1zdzd

t canonical d-compound orthomorphisms of Zn.

Proof. We know κ(i) ≡ κ( j) (mod d) if and only if i ≡ j (mod d). Therefore we can define
µ by µ(i) ≡ κ(i) (mod d) for i ∈ Zd.

Let 〈d〉 be the subgroup of Zn generated by d (mod n). Define the isomorphism I : Zt →

〈d〉 by I( j) = d j. For all i ∈ Zd define τi : 〈d〉 → 〈d〉 by τi( j) = κ( j + i) − µ(i) for all j ∈ 〈d〉.
Therefore we can define σi : Zt → Zt by σi( j) = I−1τiI( j). The orthomorphism properties
for µ and each σi are inherited from κ.

We can therefore construct every d-compound orthomorphism of Zn by a choice of (a) σ0

from one of the zd canonical orthomorphism of Zd, (b) σ0 from one of the zt canonical ortho-
morphism of Zt and (c) σ1, σ2, . . . , σd−1 from the tzt orthomorphisms of Zt. �

In Figure 3.10 we plot the known non-zero values of zn and the number of 3-compound
and 5-compound orthomorphisms of Zn.
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F 3.10: The value of zn for odd 1 6 n 6 25 and the number of canonical d-compound
orthomorphisms of Zn for odd n 6 75 such that d divides n and d ∈ {3, 5}, on a logarithmic
scale.
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Property 3.3.2. If κ is a {d1, d2}-compound orthomorphism of Zn then κ is an lcm(d1, d2)-
compound orthomorphism.

Proof. Assume, seeking a contradiction, that i, j ∈ Zn are such that i ≡ j (mod lcm(d1, d2))
but κ(i) . κ( j) (mod lcm(d1, d2)). Then either κ(i) . κ( j) (mod d1) or κ(i) . κ( j) (mod d2).
Since κ is {d1, d2}-compound, either i . j (mod d1) or i . j (mod d2), giving a contradiction.

�

The converse of Property 3.3.2 is false; for example most orthomorphisms of Z15 are
not {3, 5}-compound, but all are trivially 15-compound. Figure 3.9 lists three examples of
orthomorphisms of Z27 where (a) κ is 3-compound but not 9-compound, (b) κ′ is 9-compound
but not 3-compound and (c) κ′′ is {3, 9}-compound but not linear.

Property 3.3.3. Let d be a divisor of n and let σ be an orthomorphism of Zn. If Td[σ] = σ
then σ is d-compound.

Proof. To begin, observe that

σ
(
i + ( j + 1)d

)
− σ

(
i + jd

)
= Td[σ]

(
i + jd

)
− Td[σ]

(
i + ( j − 1)d

)
= σ

(
i + jd

)
− σ

(
i + ( j − 1)d

)
,

for any i, j ∈ Zn, since Td[σ] = σ. Therefore σ
(
i + ( j + 1)d

)
−σ

(
i + jd

)
= σ(i + d) −σ(i) for

all i, j ∈ Zn. Hence

n
d
(
σ(i + d) − σ(i)

)
≡

n/d−1∑
j=0

(
σ
(
i + ( j + 1)d

)
− σ

(
i + jd

))
≡ 0 (mod n).

Therefore d divides σ(i + d) − σ(i) and also divides
k−1∑
j=0

(
σ
(
i + d

)
− σ

(
i
))
≡

k−1∑
j=0

(
σ
(
i + ( j + 1)d

)
− σ

(
i + jd

))
≡ σ

(
i + kd

)
− σ

(
i
)

(mod n)

for all k > 1. Thus σ(i + kd) ≡ σ(i) (mod d) for all k > 1, which implies that σ is d-
compound. �

The converse of Property 3.3.3 is false; for example, in Figure 3.9, T3[κ] , κ while κ is
3-compound.

Property 3.3.4. Let σ be an orthomorphism of Zn such that Td[σ] = σ. Then Tgcd(d,n)[σ] = σ
and hence Td′[σ] = σ for all d′ that are divisible by gcd(d, n).

Proof. This follows since the group of translations G is isomorphic to Zn. �

Property 3.3.5. A canonical orthomorphism σ of Zn is linear if and only if T1[σ] = σ.
Moreover, linear orthomorphisms ηc,n satisfy Td[ηc,n] = ηc,n for all d.

Proof. If σ = ηc,n is linear, then T1[ηc,n](i) = ηc,n(i + 1) − ηc,n(1) = c · (i + 1) − c = ci =

ηc,n(i) for all i. Hence linear orthomorphisms satisfy T1[σ] = σ. Property 3.3.4 implies that
Td[ηc,n] = ηc,n for all d.

So now assume that T1[σ] = σ for some arbitrary orthomorphism σ of Zn. For all i ∈ Zn,
σ(i) = T1[σ](i) = σ(i + 1) − σ(1). Therefore σ(i + 1) − σ(i) = σ(1) for all i. Since σ is
canonical, σ(i) = σ(0) +

∑i−1
j=0

(
σ( j + 1) − σ( j)

)
= σ(1)i for all i, implying σ = ησ(1),n. �

Therefore, Property 3.3.3 implies that linear orthomorphisms are d-compound for all di-
visors d of n, a notion we will explore in Section 3.3.3.
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3.3.1 Evaluating zn (mod n)

In this section we find the value of zn (mod n) for all n. The value of zn (mod n) for odd
n 6 25 is listed in Figure 3.2 on page 71. Clark and Lewis [59] proved that zn ≡ −2 (mod n)
for prime n. Since their proof is brief, we have incorporated it into the proof of Theorem 3.3.6.
The main objective of this section is therefore to show that zn ≡ 0 (mod n) when n is an odd
composite number.

Theorem 3.3.6. If n is prime, then zn ≡ −2 (mod n). If n is composite then zn ≡ 0 (mod n).

Proof. When n is even zn = 0 and the theorem holds, so assume that n is odd. First assume
n is an odd prime number. Let σ be an arbitrary canonical orthomorphisms of Zn. Since n is
prime, |G(σ)| ∈ {1, n}, where G(σ) = {Tg[σ] : Tg ∈ G} is the orbit of σ. If |G(σ)| = 1 then σ
is a linear orthomorphism by Property 3.3.5. There are precisely n−2 linear orthomorphisms
of Zn by (3.12). Therefore zn ≡ −2 (mod n). This case was formerly proved in [59]. For the
remainder of the proof, we assume that n is an odd composite number.

Claim: Let C be the set of canonical compound orthomorphisms of Zn. Then zn ≡ |C|

(mod n).
The group of translations G acts on the set of canonical orthomorphisms of Zn. Let σ

denote an arbitrary canonical orthomorphism. By the Orbit-Stabiliser Theorem n = |G| =

|G(σ)||Gσ| where Gσ = {Tg ∈ G : Tg[σ] = σ} is the stabiliser of σ. Hence |G(σ)| = n
unless there exists Td ∈ Gσ such that d . 0 (mod n). Since Td ∈ Gσ implies Tgcd(d,n) ∈ Gσ

by Property 3.3.4, we can assume d = gcd(d, n), that is, d divides n. If d = 1 then σ is
a linear orthomorphism by Property 3.3.5 and so, since n is composite, σ is a compound
orthomorphism by Properties 3.3.3 and 3.3.4. If d > 1 then Property 3.3.3 implies that σ is
d-compound and 1 < d < n. The claim follows since C is closed under the action of G.

Let p be an arbitrary prime divisor of n and suppose n = pat for some t indivisible by p. It
is now sufficient to show that pa divides |C|. The group of translations G acts on C. Since we
wish to enumerate modulo pa, we may disregard the orbits that have cardinality divisible by
pa. Let κ ∈ C such that |G(κ)| is indivisible by pa. Then p divides |Gκ|, by the Orbit-Stabiliser
Theorem. By Sylow’s First Theorem, there exists Tg ∈ Gκ of order p, that is, g satisfies
pg ≡ 0 (mod n). Equivalently, pa−1t divides g. Property 3.3.4 implies that Tgcd(g,n) ∈ Gκ, so
we can assume that g = pa−1t.

By Property 3.3.3, κ is g-compound. The group of translationsG acts on the set of canoni-
cal g-compound orthomorphisms of Zn, of which there are exactly pg−1zgzg

p by Property 3.3.1.
Hence |C| ≡ pg−1zgzg

p (mod pa). Since g − 1 > 3a−1t − 1 > a (as a = 1 implies t > 3) we find
that pa divides |C|. �

In Corollary 3.2.2 we showed that Rn+1 ≡ zn (mod n) if n is prime, and Theorem 1.1.5
implies that Rn+1 ≡ 0 (mod n) for all composite n. Corollary 3.3.7 now follows from Theo-
rem 3.3.6.

Corollary 3.3.7. If n is an odd prime then Rn+1 ≡ zn ≡ −2 (mod n) and if n is composite then
Rn+1 ≡ zn ≡ 0 (mod n).

3.3.2 Evaluating zn (mod 3)

The values of zn (mod 3) for odd n 6 25 are listed in Figure 3.2. It was established in
Theorem 3.0.9 that zn is divisible by 3 when n ≡ 2 (mod 3), which we will now extend.
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Theorem 3.3.8. Let n be an odd number. If n > 5 and n . 1 (mod 3) then zn ≡ 0 (mod 3). If
n ≡ 1 (mod 3) then zn ≡ ζ(n) (mod 3), where ζ(n) is the number of partitions of {1, 2, . . . , n−
1} into parts of size 3 in which each part has sum divisible by n.

Proof. Let A be the Latin square defined by

ai j :≡ −i − j (mod n). (3.14)

Let T be the set of all transversals of A containing (0, 0, 0).
The canonical orthomorphisms σ of Zn are in one-to-one correspondence with the trans-

versals {
(
i, σ(i)− i,−σ(i)

)
: i ∈ Zn} of A containing (0, 0, 0) (see Section 3.1 or [324] for more

details). Hence zn = |T |. Let C3 be the cyclic permutation group on three elements. Then C3

acts on A by uniformly permuting the coordinates of each triplet. Consequently, C3 has an
induced action on T . The orbit of any ψ ∈ T , denoted C3(ψ), has cardinality either 1 or 3. Let
T = {ψ ∈ T : |C3(ψ)| = 1}, so that zn = |T | ≡ |T | (mod 3).

Suppose ψ ∈ T . If (i, j, ai j) ∈ ψ then (ai j, i, j), ( j, ai j, i) ∈ ψ. Therefore (i, j, ai j) ∈ ψ
implies that either i = j = ai j or i , j , ai j , i, since ψ is a transversal. If i = j = ai j then
3i ≡ 0 (mod n) by (3.14). Let Xψ = {i ∈ Zn : (i, i, i) ∈ ψ}. So n = |ψ| ≡ |Xψ| (mod 3) and
Xψ = {0} if 3 does not divide n.

Case I: n ≡ 2 (mod 3). Then n = |ψ| ≡ |Xψ| = 1 (mod 3) giving a contradiction. Hence
T = ∅ and zn ≡ |T | = 0 (mod 3). This case was previously proved in [221].

Case II: n ≡ 1 (mod 3). Again n = |ψ| ≡ |Xψ| = 1 (mod 3). By removing the ordering
upon the triplets in ψ \ {(0, 0, 0)} we construct a partition of {1, 2, . . . , n − 1} into parts of size
3 and sum congruent to 0 (mod n). Reversing the process, any such partition can be used to
generate 2(n−1)/3 transversals of A. As a result zn ≡ 2(n−1)/3ζ(n) ≡ ζ(n) (mod 3).

Case III: n ≡ 0 (mod 3). Follows from Theorem 3.3.6 since 3 divides n and n , 3. �

Figure 3.11 shows the values of ζ(n) for some small values of n ≡ 1 (mod 6), computed
by Ian Wanless (private communication). Every solution to Heffter’s First Difference Problem
can be used to construct one of the partitions counted by ζ(n). Hence [22] implies that
ζ(n) > 2b(n−1)/12c for sufficiently large n ≡ 1 (mod 6). While ζ increases at least exponentially,
we only require the value of ζ(n) (mod 3) for Theorem 3.3.8. In the following theorem, we
will show that ζ(n) ≡ 1 (mod 3) for primes of the form 2 · 3k + 1 (Sloane’s A111974). A
necessary and sufficient condition for the primality of 2 · 3k + 1 was given by [331, 332] (see
also [28]).

n 1 7 13 19 25 31 37 43 49 55
ζ(n) 1 1 5 52 1055 31814 1403925 83999589 6567620752 649233882590

(mod 3) 1 1 2 1 2 2 0 0 1 2

F 3.11: Values of ζ(n) for some small values of n ≡ 1 (mod 6).

Theorem 3.3.9. Let n be a prime of the form 2 · 3k + 1. Then zn ≡ 1 (mod 3).

Proof. The theorem is true when n = 3, since z3 = 1, so assume k > 1. By Theorem 3.3.8,
it is sufficient to show that ζ(n) ≡ 1 (mod 3). Let P be the set of partitions counted by ζ(n).
Let R = ∪P∈PP.
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The multiplicative group Z∗n of integers modulo n is cyclic because n is prime. Moreover,
there exists a cyclic subgroup G < Z∗n of order 3k. The natural action of G partitions P
into orbits of cardinality in {1, 3, 32, . . . , 3k}. Let P∗ be the set of all partitions in P that are
stabilised by G. Hence ζ(n) ≡ |P∗| (mod 3) and it is sufficient to show that |P∗| = 1.

Observe that the orbits of G on R have size 3k or 3k−1 since each p ∈ R has cardinality 3.
Each P ∈ P has precisely 2 · 3k−1 parts. Therefore, if P ∈ P∗ then the action of G partitions
P into exactly two orbits of cardinality 3k−1. The Orbit-Stabiliser Theorem implies that the
stabiliser of each part p ∈ P has order 3, and hence must be the unique subgroup H 6 G of
order 3. It follows that P∗ consists of the unique partition of Zn \ {0} induced by the action of
H. So |P∗| = 1. �

3.3.3 Polynomial and compatible orthomorphisms
A permutationσ of Zn is called a polynomial permutation if for some integer polynomial f we
have σ(i) ≡ f (i) (mod n) for all i ∈ Z. We say σ is described by f . If σ is an orthomorphism
and a polynomial permutation then σ is called a polynomial orthomorphism. Let πn be the
number of canonical polynomial orthomorphisms of Zn. If σ is a polynomial orthomorphism
of Zn described by f and r is an integer polynomial such that r(i) ≡ 0 (mod n) for all i ∈ Z,
then σ is also described by f + r. Linear orthomorphisms are simple examples of polynomial
orthomorphisms.

Polynomial orthomorphisms of finite fields have been studied, for example, by Niederre-
iter and Robinson [247] and Wan [319] (see also [309]), who showed that, for any finite field
Fq where q > 4, every orthomorphism is described by a polynomial of degree at most q − 3.
Evans [109] also discussed polynomial orthomorphisms of finite fields. In this section, we
instead study polynomial orthomorphisms over the ring Zn.

Theorem 3.3.10. There exists an orthomorphism of Zn that is not described by any integer
polynomial if and only if n is an odd composite number.

Proof. If n = 1 the theorem is true. If n is even then there are no orthomorphism of Zn

and the theorem is vacuously true. If n is prime then Zn is a finite field and hence every
orthomorphism of Zn is described by a polynomial.

Now suppose n is an odd composite number. Let d be a proper divisor of n and let σ be
an orthomorphism of Zn such that σ(0) = 0 and σ(d) = 1. Grüttmüller [142] showed that σ
exists. If f describes σ, then f (0) ≡ 0 . 1 ≡ f (d) ≡ f (0) (mod d), giving a contradiction.

�

An orthomorphism σ of Zn is called compatible if σ is d-compound for all divisors d of
n. This definition follows Nöbauer [249]. Let λn denote the number of canonical compatible
orthomorphisms of Zn. Clearly, every polynomial orthomorphism is compatible, therefore
πn 6 λn for all n. However, it is not obvious whether or not every compatible orthomorphism
is a polynomial orthomorphism – the argument in the proof of Theorem 3.3.10 cannot be
applied to compatible orthomorphisms.

We will now show that every compatible orthomorphism of Z21 is a polynomial ortho-
morphism. There are 5 linear orthomorphisms of Z21, described by 2i, 5i, 11i, 17i and 20i,
and 14 other canonical polynomial orthomorphisms of Z21 described by

fa(i) = i4 + (4a + 2)i3 + (6a2 + 6a + 5)i2 + (4a3 + 6a2 + 10a − 6)i (3.15)
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and i− fa(i) for 0 6 a 6 6. This is a complete list of the canonical compatible orthomorphisms
of Z21. Hence π21 = λ21 = 19. This raises the question, for what other values of n does
πn = λn? That is, when is every compatible orthomorphism a polynomial orthomorphism?
We will later answer this question with Theorem 3.3.15.

Property 3.3.11. If κ is a canonical compatible orthomorphism of Zdt, then κ is of the form
κ = κd,t[σ0, σ1, . . . , σd−1; µ] as in (3.13) where σ0, σ1, . . . , σd−1 and µ are compatible ortho-
morphisms. Moreover, if κ is described by the polynomial f , then µ is described by f and σk

is described by gk where gk(i) = f (di + k) for all 0 6 k 6 d − 1.

Proof. By assumption, κ is d-compound, so Property 3.3.1 implies that κ is of the form
κ = κd,t[σ0, σ1, . . . , σd−1; µ] as in (3.13). Suppose there exists a divisor t′ of t such that
σk(i) . σk( j) (mod t′) while i ≡ j (mod t′) for some i, j ∈ Zt and k ∈ Zd. Then (3.13)
implies κ(di+k) . κ(d j+k) (mod dt′) while di+k ≡ d j+k (mod dt′), giving a contradiction.
Next, suppose there exists a divisor d′ of d such that µ(i) . µ( j) (mod d′) while i ≡ j
(mod d′) for some i, j ∈ Zd. Then (3.13) implies κ(i) . κ( j) (mod d′), giving a contradiction.
Therefore σ0, σ1, . . . , σd−1 and µ are all compatible.

Now suppose κ is described by the polynomial f . Then µ(i) ≡ f (i) (mod d) and σk(i) ≡
f (di + k) (mod t) for all i and 0 6 k 6 d − 1. �

Property 3.3.11 is a modified version of Property 3.3.1 for compatible and polynomial
orthomorphisms. The converse of Property 3.3.11 is false for both compatible and polynomial
orthomorphisms. For example, consider the orthomorphism defined by

κ = κ5,3[η2,3, η2,3, η2,3, η2,3, η2,3; η2,5].

Then κ(0) = 0 and κ(3) = 1 and therefore κ is not compatible or polynomial, while η2,3 and
η2,5 are both polynomial and therefore compatible. However, Property 3.3.13 will show that
the converse is true when dt is a prime power. We will now extend Property 3.3.11 in the case
when gcd(d, t) = 1.

Property 3.3.12. Suppose gcd(d, t) = 1 and let κ be a canonical compatible orthomorphism
of Zdt. Then κ = κd,t[σ0, σ1, . . . , σd−1; µ] as in (3.13) and is uniquely determined by σ0 and µ.
Moreover, if κ is a canonical polynomial orthomorphism then it is described by

fκ(i) = tφ(d) fµ(i) + d fσ0(d
φ(t)−1i), (3.16)

where φ is the Euler φ-function and fµ and fσ0 are integer polynomials that describe µ and
σ0 respectively.

Proof. Property 3.3.1 implies that κ = κd,t[σ0, σ1, . . . , σd−1; µ] as in (3.13). Given µ and
σ0 we can define κ by κ(i) ≡ µ(i) (mod d) and κ(i) ≡ σ0( j) (mod t) for all i ∈ Zdt and
j ≡ i (mod t). Using the Chinese Remainder Theorem, κ is uniquely determined. It is
straightforward to show that κ defined in this way is indeed an orthomorphism.

If κ is a polynomial orthomorphism, Property 3.3.11 implies that µ and σ0 are also poly-
nomial orthomorphisms. Assume µ and σ0 are described by fµ and fσ0 , respectively. It is
straightforward to show that fκ as given by (3.16) describes an orthomorphism. Since d and t
are coprime, Euler’s Totient Theorem implies that tφ(d) ≡ 1 (mod d) and dφ(t) ≡ 1 (mod t). It
follows that fκ(i) ≡ µ(i) (mod d) and fκ(di) ≡ d fσ0(d

φ(t)i) ≡ d fσ0(i) ≡ dσ0(i) (mod t), which
implies that fκ describes κ since d and t are coprime. �
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It follows from Properties 3.3.11 and 3.3.12 that λn and πn are multiplicative functions,
that is

λn =
∏
p∈Pn

λpa and πn =
∏
p∈Pn

πpa (3.17)

where Pn is the set of prime divisors of n and a = a(p, n) is the largest integer such that pa

divides n.

Property 3.3.13. If κ = κd,t[σ0, σ1, . . . , σd−1; µ] as in (3.13) such that σ0, σ1, . . . , σd−1 and µ
are all compatible orthomorphisms, then κ is d′-compound for all divisors d′ of n such that
either d divides d′ or d′ divides d.

Proof. Immediate from (3.13). �

We will now ready to give a formula for λpa .

Theorem 3.3.14. Let p be a prime and a > 1. Then

λpa = p(pa−1)/(p−1)−az(pa−1)/(p−1)
p .

Proof. Properties 3.3.11 and 3.3.13 imply that every compatible orthomorphism of Zpa is
of the form κ = κpa−1,p[σ0, σ1, . . . , σp−1; µ] as in (3.13) where σ0, σ1, . . . , σp−1 and µ are all
compatible. Therefore

λpa = ppa−1−1λpa−1

p λpa−1

for all a > 1. Through repeated application we obtain

λpa = ppa−1−1λpa−1

p λpa−1 = ppa−1−1+pa−2−1λpa−1+pa−2

p λpa−2 = · · · = p(pa−1)/(p−1)−aλ(pa−1)/(p−1)
p

using the identity
∑a−1

i=0 pi = (pa − 1)/(p − 1). We then use λp = zp. �

Figure 3.12 plots some of the values of λn for odd n in the range 1 6 n 6 119. It was
computed from Theorem 3.3.14 and the data in Figure 3.2. Clearly λn behaves erratically.
The value of λ121 has 53 digits and is literally off the chart.
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F 3.12: Some values of λn for n in the range 1 6 n 6 120, on a logarithmic scale.

We are now ready to classify when πn = λn.
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Theorem 3.3.15. When n is odd, πn = λn if and only if n = 3a35a5 p1 p2 · · · pr for r > 0, a3 6 3,
a5 6 2 and distinct primes pi > 7.

Proof. Nöbauer [249] showed that all compatible permutations can be described by an integer
polynomial if and only if n = 2a23a3 p1 p2 · · · pr for distinct primes pi > 5 and a2 6 3, a3 6 2.
Consequently, πn = λn if n = 3a35a5 p1 p2 · · · pr for distinct primes pi > 7 and a3 6 2 and
a5 6 1. Later we will show that πn = λn also when a3 6 3 and a5 6 2.

We will now construct canonical compatible orthomorphisms of Zpa for prime p > 7 and
a > 2 that are not polynomial orthomorphisms. To begin, observe that if f is any integer
polynomial such that f (0) = 0 then

2 f (pa−1) ≡ f (2pa−1) (mod pa). (3.18)

Therefore, if there exists an orthomorphism σ0 of Zp such that σ0(0) = 0, σ0(1) = 2 and
σ0(2) = 1 then κ = κpa−1,p[σ0, σ1, . . . , σpa−1−1; µ] cannot be a polynomial orthomorphism
since it would not satisfy (3.18). Cavenagh, Hämäläinen and Nelson [51] showed that σ0

exists for p > 11. When p = 7 we can instead use σ0 = (0)(153462) and again κ cannot be a
polynomial orthomorphism because of (3.18). Given σ0, we may choose σ1, σ2, . . . , σpa−1−1

to be any orthomorphisms of Zp and µ to be any canonical compatible orthomorphism of
Zpa−1 , then Property 3.3.13 implies that κ is compatible. Therefore πpa < λpa for prime p > 7
and a > 2. Now we will handle the other odd primes, 3 and 5.

Claim: For p ∈ {3, 5}, every compatible orthomorphism of Zpa is described by a polyno-
mial if and only if there exists an integer polynomial r such that r(i) ≡ pa−1 (mod pa) if pa−1

divides i and r(i) ≡ 0 (mod pa) otherwise.

⇐ Every orthomorphism σ of Z3 and Z5 satisfies σ(i) ≡ η(i) + k where η is a linear
orthomorphism and k is some integer constant. Therefore, using Property 3.3.11 it is
straightforward to construct an arbitrary compatible orthomorphism of Zpa as the sum
of some affine transformations of r.

⇒ Define η′2,p by η′2,p(i) ≡ 2i + 1 (mod p). Let f1 be an integer polynomial that describes
the orthomorphism κpa−1,p[η2,p, η2,p, . . . , η2,p; η2,pa−1] and let f2 be an integer polyno-
mial that describes the orthomorphism κpa−1,p[η2,p, η

′
2,p, η2,p, η2,p, . . . , η2,p; η2,pa−1]. Prop-

erty 3.3.13 implies that both f1 and f2 exist. Then r defined by r(i) = f2(i+1)− f1(i+1)
satisfies the claim.

Now we will identify the following cases when r, satisfying the claim, exists. When n = 32,
we can take r(i) = 6i2 + 3. When n = 33, we can take r(i) = (i − 1)(i − 2)(i − 3)(i − 4)(i −
5)(i − 6)(i − 7)(i − 8). When n = 52, we can take r(i) = 20i4 + 5. The claim therefore implies
that π9 = λ9, π27 = λ27 and π25 = λ25. Next we will show that r, satisfying the claim, cannot
exist for greater powers of 3 and 5.

When n = 34, let r(i) = a0 + a1i + i2g(i) for some integer polynomial g and integers a0, a1.
We require r(0) ≡ 27 (mod 81) so a0 ≡ 27 (mod 81). We also require r(9) ≡ 0 (mod 81)
implying a1 ≡ −3 (mod 9) and r(18) ≡ 0 (mod 81) implying a1 ≡ 3 (mod 9). Therefore r
cannot be realised and π81 < λ81.

When n = 53, let r(i) = a0 + a1i + a2i2 + i3g(i) for some integer polynomial g and integers
a0, a1, a2. We require a0 ≡ 25 (mod 125). We also require r(5) ≡ r(10) ≡ r(15) ≡ 0
(mod 125), giving the three congruences 25 + 5a1 + 25a2 ≡ 0, 25 + 10a1 + 100a2 ≡ 0 and
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25 + 15a1 + 225a2 ≡ 0 (mod 125), which cannot be simultaneously satisfied. Therefore r
cannot be realised and π125 < λ125.

Suppose µ is a canonical compatible orthomorphism of Zd and is not described by any in-
teger polynomial. Then Property 3.3.11 implies that we can choose σ0, σ1, . . . , σd−1 such that
κ = κd,t[σ0, σ1, . . . , σd−1; µ] is a compatible orthomorphism of Zdt that cannot be described
by any integer polynomial. Therefore if πd < λd then πdt < λdt. In particular, πpa < λpa if
p = 3 and a > 4 or p = 5 and a > 3.

To review, we have shown that every compatible orthomorphism of Zpa , for prime p > 3,
is described by an integer polynomial if and only if either (a) p = 3 and a ∈ {1, 2, 3}, (b) p = 5
and a ∈ {1, 2} or (c) p > 7 and a = 1. The result now follows from (3.17). �

We will now identify some more properties of polynomial orthomorphisms.

Property 3.3.16. An integer polynomial f describes a polynomial orthomorphism of both Zd

and Zt if and only if f describes a polynomial orthomorphism of Zlcm(d,t).

Proof. Assume f describes a polynomial orthomorphism of both Zd and Zt. If i . j (mod d)
then:

• f (i) . f ( j) (mod d) and hence f (i) . f ( j) (mod lcm(d, t)) and

• f (i) − i . f ( j) − j (mod d) and hence f (i) − i . f ( j) − j (mod lcm(d, t)).

Similar statements hold i . j (mod t). Hence f describes a polynomial orthomorphism of
Zlcm(d,t).

Now assume f describes a polynomial orthomorphism σ of Zlcm(d,t). Then σ is compat-
ible, and in particular {d, t}-compound. Therefore f also describes a polynomial orthomor-
phism of both Zd and Zt. �

Property 3.3.17. Let p be prime and a > 2. Then f describes a polynomial orthomorphism of
Zpa if and only if f describes a polynomial orthomorphism of Zp and f ′(i) . 0 or 1 (mod p)
for all i ∈ Z, where f ′ is the derivative of f .

Proof. Nöbauer [248] showed that f describes a permutation of Zpa if and only if f describes
a permutation of Zp and f ′(i) . 0 (mod p) for all i ∈ Z. Consequently f and f ∗, defined by
f ∗(i) = f (i)− i, simultaneously describe permutations of Zpa (that is f describes a polynomial
orthomorphism of Zpa) if and only if (a) f describes a permutation of Zp, (b) f ∗ describes a
permutation of Zp, (c) f ′(i) . 0 (mod p) for all i ∈ Z and (d) ( f ∗)′(i) = f ′(i)−1 . 0 (mod p)
for all i ∈ Z. �

For example, consider f defined by f (i) = i4 + 4i3 − i2 + i. Then f describes a poly-
nomial orthomorphism of Z3 and Z7. Property 3.3.16 implies that f describes a polynomial
orthomorphism of Z21. In fact f describes the same orthomorphism of Z21 as f4 in (3.15).
However, f ′(0) = 1 and therefore Properties 3.3.16 and 3.3.17 together imply that f does not
describe a polynomial orthomorphism of Zn for any n that is divisible by the square of any
prime.

For another example, consider f defined by f (i) = pr(i) + ki, where p is prime, 2 6 k 6
p − 1 and r is any integer polynomial. Then f describes a linear (and hence polynomial)
orthomorphism of Zp and moreover f ′(i) ≡ k (mod p) for all i. Property 3.3.17 implies that
f describes a polynomial orthomorphism of Zpa for all a.

Properties 3.3.16 and 3.3.17 together imply the following corollary.
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Property 3.3.18. An integer polynomial f describes an orthomorphism of Zn if and only if
for all prime divisors p of n, (a) f describes a polynomial orthomorphism of Zp and (b) if p2

divides n, then f ′(i) . 0, 1 (mod p) for all i ∈ Z.

3.3.4 Partial orthomorphism completion
We say that a partial orthomorphism ν : S → Zn has size a := |S |. Suppose d is a proper
divisor of n, such that for any i, j ∈ S , if ν(i) . ν( j) (mod d) then i . j (mod d), then ν is
called a partial d-compound orthomorphism of Zn. If ν is a partial orthomorphism of Zn such
that there exists an orthomorphism σ of Zn for which ν(i) = σ(i) for all i ∈ S , then we say ν
admits a completion.

Let ρa,n be the proportion of partial orthomorphisms of Zn of size a that admit a com-
pletion. Since zn = 0 for even n, we will only discuss odd n. We list some values of ρa,n

in Figure 3.13 obtained by through a computer search and verified by Ian Wanless (private
communication). For odd n:

• ρ1,n = ρ2,n = ρn−1,n = ρn,n = 1 using results of Grüttmüller [142] and Evans [109, p. 14].

• Grüttmüller2 [143] asked if ρa,n = 1 for n > 3a − 1, having shown that:

(a) ρa,n < 1 when 3 6 a 6 n − 2 and n 6 3a − 2 and

(b) ρa,n = 1 when 2 6 a 6 7 and 3a − 1 6 n 6 21 by a computer search.

• Cavenagh, Hämäläinen and Nelson [51] showed that ρ3,n = 1 for prime n > 11.

Lemma 3.3.19. If 2 6 a 6 n − 2 and ρa,n = 1 then ρa−1,n = 1.

Proof. We already observed that the lemma is true when a = 2, so assume 3 6 a 6 n − 2.
If n 6 3a − 2 then ρa,n < 1, so the lemma is vacuously true. We can therefore assume
n > 3a − 2 > 2a − 1. Let ν : S → Zn be an arbitrary partial orthomorphism of Zn of size
a − 1. Let U be the range of ν. Choose any s ∈ Zn \ S . It is sufficient to find u ∈ Zn \ U
such that u − s . ν(i) − i for all i ∈ S , since then we may append s 7→ u to ν to create a
partial orthomorphism of Zn of size a. This would then imply that ν admits a completion,
since ρa,n = 1 by assumption. Since {ν(i) − i : i ∈ S } has cardinality a − 1, a suitable u exists
if |Zn \ U | = n − (a − 1) > a − 1, which is true as n > 2a − 1. �

Therefore, for odd n > 5 there exists an a′ 6 (n + 2)/3 such that ρ0,n = ρ1,n = · · · =

ρa′,n = 1 and ρa′+1,n, ρa′+2,n, . . . , ρn−2,n < 1. The upper bound on a′ comes from the result of
Grüttmüller.

Theorem 3.3.20. Suppose ν : S → Zn is a partial d-compound orthomorphism of Zn of size
a. For i ∈ Zn let Si = {s ∈ S : s ≡ i (mod d)} and let b = maxi(|Si|). If ρa,d = ρb,n/d = 1 then ν
admits a completion.

Proof. By Lemma 3.3.19 and (3.13) it is possible to construct a completion of ν. �

2The proof of Theorem 2 in [143] gave a construction that was used to deduce that ρa,n < 1 whenever
n 6 3a − 2 and a is odd or n 6 3a − 3 and a is even. This is correct except when a = n − 1, n is odd and n > 3.
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n = 3 5 7 9 11
a = 1 1 1 1 1 1

2 1 1 1 1 1
3 1 3/5 79/85 1 1
4 1 91/181 306/331 1
5 1 19/43 460/871 10453/11053
6 1 41/116 8292/14827
7 1 75/194 3264/10661
8 1 3409/14607
9 1 3441/11197

10 1
11 1

F 3.13: Some values of ρa,n.

In particular, we have already observed that if b 6 2 in Theorem 3.3.20 then ρb,n/d = 1 if
n/d is odd and n/d > 3.

Theorem 3.3.21. Suppose n is the product of r pairwise-coprime odd factors f1, f2, . . . , fr

where r > 3a − 1
2

(
3 +

⌈
3a1/2⌉) and suppose ρa,n/ f1 = ρa,n/ f2 = · · · = ρa,n/ fr = 1. Then ρa,n = 1.

Proof. Let ν be an arbitrary partial orthomorphism of Zn of size a. Let R = {1, 2, . . . , r} and
for any X ⊆ R let fX =

∏
x∈X fx.

It is sufficient to find X ⊂ R, of cardinality less than r, such that for any distinct i, j ∈ S
we have i . j, ν(i) . ν( j) and ν(i)− i . ν( j)− j (mod fX). Given such an X, choose d = n/ fc

for some c ∈ R \ X (which is non-empty since |R| = r > |X|). By Theorem 3.3.20, since
ρa,n/ fc = 1, ν admits a completion to a d-compound orthomorphism of Zn.

Let P1, P2 and P3 be the partitions of S induced by congruence modulo fX on the sets
S = {i : i ∈ S }, {ν(i) : i ∈ S } and {ν(i) − i : i ∈ S }, respectively. Let P = {p1 ∩ p2 ∩ p3 : p1 ∈

P1, p2 ∈ P2, p3 ∈ P3}, which is called the meet of P1, P2 and P3.
We begin with X = ∅ and P = P1 = P2 = P3 = {S }. We then progressively add elements

to X until |P1| = |P2| = |P3| = |P| = a. If i and j are in the same part in P1 then, since i . j
(mod n), we can increase |P1| by increasing |X| by one. Similar statements hold for |P2| and
|P3| since then ν(i) . ν( j) and ν(i) − i . ν( j) − j (mod n), respectively. Moreover, if i and
j are in the same part in P then we can increase |P1| + |P2| + |P3| by at least two by adding
a single new element, say e, to X. This is because it is impossible for precisely two of the
congruences i ≡ j, ν(i) ≡ ν( j) and ν(i) − i ≡ ν( j) − j to hold modulo fe.

We work in two stages. Stage 1 is when |P| < a. We choose i and j in the same part of P
and separate them by adding an element to X. Stage 1 ends when |P| = a. In Stage 2 we add
elements to X that will increase at least one of |P1|, |P2| or |P3|. Suppose we add α elements
to X in Stage 1 and β elements to X in Stage 2. Observe that |P1| + |P2| + |P3| increases by
at least two for every element added to X in Stage 1 and by at least one thereafter. Initially,
|P1|+ |P2|+ |P3| = 1 + 1 + 1 = 3, while at the end of Stage 2, |P1|+ |P2|+ |P3| = a + a + a = 3a.
Hence 2α + β 6 3(a − 1). So |X| = α + β 6 3

2 (a − 1) + 1
2β after Stage 2.

Claim: At the end of Stage 1, |P1| · |P2| · |P3| > a3/2. Assume for some i ∈ {1, 2, 3} that we
have |Pi| =

1
ε
a1/2 for some ε > 1 (otherwise the claim is trivial). Then Pi must contain a part Q

of cardinality at least a/|Pi| = εa1/2. Let j, k be such that {i, j, k} = {1, 2, 3}. If q, q′ ∈ Q and q
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and q′ are in the same part in P j (resp. Pk), then q and q′ are in the same part in Pk (resp. P j),
contradicting that |P| = a. Therefore |P j| > εa1/2 and |Pk| > εa1/2. So |P1| · |P2| · |P3| > εa3/2

where ε > 1, thus proving the claim.
Now the Arithmetic Mean-Geometric Mean Inequality implies that |P1| + |P2| + |P3| >

3(|P1| · |P2| · |P3|)1/3 > 3a1/2 at the end of Stage 1. It follows that β 6 3a −
⌈
3a1/2⌉ and |X| 6

3a− 1
2

(
3+

⌈
3a1/2⌉) at the end of Stage 2. Hence the theorem holds for r > 3a− 1

2

(
3+

⌈
3a1/2⌉). �

We now consider partial orthomorphisms of size 3. As discussed earlier, ρ3,n = 1 for
prime n < {2, 5, 7} and odd n in the range 9 6 n 6 21. It remains unresolved if ρ3,n = 1 for all
odd n > 9. However, by Theorem 3.3.21, it is sufficient to show that ρ3,n = ρ3,5n = ρ3,7n = 1
for all composite n > 25 with |Pn| 6 4, where Pn is the set of prime divisors of n. Fur-
thermore, many partial orthomorphisms of size 3 can be shown to admit a completion using
Theorem 3.3.20. Theorem 3.2.4 and Figure 3.5 imply that the number of partial orthomor-
phisms of Zn of size 3 is given by

1
6

n2(n − 1)(n − 2)(n2 − 6n + 10). (3.19)

Theorem 3.3.22. Suppose n is odd and has a divisor d such that d is prime or d 6 21. Then
ρ3,n > 1 − 9/d.

Proof. The theorem is trivially true when d 6 7, so assume d > 9. If d = n, then n is prime
or n 6 21, so ρ3,n = 1 by [51] and [143], so assume d < n.

Given a partial orthomorphism ν on domain {s1, s2, s3} we can define a pair of vectors
~s = (s1, s2, s3) and ~u = (u1, u2, u3) such that ν(si) = ui for 1 6 i 6 3. In fact ν defines 3! such
pairs of vectors. Conversely, given two such vectors ~s, ~u ∈ Z3

n sometimes si 7→ ui defines a
partial orthomorphism.

Let N be the set of all (~s, ~u) ∈ Z3
n × Z

3
n for which si . s j, ui . u j and ui − si . u j − s j

(mod d), for all 1 6 i < j 6 3. Hence

|N | > n6 − 3
(
3
2

)
n6

d
.

Each (~s, ~u) ∈ N defines a partial d-compound orthomorphism by si 7→ ui. Since ρ1,d =

ρ1,n/d = 1, Theorem 3.3.20 implies that each partial orthomorphism si 7→ ui admits a comple-
tion to a d-compound orthomorphism. Therefore there are at least 1

6 |N| =
1
6n6(1−9/d) partial

orthomorphisms of Zn of size 3 that admit a completion. The result now follows from (3.19),
which implies that there are less than n6/6 partial orthomorphisms of Zn of size 3 in total. �

If (ni) is a sequence of odd positive integers such that the greatest prime divisor gpd(ni)→
∞ as i→ ∞ then Theorem 3.3.22 implies ρ3,ni → 1, that is, a partial orthomorphism of Zni of
size 3 admits a completion asymptotically almost surely.

3.3.5 Orthogonal compound orthomorphisms
Two orthomorphisms φ and φ′ of Zn are orthogonal if i 7→ φ(i) − φ′(i) is a permutation of
Zn. Let ωn be the cardinality of the largest set of mutually-orthogonal orthomorphisms of Zn.
Evans [111, 112] proved that if n > 3 is odd and indivisible by 9 then ωn > 2.
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Theorem 3.3.23. Let φ := κd,t[σ0, σ1, . . . , σd−1; µ] and φ′ := κd,t[σ′0, σ
′
1, . . . , σ

′
d−1; µ′] be two

canonical d-compound orthomorphisms, as in (3.13). Then φ is orthogonal to φ′ if and only
if σi is orthogonal to σ′i for all i and µ is orthogonal to µ′.

Proof. Assume that φ is orthogonal to φ′. Suppose, seeking a contradiction, that there exists
0 6 k 6 d − 1 and distinct 0 6 i, j 6 t − 1 such that σk(i) − σ′k(i) ≡ σk( j) − σ′k( j) (mod t).
Then φ(id + k) − φ′(id + k) ≡ φ( jd + k) − φ′( jd + k) (mod n), giving a contradiction. Hence
σk is orthogonal to σ′k. Instead suppose µ(i) − µ′(i) ≡ µ( j) − µ′( j) (mod d) for some distinct
0 6 i, j 6 d − 1. Then by (3.13), there are at least 2t distinct values of 0 6 r 6 n− 1 such that
φ(r) − φ′(r) ≡ µ(i) − µ′(i) (mod d), giving a contradiction. Hence µ is orthogonal to µ′.

Now assumeσk is orthogonal toσ′k for all 0 6 k 6 d−1 and µ is orthogonal to µ′. Suppose
φ(i) − φ′(i) ≡ φ( j) − φ′( j) (mod n) for some distinct 0 6 i, j 6 n − 1. Through the use of
translations, we may assume that j = 0. Therefore, for some 1 6 i 6 n − 1, φ(i) − φ′(i) ≡ 0
(mod n), since φ and φ′ are both canonical. Hence µ(i) ≡ µ′(i) (mod d) and so i ≡ 0 (mod d),
since µ and µ′ are orthogonal and both canonical. By (3.13), dσ0(i/d) − dσ′0(i/d) ≡ 0
(mod n) where 0 6 σ0(i/d), σ′0(i/d) 6 t − 1. Therefore σ0(i/d) = σ′0(i/d). Since σ0 and σ′0
are orthogonal and both canonical, this only happens when i/d ≡ 0 (mod t) and therefore
i ≡ 0 (mod n). �

Corollary 3.3.24. If n = dt, then the largest set of mutually-orthogonal d-compound ortho-
morphisms of Zn has cardinality min(ωd, ωt). Hence ωn > min(ωd, ωt).

A set of mutually-orthogonal orthomorphisms of Zn can be used to construct a set of
mutually-orthogonal Latin squares, as discussed by Evans [109, p. 7]. Corollary 3.3.24 is re-
lated to a result of MacNeish [213]: if Nn is the maximum size of a set of mutually-orthogonal
Latin squares of order n and n = dt, then Nn > min(Nd,Nt).



CHAPTER 4

Autotopisms

This chapter focuses on autotopisms of Latin squares. We begin with the work in [307].
Throughout this thesis we have been seeking divisibility properties of Rn through the study
of isotopisms and autotopisms of Latin squares. This raises the following question.

Question 4.0.25. What is the largest divisor of Rn that can be found through the study of
autotopisms alone?

Since we are using a group of isotopisms, the best congruence for Ln we could conceiv-
ably find would be Ln (mod n!3). Since Rn = n!(n − 1)!Ln by (1.2), the best congruence for
Rn we could conceivably find is Rn (mod n!n). Let q be a fixed prime. In Corollary 4.1.2 we
show that qa divides Rn where a = n/(q − 1) − O(log2 n) as n → ∞. For comparison, the
largest a such that qa divides n!n is a 6 logq n +

∑
k>1

⌊
n/qk⌋ 6 n/(q − 1) + logq n.

Using a similar technique, we are able to bound the maximum number of subsquares in
a Latin square in Section 4.2. Previous results on the maximum number of subsquares in a
Latin square were given by Heinrich and Wallis [156] (see also [224]) for 2 × 2 subsquares,
van Rees [317] for 3×3 subsquares and Browning, Vojtěchovský and Wanless [35] for general
k × k subsquares, which we will improve when k > 6.

Afterwards we follow the work in [303]. In Section 4.3 we make further progress in
classifying which isotopisms θ ∈ In are the autotopism of some Latin square. We define
Ωn ⊆ In to be the set of isotopisms θ for which there exists a Latin square L of order n with
θ ∈ Atop(L). We improve upon several theorems by Falcón [113], which give conditions for
θ ∈ Ωn. For example, Theorems 4.3.8 and 4.3.11 give strong necessary conditions for when
θ ∈ Ωn. Corollary 4.3.9 gives a generalisation of Lemma 1.2.8.

In Section 4.3 we aim our focus at classifying which isomorphisms are automorphisms,
which are of particular value in the study of quasigroups. This also has implications for Ωn,
for example, in Theorem 4.3.13 we show that θ = (α, β, γ) < Ωn if n ≡ 2 (mod 4) and every
cycle in α, β and γ has length congruent to 2 (mod 4) (fixed points are 1-cycles). This builds
upon a condition given by McKay, Meynert and Myrvold [222, Lem. 4(ii)] and theoretically
resolves several cases of when θ < Ωn that were identified by an exhaustive search by Falcón
[113].

It is known that if θ = (η, η, η) such that η is an n-cycle for even n then θ < Ωn (this
is equivalent to the non-existence of othomorphisms for even n – see Section 3). In Theo-
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rem 4.3.16 this result is generalised; we show that θ < Ωn if θ = (η, η, η) such that η consists
of an odd number of even cycles of the same length without fixed points. Moreover, Theo-
rem 4.3.17 gives necessary and sufficient conditions for θ ∈ Ωn where θ = (η, η, η) ∈ In such
that η consists of cycles of the same length and possibly some fixed points. In Section 4.3.4
we give necessary and sufficient conditions for when θ ∈ Ωn where θ = (η, η, η) ∈ In such
that η consists of two cycles and possibly some fixed points. We also identify Ω12, Ω13 and
Ω14 in Appendix A.4.

4.1 How large can an autotopism group be?
Let L be a Latin square of order n. By a similar argument to (1.1) we can deduce that

Red(L) =
n!n

|Atop(L)|
(4.1)

where Red(L) is the number of reduced Latin squares isotopic to L. Let τ(n) = gcdL
(
Red(L)

)
where the gcd is over all Latin squares L of order n. It immediately follows that τ(n) divides
Rn. In the next section, we will find an asymptotic lower bound on the largest a such that
qa divides τ(n) as n → ∞, for any fixed prime q. The values of τ(n) for 1 6 n 6 11 are
given in Figure 4.1 and were obtained from the data by McKay, Meynert and Myrvold [222]
and Hulpke, Kaski and Östergård [164]. By using the proof template in Section 2.1 it is
straightforward to show that (dn/2e − 1)! divides τ(n) for n > 3.

If we find a divisor d of τ(n) then d also divides Rn. To find divisors of τ(n) we will find a
bound on the maximum size of the autotopism group of a Latin square L and then use (4.1).
For small n, the divisor d will also be small and, in fact, d will divide (dn/2e − 1)! which we
already know is a divisor of Rn by Theorem 1.1.5 on page 3. However, for large n, we will
improve upon Theorem 1.1.5.

n 1 2 3 4 5 6 7 8 9 10 11
τ(n) 1 1 1 1 2 4 6 6 24 96 240

1 1 1 1 2 22 2·3 2·3 23·3 25·3 24·3·5

F 4.1: The values of τ(n) for 1 6 n 6 11 along with its prime factorisation.

4.1.1 Divisors of Rn

For any n > 1 and prime q, we let q(n) be the largest integer such that qq(n) divides n. In
this section, we will find an upper bound on |Atop(L)| and use it to give an asymptotic lower
bound on q(Rn).

Theorem 4.1.1. If L is a Latin square of order n, then

|Atop(L)| 6 n2
blog2 nc∏

t=1

(n − 2t−1).
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Proof. Let L = (li j) be an arbitrary Latin square of order n and let S = Atop(L). We note
that S also acts on the entries of L, with (α, β, γ) ∈ S mapping

(
i, j, li j

)
7→

(
α(i), β( j), γ(li j)

)
for i, j ∈ Zn. For any set E of entries of L, let SE be the pointwise stabiliser of E in S, that is
SE = {ζ ∈ S : ζ(e) = e for all entries e ∈ E}.

To begin, let e be an entry in the first row of L and E1 = {e}. The Orbit-Stabiliser Theorem
implies that |S| 6 n2|SE1 | since there are n2 entries in L. In order to bound |S|, we will find a
sequence (SEt)

λ
t=1 of stabiliser subgroups of S and bound |SEt |/|SEt+1 | at each step. Eventually,

when t = λ, the sequence will reach the trivial group and we can stop.
Lemma 1.2.6 on page 17 states that for any set of entries Et, there exists a unique smallest

subsquare MEt of L that contains all of the entries in Et. Therefore, Lemma 1.2.7 implies that
every ζ ∈ St stabilises every entry in MEt . Let mt be the order of MEt for all t > 1.

To construct Et+1 from Et, we add a single entry e′ to Et from the first row of L such that e′

is outside of MEt . If no such entry exists, we must have MEt = L, so we can set λ = t and stop.
The orbit of e′ under SEt is of cardinality at most n − mt since the first row of L is stabilised
by every ζ ∈ SEt . Therefore, the Orbit-Stabiliser Theorem implies that |SEt+1 | 6 (n −mt)|SEt |.

Lemma 1.2.4 implies that mt+1 > 2mt for each t > 1. Since m1 = 1, we find that mt > 2t−1

for all t > 1. We are finished no later than when 2t−1 > n, implying that λ 6
⌊
log2 n

⌋
+ 1.

Hence

|S| 6 n2|SE1 | 6 n2(n − 1)|SE2 | 6 n2(n − 1)(n − 2)|SE3 | 6 · · · 6 n2
blog2 nc∏

t=1

(n − 2t−1).

�

We can get a better feel for the accuracy of Theorem 4.1.1 by examining the autotopisms
of elementary Abelian groups. Let q be a fixed prime and n = qa and let Z be the Cayley
table of (Zq)a. It is known [13, 23, 246, 280] that |Atop(Z)| = n2(n − 1)(n − q) · · · (n − qa−1).
Therefore, the bound in Theorem 4.1.1 is achieved when n = 2a.

Corollary 4.1.2. Let q be a fixed prime. Then q(Rn) > n/(q − 1) − O(log2 n) as n→ ∞.

Proof. Let L be an arbitrary Latin square of order n. Theorem 4.1.1 implies that |Atop(L)| 6
n2+log2 n. Hence q(|Atop(L)|) 6 logq(n2+log2 n) = (2 + log2 n) · logq n = O(log2 n). By (4.1),

q
(
Red(L)

)
= q

(
n!

)
+ q

(
n
)
− q

(
|Atop(L)|

)
.

The result now follows since q(n!) =
∑

k>1

⌊
n/qk

⌋
> n/(q − 1) − logq n. �

4.2 The maximum number of subsquares of a Latin square
We will now use a similar technique to Section 4.1.1 to bound the number of k×k subsquares
in a Latin square of order n, for arbitrary k and n.

“ The number of subsquares in a Latin square is an important but
mysterious guide to the properties of Latin squares. ”—  R [317]
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Let L be a Latin square of order n. Let Ik(L) denote the number of subsquares of order k
in L. Let Tk(L) =

∑2k−1
i=k Ii(L) and let W(L) =

∑n
i=1 Ii(L).

Heinrich and Wallis [156, 224] showed that 1
45n3 6 max I2(L) 6 1

4n3 − 1
4n2 when n > 4.

Van Rees [317] gave the bound I3(L) 6 1
18n3− 1

18n2. McKay and Wanless [224] and Cavenagh,
Greenhill and Wanless [49] showed that for any ε > 0, with probability approaching 1 as
n→ ∞, a random Latin square of order n contains at least n3/2−ε and at most 9

2n5/2 intercalates,
respectively. Browning, Vojtěchovský and Wanless [35] showed that

Ik(L) 6
n
(

n
h

)
k
(

k
h

) (4.2)

where h = d(k + 1)/2e and that Ik(L) = O
(
n
√

2k+2) for fixed k as n→ ∞.
Figure 4.2 gives some values of max I2(L) (Sloane’s [290] A092237) and max I3(L) for

1 6 n 6 9. The value of max I3(L) for n = 8 was reported by Ian Wanless (private communi-
cation).

n 1 2 3 4 5 6 7 8 9 10 11 12
max I2(L) 0 1 0 12 4 27 42 112 72 > 125 > 172 > 324
max I3(L) 0 0 1 0 0 4 7 4 36

F 4.2: Some data on I2(L) and I3(L).

In Figure 4.3 we give:

• A Latin square of order 6 with 27 intercalates and 4 subsquares of order 3 and

• A Latin square of order 7 with 42 intercalates and 7 subsquares of order 3.



0 1 2 3 4 5
1 0 4 5 2 3
2 3 0 1 5 4
3 2 5 4 0 1
4 5 1 0 3 2
5 4 3 2 1 0





0 1 2 3 4 5 6
1 0 5 2 6 3 4
2 3 6 1 5 4 0
3 2 4 0 1 6 5
4 6 3 5 0 2 1
5 4 1 6 2 0 3
6 5 0 4 3 1 2


F 4.3: Some Latin squares with many subsquares.

We will now find an upper bound on Tk(L) which we will later use to find an upper bound
on Ik(L) and W(L).

Theorem 4.2.1. Let L be a Latin square of order n > 2. Then

Tk(L) 6
1

2h(h−1)/2 n2
dlog2 ke−1∏

i=0

(n − 2i)

where h =
⌈
log2 k

⌉
. Hence Tk(L) = O

(
ndlog2 ke+2) for fixed k as n→ ∞.
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Proof. In this proof we present an algorithm that will return a set S in which each E ∈ S
gives rise to a subsquare ME of order at least k. Furthermore, the set {ME : E ∈ S} will
contain every subsquare in L of order between k and 2k − 1. We will then bound the size of
|S| to obtain the stated result.

To begin, assign
S1 :=

{
{e} : e is an entry of L

}
.

The algorithm will construct a sequence of sets (St)t>1. For each t > 1, each E ∈ St will be
a set of entries of L, such that any two entries e, e′ ∈ E have the same symbol. Lemma 1.2.5
implies that, for each set of entries E, there exists a unique smallest subsquare ME of L that
contains all of the entries in E.

We will now describe how to construct St+1 from St for all t > 2. In fact, we will first
construct a set S∗t+1 from St and then construct St+1 from S∗t+1 by filtering. For each E ∈ St

we construct S∗t+1 by either:

Case I: If ME is a subsquare of order at least k, then put E in S∗t+1.

Case II: Otherwise put E ∪ {e} in S∗t+1 for every entry e of L outside of ME such that e
contains the same symbol as the entries in E.

Afterwards we filter S∗t+1 to give St+1 in the following way. If E, E′ ∈ St+1 give rise to ME

that is a subsquare of ME′ , then we delete E′ from St+1 as ME′ will be accounted for at a later
step (or if ME = ME′ then it is already accounted for). This completes the description of the
algorithm.

Eventually St = St+1 = St+2 and so on, which is where we stop and call this final set S.
In Case II, the order of ME∪{e} is at least twice the order of ME, by Lemma 1.2.4. Therefore,
every E ∈ St gives rise to a subsquare ME of order at least min(k, 2t−1). It follows that we
reach S = St no later than when 2t−1 > k, which occurs when t > log2 k + 1.

Claim: |St+1| 6
1

2t−1 |St|(n − 2t−1) for all t > 2.
In constructing St+1 from St, the algorithm maximises |St+1| when every E ∈ St requires

Case II of the algorithm. In this case, for each E ∈ St, since the order of ME is at least
2t−1, we find that |S∗t+1| 6 |St|(n − 2t−1). To prove the claim, it is now sufficient to show, that
|St+1| 6

1
2t−1 |S

∗
t+1|.

Suppose, in constructing St+1 from St, the algorithm adds E ∪ {e} to St+1 and E ∪ {e′}
to S∗t+1. Then there are no proper subsquares of ME∪{e} that contain ME except ME itself,
otherwise E ∪ {e} would have been filtered out. Therefore, if e′ is an entry of ME∪{e} outside
of ME, then ME∪{e′} = ME∪{e}. In filtering S∗t+1 to give St+1, the algorithm would therefore
have filtered out E ∪ {e′}. Since ME is a subsquare of order at least 2t−1, there are at least
2t−1 symbols e′ in ME∪{e} such that e′ is outside of ME and e′ and e have the same symbol, by
Lemma 1.2.4. Hence |St+1| 6

1
2t−1 |S

∗
t+1|, proving the claim.

We can use the above claim to give a bound for |S| since |S| = |Sdlog2 ke+1| and |S2| 6 n
(

n
2

)
.

It is therefore sufficient to prove the following claim.
Claim: Each subsquare M∗ of L of order between k and 2k − 1 is ME for some E ∈ S.
To prove the claim, we need to show that E ∈ Ss such that ME = M∗ for some s > 1. The

algorithm then retains E ∈ Ss+1,Ss+2, and so on, until the algorithm terminates, implying
E ∈ S.

Suppose F ∈ St, for some t > 1, and MF is a subsquare of M∗. Lemma 1.2.4 implies that
MF is a subsquare of M∗ of order less than k or MF = M∗. If MF = M∗, then we can set
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E = F to prove the claim, so assume MF , M∗. In going from step t to t + 1, the algorithm
puts F ∪ {e} in St+1 for some entry e of M∗, that is outside of MF . We know that MF∪{e} must
be a subsquare of M∗, since every entry of F ∪ {e} is in M∗, and the order of MF∪{e} is strictly
greater than the order of MF . If MF∪{e} , M∗ then we repeat this process with F replaced by
F ∪ {e}. Since the order of M∗ is finite, we cannot keep repeating indefinitely. Therefore, we
eventually reach E ∈ Ss for some s > t, for which ME = M∗. �

For example, we find that Ik(L) 6 T2(L) 6 1
2n2(n − 1) for k ∈ {2, 3}. However, the results

listed earlier imply that I2(L) 6 1
4n2(n − 1) and I3(L) 6 1

18n2(n − 1), so we have not made an
improvement when k ∈ {2, 3}. As another example, Ik(L) 6 T4(L) 6 1

8n2(n − 1)(n − 2) for
k ∈ {4, 5, 6, 7}. In comparison, Browning, Vojtěchovský and Wanless [35] showed that

• I4(L) 6 1
96n2(n − 1)(n − 2),

• I5(L) 6 1
300n2(n − 1)(n − 2),

• I6(L) 6 1
2160n2(n − 1)(n − 2)(n − 3) and

• I7(L) 6 1
29400n2(n − 1)(n − 2)(n − 3).

Theorem 4.2.1 therefore gives an improvement on (4.2) when k ∈ {6, 7} (and in fact, for all
k > 6), for sufficiently large n.

We can use Theorem 4.2.1 to provide an asymptotic bound on Ik(L) and W(L). The
following equation follows since Ik(L) 6 T j(L) when j = bk/2c + 1.

Ik(L) = O
(
ndlog2(bk/2c+1)e+2

)
for fixed k as n→ ∞. The next equation follows from W(L) 6 1 + n2 +

∑dlog2 ne
j=1 T2 j(L).

W(L) = O
(
ndlog2 ne+2

)
as n→ ∞.

Let p be a prime, n = pa and k = pr. For comparison, we will now consider the number of
subsquares of order k in elementary Abelian groups (Zp)a. Let Z be a Cayley table of (Zp)a.
The number of subgroups of order pr in (Zp)a is given by the Gaussian binomial coefficient[

a
r

]
=

∏r
i=1(pa−r+i − 1)/(pi − 1) when a > r (see, for example, [296]). If C1 and C2 are any

two cosets of (Zp)a, then the rows of Z indexed by C1 and columns of Z indexed by C2 form
a subsquare [71, pp. 44–45]. Therefore Ik(Z) =

[
a
r

]
p2(a−r). For comparison, when p = 2 the

bound in Theorem 4.2.1 gives

• I4(L) 6 1
8n2(n − 1)(n − 2) = 12 · I4(Z) and

• I8(L) 6 1
64n2(n − 1)(n − 2)(n − 4) = 168 · I8(Z),

where L is any Latin square of order n.
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4.3 Which isotopisms are autotopisms?
Graph automorphisms play a pivotal role in graph theory. Similarly, autotopisms and auto-
morphisms are a fundamental tool in the study of Latin squares. If we take a permutation α
of n vertices, then we can always construct a graph on those vertices that admits the auto-
morphism α, for example, the complete graph. However, as we will now discuss, for some
isotopisms θ ∈ In there does not exist any Latin square L for which θ(L) = L.

The following definitions are central to our discussion.

• For any θ ∈ In, let ∆(θ) be the number of Latin squares L of order n for which θ ∈
Atop(L).

• Let Ωn be the set of all isotopisms θ ∈ In for which θ ∈ Atop(L) for some Latin square
L of order n, i.e. Ωn = {θ ∈ In : ∆(θ) > 0}.

• Let Ξn = {α ∈ Sn : (α, α, α) ∈ Ωn}.

We investigate the following questions.

Question 4.3.1. Given θ ∈ In, is θ ∈ Ωn?

Question 4.3.2. Given α ∈ Sn, is α ∈ Ξn?

For the sake of the readers’ eyes, we will use L(i, j) = li j for a Latin square L = (li j) =(
L(i, j)

)
.

4.3.1 The equivalence
We will now identify an equivalence relation amongst isotopisms that preserves the value of
∆.

For θ, ϕ ∈ In we use the convention that θϕ
(
L
)

= θ
(
ϕ(L)

)
for all Latin squares L of order

n. For θ = (α, β, γ) ∈ In and λ ∈ {ε, (rc), (rs), (cs), (rcs), (rsc)} (the parastrophy group, see
Section 1.2.1), denote by θλ the element of In obtained from θ by permuting its components
according to λ. For example θ(rc) = (β, α, γ) and θ(cs) = (α, γ, β).

Lemma 4.3.3. Let λ ∈ {ε, (rc), (rs), (cs), (rcs), (rsc)}. Let θ, ϕ ∈ In and let L be a Latin
square of order n. Then

1. θ ∈ Atop(L) if and only if ϕθϕ−1 ∈ Atop
(
ϕ(L)

)
and

2. θ ∈ Atop(L) if and only if θλ ∈ Atop(Lλ).

Proof. The following statements are equivalent.

θ(L) = L ⇐⇒ ϕθ(L) = ϕ(L) ⇐⇒
(
ϕθϕ−1)ϕ(L) = ϕ(L).

Thus proving the first claim. The second claim follows since λ permutes the entries of O(L)
uniformly. �

The cycle structure of a permutation δ ∈ Sn is the list of cycle lengths in non-increasing
order. Let θ = (α, β, γ) ∈ In. We define the cycle structure of θ to be the multiset of cycle
structures of α, β and γ. Since two permutations in Sn are conjugate if and only if they have
the same cycle structure [44, p. 25], we deduce from Lemma 4.3.3 that the value of ∆(θ)
depends only on the cycle structure of θ. We can also deduce that the autotopism groups
Atop

(
L
)

and Atop
(
ϕ(L)

)
are conjugate in In, and hence are isomorphic.
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4.3.2 Autotopisms of Latin squares
We will now review and extend some important conditions for membership of Ωn. It is dif-
ficult to provide a comprehensive survey of results concerning autotopisms of Latin squares,
since the results might be found under a variety of research topics, for instance the algebraic
theory of quasigroups or the study of graph decompositions. However, we would like to point
out some recent publications. Falcón [113] determined all autotopisms of Latin squares of
order n 6 11 and gave several results of a general nature. Falcón and Martín-Morales [114]
gave the non-zero values of ∆(θ) for all θ ∈ In for n 6 7. McKay, Meynert and Myrvold
[222] derived an important necessary condition for θ ∈ Ωn (see Theorem 4.3.6) in the course
of enumerating quasigroups and loops up to isomorphism for orders up to 10. Hulpke, Kaski
and Östergård [164] gave a detailed account of the autoparatopisms of Latin squares of or-
der 11. Kerby and Smith [185] identified a relationship between Ξn and symmetric group
characters.

The following lemmata are easy to observe. We include them for future reference.

Lemma 4.3.4. If L is a Latin square and θ ∈ Atop(L) then θr ∈ Atop(L) for every r > 1.
Consequently, θ ∈ Ωn implies θr ∈ Ωn for every r > 1 and α ∈ Ξn implies αr ∈ Ξn for every
r > 1.

The direct product of two Latin squares L and L′ of orders n and n′, respectively, is a Latin
square K = L × L′ of order nn′ with entries K

(
(i, i′), ( j, j′)

)
=

(
L(i, j), L′(i′, j′)

)
. The direct

product of two permutations δ of Zn and δ′ of Zn′ is defined by (δ × δ′)
(
i, i′

)
=

(
δ(i), δ′(i′)

)
.

Lemma 4.3.5. Let L and L′ be Latin squares such that θ = (α, β, γ) ∈ Atop(L) and θ′ =

(α′, β′, γ′) ∈ Atop(L′). Then θ × θ′ ∈ Atop(L × L′) where θ × θ′ = (α × α′, β × β′, γ × γ′).

Let c(δ) denote the cycle structure of any δ ∈ Sn. For r > 1, let cr(δ) denote the list formed
by sorting the concatenation of r copies of c(δ).

We will only need Lemma 4.3.5 in the special case of when θ′ = (ε, ε, ε) is the triv-
ial autotopism. If the order of L′ is n′, then the cycle structure of (α, β, γ) × (ε, ε, ε) is
{cn′(α), cn′(β), cn′(γ)}. Note that it is possible to have θ × (ε, ε, ε) ∈ Ωnn′ while θ < Ωn. For
example, in Theorem 4.3.17 we will find that (α, α, α) < Ωn if n is even and α is an n-cycle,
but if n′ = 2 then (α, α, α) × (ε, ε, ε) ∈ Ωnn′ .

Conditions

We begin our list of conditions for membership of Ωn with the following theorem by McKay,
Meynert and Myrvold [222].

Theorem 4.3.6. Let L be a Latin square of order n and let (α, β, γ) be a non-trivial autotopism
of L. Then either

(a) α, β and γ have the same cycle structure with at least 1 and at most bn/2c fixed points,
or

(b) one of α, β or γ has at least 1 fixed point and the other two have the same cycle structure
with no fixed points, or

(c) α, β and γ have no fixed points.
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It is clear that a non-trivial autotopism must have at least two non-trivial components.
Lemma 4.3.3 implies that the following theorem is sufficient to characterise all non-trivial
autotopisms with one trivial component.

Theorem 4.3.7. Let θ = (α, β, ε) ∈ In. Then θ ∈ Ωn if and only if both α and β consist of n/d
d-cycles for some divisor d of n.

Proof. The necessity was proved in [201, Lem. 1.1] and rediscovered in [113, 126]. The
converse follows from Lemma 4.3.5 since the Cayley table of Zn admits the autotopism(

(0, 1, . . . , n − 1), (n − 1, n − 2, . . . , 0), ε
)n/d

for every divisor d of n. �

There is a fundamental error in Lemma 1.2 of [201] causing the subsequent results to be
unreliable; for example it implies ∆

(
(α, α, ε)

)
= 252720/19 when n = 6 and α = (012)(345),

which is not even an integer.
The evaluation of ∆(θ) when θ = (α, α, ε) was also studied by Ganfornina [126] (also

known as Falcón). For instance, he gave an explicit formula for ∆(θ) when α consists of n/d
cycles of length d ∈ {1, 2, 3}. When n = 6 and α = (012)(345), we find that ∆

(
(α, α, ε)

)
=

6! · 3!2 = 25920, both through a computer enumeration and by using Ganfornina’s formula.
We will now give our first new necessary condition for membership of Ωn.

Theorem 4.3.8. Let θ = (α, β, γ) ∈ In be an autotopism of a Latin square L. If i belongs to
an a-cycle of α and j belongs to a b-cycle of β, then L(i, j) belongs to a c-cycle of γ, where
lcm(a, b) = lcm(b, c) = lcm(a, c) = lcm(a, b, c).

Proof. The orbit of the entry
(
i, j, L(i, j)

)
of L under 〈θ〉, the group generated by θ, has

cardinality lcm(a, b). Therefore θlcm(a,b) = (ε, ε, ε) and so c must divide lcm(a, b). Hence
lcm(a, b) = lcm(a, b, c). The result follows since θλ ∈ Atop(Lλ) for all λ by Lemma 4.3.3. �

Theorem 4.3.8 is useful for proving θ < Ωn. For example, if α has an a-cycle and β has a
b-cycle, but γ does not have a c-cycle where lcm(a, b) = lcm(b, c) = lcm(a, c) = lcm(a, b, c),
then (α, β, γ) < Ωn.

We will now identify a corollary that identifies an important class of subsquares of Latin
squares with non-trivial autotopisms. First, we will need to introduce some notation. Recall
that we use N = {1, 2, . . .} and let S ⊆ N be such that (a) lcm(a, b) ∈ S whenever a, b ∈ S
and (b) lcm(a, x) < S whenever a ∈ S and x ∈ N \ S . We call S a strongly lcm-closed
set. The finite strongly lcm-closed sets are the sets {d ∈ N : d divides n} for some n ∈ N.
However, there are also infinite strongly lcm-closed sets, such as {a ∈ N : a . 0 (mod p)}
and {pa : a > 0} for any prime p.

Let L =
(
L(i, j)

)
be a Latin square with θ = (α, β, γ) ∈ Atop(L). Suppose M is a subsquare

of L formed by the rows R ⊆ Zn and columns C ⊆ Zn. Let S = {L(i, j) : i ∈ R and j ∈ C},
so |R| = |C| = |S |. Suppose R, C and S are closed under the action of 〈α〉, 〈β〉 and 〈γ〉,
respectively. By restricting the domains of α, β and γ to R, C and S , respectively, we see that
M admits an autotopism, which we will denote θM. We acknowledge the possibility that R, C
and S may not be the same sets, but this issue can be resolved by establishing bijections with
{0, 1, . . . , |R| − 1}.
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Corollary 4.3.9. Let S be a strongly lcm-closed set. Let L be a Latin square with θ =

(α, β, γ) ∈ Atop(L). Let M be the submatrix of L formed by every row whose index belongs
to an a-cycle of α and every column whose index belongs to a b-cycle in β, over all a, b ∈ S .
Then either M is a subsquare of L that admits the autotopism θM or M is empty.

Proof. Assume M is non-empty and M , L. Suppose an arbitrary symbol in M belongs to
a c-cycle of γ. For some a, b ∈ S , this symbol occurs in a row that belongs to an a-cycle
of α and a column that belongs to a b-cycle of β. Theorem 4.3.8 implies that lcm(a, b) =

lcm(b, c) = lcm(a, c) = lcm(a, b, c). Hence lcm(a, c) = lcm(a, b) ∈ S since S is a strongly
lcm-closed set and moreover, c ∈ S . Therefore, every symbol in M belongs to a c-cycle of γ,
for some c ∈ S .

Pick an entry
(
i, j, L(i, j)

)
in a row that belongs to an r-cycle of α such that r < S and a

column that belongs to a b-cycle of β with b ∈ S . Suppose L(i, j) belongs to an x-cycle of γ.
Theorem 4.3.8 implies that lcm(b, x) = lcm(b, r), but lcm(b, r) < S since r < S . Hence x < S .
We can argue similarly with rows and columns switched. Hence every symbol outside of M,
but sharing a row or column with M, belongs to an x-cycle of γ for some x < S . Hence M is
a subsquare of L.

That θM is an autotopism of M follows from the earlier discussion. �

In particular, when S = {1}, Corollary 4.3.9 identifies the (possibly empty) subsquare
formed by the fixed rows and columns of θ. The following corollary is a special case of
Corollary 4.3.9.

Corollary 4.3.10. Let θ = (α, β, γ) ∈ In. Suppose L is a Latin square of order n with
θ ∈ Atop(L). If γ contains an c-cycle, then∑

b|c

bsb(α) =
∑
b|c

bsb(β).

For example,

θ =
(
(123456)(789), (123)(456)(78)(9), (123456)(789)

)
∈ I9

satisfies
∑

b|3 bsb(α) = 3 < 7 =
∑

b|3 bsb(β). Corollary 4.3.10 therefore implies that θ < Ωn.
The next necessary condition for membership of Ωn identifies when we can find enough

room in a Latin square L to place all n copies of each symbol satisfying Theorem 4.3.8 such
that θ ∈ Atop(L). The permanent of an n × n square matrix was defined in Section 1.2.4. In
particular, if X is an n × n matrix with entries in {0, 1} ⊆ Z, then (X) counts the number of
n × n permutation matrices that embed into X.

Let θ = (α, β, γ) ∈ In and suppose s ∈ Zn belongs to a c-cycle in γ. We define Xs = Xs(i, j)
to be the (0, 1)-matrix with Xs(i, j) = 1 if i belongs to an a-cycle of α and j belongs to a
b-cycle of β such that lcm(a, b) = lcm(b, c) = lcm(a, c) = lcm(a, b, c), and Xs(i, j) = 0
otherwise. Informally, the 0’s in Xs mark the positions where Theorem 4.3.8 says a symbol s
cannot be placed in a Latin square L of order n with θ ∈ Atop(L).

If θ ∈ Atop(L) for some Latin square L of order n, then the copies of the symbol s in
L identify a permutation matrix embedded in Xs. Hence we have just proved the following
theorem.

Theorem 4.3.11. Let θ ∈ In. If θ ∈ Ωn then (Xs) > 0 for all s ∈ Zn.
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To illustrate, let θ = (α, α, α) ∈ I23 be such that (6, 3, 3, 3, 2, 2, 2, 2) is the cycle struc-
ture of α. Consider Xs for some s that belongs to a 2-cycle in γ. Note that Xs(i, j) = 0
whenever i belongs to an a-cycle in α and j belongs to an b-cycle in β where (a, b) ∈
{(2, 3), (2, 6), (3, 2), (3, 3), (6, 2)}. For instance, Xs(i, j) = 0 if (a, b) = (3, 3) since lcm(3, 3) <
lcm(2, 3). It is now not too difficult to see that (Xs) = 0. Hence, Theorem 4.3.11 implies
that θ < Ωn.

We now consider the following theorem, which was proved by McKay, Meynert and
Myrvold [222, Lem. 4], although they did not state it in the following form.

Theorem 4.3.12. Let θ = (α, β, γ) ∈ In. Suppose that n ≡ 2 (mod 4) and every cycle in α, β
and γ has length 2. Then θ < Ωn.

We will later generalise Theorem 4.3.12 by Theorem 4.3.17, where we identify the class
of automorphisms in Ξn that have every non-trivial cycle length equal. In the following
theorem, we observe that sometimes θr is of the form in Theorem 4.3.12, while θ is not.

Theorem 4.3.13. Let θ = (α, β, γ) ∈ In. Suppose that n ≡ 2 (mod 4) and every cycle in α, β
and γ has length congruent to 2 modulo 4. Then θ < Ωn.

Proof. Let {d1, d2, . . . , dk} be the set of cycle lengths in α, β and γ. Then the order of θ in In

is Ord(θ) = lcm16i6k di ≡ 2 (mod 4). Hence Ord(θ)/2 is odd. Since every cycle in α, β and γ
is of even length, every cycle in αOrd(θ)/2, βOrd(θ)/2 and γOrd(θ)/2 is of length 2. The result now
follows from Lemma 4.3.4 and Theorem 4.3.12. �

Falcón [113] identified six non-equivalent isotopisms θ (in the sense of Lemma 4.3.3), for
which he proved computationally that θ < Ωn but no theoretical reason was known. Five of
these cases are resolved theoretically by Theorem 4.3.13. The remaining has the same cycle
structure as

θ =
(
(1, 2, 3, 4)(5, 6), (1, 2, 3, 4)(5, 6), (1, 2, 3, 4)(5)(6)

)
∈ I6. (4.3)

If one attempts to construct a Latin square L with this θ ∈ Atop(L), then an unusual clash
arises. It arises again when n = 14 in the isotopism θ′ = (α, α, γ) where

α = (1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12)(13, 14) and
γ = (1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12)(13)(14).

If one attempts to construct a Latin square L with this θ′ ∈ Atop(L), then Corollary 4.3.9
implies that the rows and columns indexed by 9, 10, . . . , 14 form a subsquare M of L, which
admits the autotopism θM with the same cycle structure as in (4.3).

4.3.3 Simple permutations and contours
The notion of cycle structure of an isotopism θ is crucial in characterising Ωn. Since two
isotopisms with the same cycle structure have the same ∆ value, we can pick whichever is
easiest to work with. We also use of the total order 0 < 1 < · · · < n − 1 on Zn.

Each α ∈ Sn can be decomposed into disjoint cycles αi. Let di be the length of αi. We can
assume d1 > d2 > · · · . Each cycle αi can be written as

(
ti, α(ti), α2(ti), . . . , αdi−1(ti)

)
. We will

take ti to be the minimum of {ti, α(ti), . . . , αdi−1(ti)}, and call ti the leading entry of αi. We say
α is written in canonical form when it is written in this manner.
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For α ∈ Sn define αsimp to be the unique permutation with the same cycle structure as α
such that each αi is the cycle (ti, ti+1, . . . , ti+di−1) and the leading entry ti < t j whenever i < j
and di = d j. We will refer to αsimp as a simple permutation. When simple permutations are
written in canonical form they read 1, 2, . . . , n, with some parentheses. We say θ = (α, β, γ)
is simple if α, β and γ are simple and define θsimp = (αsimp, βsimp, γsimp). By Lemma 4.3.3,
θ ∈ Ωn if and only if θsimp ∈ Ωn.

For example, the permutation of Z8 given in two-row format by(
0 1 2 3 4 5 6 7
3 5 2 0 1 4 7 6

)
has the canonical form (1, 5, 4)(0, 3)(6, 7)(2) with cycle lengths d1 = 3, d2 = 2, d3 = 2 and
d4 = 1 and leading entries t1 = 1, t2 = 0, t3 = 6 and t4 = 2. The permutation αsimp =

(0, 1, 2)(3, 4)(5, 6)(7) is written in canonical form, which has leading entries t1 = 0, t2 = 3,
t3 = 5 and t4 = 7.

Suppose we have the autotopism θ = (α, β, γ) where α = (0, 1)(2)(3), β = (2, 3)(0)(1) and
γ = (0, 1)(2)(3). We observe that θsimp is an autotopism (and in fact an automorphism) of the
Latin square

L =

2 3 0 1
3 2 1 0
0 1 2 3
1 0 3 2

.

We can therefore deduce that θ ∈ Ωn. Observe that the placement of the horizontal and verti-
cal lines uniquely determine αsimp and βsimp. In fact, L can be reconstructed from knowledge
of

2 · 0 ·

3 · · 0
0 · 2 3
· 0 3 2

and γ = (0, 1)(2)(3). We call a diagram a contour of θ if we can construct from it a Latin
square L with θ ∈ Atop(L). Importantly, a contour of θ = (α, β, γ) gives knowledge of

(a) α, β and γ and

(b) a representative from each orbit of O(L) under 〈θ〉, the group generated by θ.

For our purpose, we will only need to consider simple isotopisms. In this case, αsimp, βsimp and
γsimp are determined by their cycle structures. Typically, our contours display only leading
entries of γsimp.

Suppose θ = (α, β, γ) is an autotopism of a Latin square L. If x and y are the leading
entries in non-trivial cycles of α and β, respectively, and if L(x, y) = z, we will typically see
the following in L.

y β(y) β2(y) · · ·
x z

α(x) γ(z)
α2(x) γ2(z)
...

. . .
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This depicts part of the orbit of the entry (x, y, z) ∈ O(L) under the action of 〈θ〉. However,
the orbit of x under 〈α〉 may not be of the same cardinality as the orbit of y under 〈β〉. For
example, if x is in a 2-cycle in α and y is in a 6-cycle in β, the orbit of (x, y, z) looks like the
following.

y β(y) β2(y) β3(y) β4(y) β5(y)
x z γ2(z) γ4(z)

α(x) γ(z) γ3(z) γ5(z)

In this case, we additionally require that γ6(z) = z and γ2(z) , z and γ4(z) , z; an observation
that was made generally in Theorem 4.3.8.

Later in this chapter, we will claim to have found a contour for various isomorphisms. We
will use the following lemma, Lemma 4.3.14, to prove that our purported contour is indeed a
contour.

Let θsimp = (αsimp, βsimp, γsimp) ∈ In and suppose L is a Latin square of order n with
θsimp ∈ Atop(L). Let αi and β j be any two cycles in αsimp and βsimp, respectively. Let M be
the submatrix of L formed by the intersection of the rows of L whose indices belong to αi

and the columns of L whose indices belong to β j. The submatrix M will be called an a × b
block of L, where a is the length of αi and b is the length of β j. We will similarly define the
term “block” of a partial n × n matrix C (for example, a contour) whose rows and columns
indices are Zn. A cell orbit of the a × b block B defined by αi and β j refers to the set of cells{(
αr

i (k1), βr
j(k2)

)
: r ∈ Z

}
where (k1, k2) is any cell within B.

We will need one more convention before we continue further. Our rows, columns and
symbols all belong to the ring Zn. However, in the next lemma for example, we will want to
discuss row indices (or column indices) modulo r for some r that does not necessarily divide
n. In this case, we replace each index i ∈ Zn by its least non-negative representative.

Lemma 4.3.14. Let θ = (α, β, γ) ∈ In be a simple isotopism. Let Γ be the set of all leading
entries of γ. Let C be a partial matrix of order n. Suppose:

(a) C is a partial Latin square, i.e. every symbol in C is in Γ ⊆ Zn and any symbol occurs
at most once in each row and each column.

(b) Every a×b block B of C contains precisely gcd(a, b) symbols from Γ, all in distinct cell
orbits of B.

(c) If z ∈ Γ is a symbol in an a × b block, then z belongs to a c-cycle of γ such that
lcm(a, b) = lcm(b, c) = lcm(a, b) = lcm(a, b, c).

(d) If z ∈ Γ belongs to a c-cycle of γ, then:

(i) If two copies of z are in distinct rows i and i′ in C then either i and i′ belong to
distinct cycles of α or i . i′ (mod gcd(a, c)).

(ii) If two copies of z are in distinct columns j and j′ in C then either j and j′ belong
to distinct cycles of β or j . j′ (mod gcd(b, c)).

Then C uniquely determines a Latin square with autotopism θ.
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Proof. We take C and apply 〈θ〉, the group generated by θ, to construct L, which we claim is
a Latin square. Specifically, if (i, j, z) is an entry of C then

(
αr(i), βr( j), γr(z)

)
is also an entry

of L for all r > 1.
There are precisely gcd(a, b) cell orbits of an a × b block. Therefore, condition (b) guar-

antees that every cell of L contains at least one entry. Condition (c) guarantees that every cell
within L contains at most one entry (see Theorem 4.3.8). Therefore, we conclude that every
cell of L contains a unique entry.

It is now sufficient to show that any given row or column contains only distinct symbols.
Firstly, observe that if two copies of the same symbol occur in the same row, then two copies
of a symbol in Γ occur in some row. A similar statement is also true for columns. Therefore,
we need only show that every row and every column does not contain two copies of some
z ∈ Γ.

Suppose (i, j, z) is an entry of C in a block B and z belongs to a c-cycle of γ. The entry(
αr(i), βr( j), γr(z)

)
contains the symbol z whenever c divides r. Therefore, B contains exactly

lcm(a, b)/c copies of z in entries along the cell orbit
{(
αr(i), βr( j)

)
: r ∈ Z

}
. In fact

• B contains a copy of z in row i′ whenever i ≡ i′ (mod gcd(a, c)) and

• B contains a copy of z in column j′ whenever j ≡ j′ (mod gcd(b, c)).

Hence conditions (d)(i) and (d)(ii) are necessary. Since we have assumed that C is a partial
Latin square, there were no clashes initially. To ensure no clashes are generated by 〈θ〉 from
C, conditions (d)(i) and (d)(ii) are sufficient. �

4.3.4 Automorphisms of Latin squares
In this section we will consider whether θ ∈ Ωn when θ = (α, α, α) is an isomorphism,
that is, whether α ∈ Ξn. Recall that automorphisms play an important role in the study
of quasigroups, which were discussed in Section 1.2.2. In fact, Lemma 4.3.3 allows us to
deduce that ∆(θ) = ∆

(
(α, α, α)

)
whenever each component of θ has the same cycle structure

as α. This includes cases where θ is not an isomorphism, but has the same cycle structure as
an isomorphism.

Automorphisms with all non-trivial cycles of the same length

We start with the following result, which was given by Wanless [323] (see also [41]).

Theorem 4.3.15. If α ∈ Sn is a d-cycle, where 2 6 d 6 n, then α ∈ Ξn if and only if either
d = n is odd or dn/2e 6 d < n.

The work throughout Section 4.3.4 will expand upon Theorem 4.3.15. For example,
Theorem 4.3.17 is a generalisation of Theorem 4.3.15.

Theorem 4.3.16. Suppose that α ∈ Sn consists of m non-trivial cycles without fixed points,
and each cycle has the same length d. If m is odd and d is even, then α < Ξn, otherwise
α ∈ Ξn.
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Proof. Case I: d is odd (m may be even or odd). Theorem 4.3.15 states that (0, 1, . . . , d−1) ∈
Ξd. We now use a direct product (i.e. Lemma 4.3.5) to show that α ∈ Ξn.

Case II: both d and m are even. It is sufficient to show that α ∈ Ξn when m = 2, since
the rest of this case then follows from Lemma 4.3.5. When m = 2, we construct the desired
Latin square from the following contour C. If d > 2, let

C(d/2 − i, i − 1) = 0 for 1 6 i 6 d/2,
C(d/2 − i − 1, i − 1) = d for 1 6 i 6 d/2 − 1,
C(d − 1, d/2 − 1) = d.

Let β = (0, 1, . . . , 2d − 1). We construct the remainder of C by applying the isotopisms
(αd/2, βd, ε) and (βd, αd/2, ε). We display the constructed contours for d = 2, 4, 6 and 8 in
Figure 4.4. Finally, we appeal to Lemma 4.3.14 to show that C is indeed a contour.

0 . . d
d . . 0
. d 0 .
. 0 d .

d 0 . . . . . .
0 . . . . . . d
. . . . . . d 0
. d . . . . 0 .

. . . . d 0 . .

. . . d 0 . . .

. . d 0 . . . .

. . 0 . . d . .

. d 0 . . . . . . . . .
d 0 . . . . . . . . . .
0 . . . . . . . . . . d
. . . . . . . . . . d 0
. . . . . . . . . d 0 .
. . d . . . . . . 0 . .

. . . . . . . d 0 . . .

. . . . . . d 0 . . . .

. . . . . d 0 . . . . .

. . . . d 0 . . . . . .

. . . d 0 . . . . . . .

. . . 0 . . . . d . . .

. . d 0 . . . . . . . . . . . .

. d 0 . . . . . . . . . . . . .
d 0 . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . d
. . . . . . . . . . . . . . d 0
. . . . . . . . . . . . . d 0 .
. . . . . . . . . . . . d 0 . .
. . . d . . . . . . . . 0 . . .

. . . . . . . . . . d 0 . . . .

. . . . . . . . . d 0 . . . . .

. . . . . . . . d 0 . . . . . .

. . . . . . . d 0 . . . . . . .

. . . . . . d 0 . . . . . . . .

. . . . . d 0 . . . . . . . . .

. . . . d 0 . . . . . . . . . .

. . . . 0 . . . . . . d . . . .

F 4.4: Contours from the proof of Theorem 4.3.16.

Case III: d is even and m is odd. We have n = md. By Lemma 4.3.3, we can assume
α = αsimp, that is

α =
(
0, 1, . . . , d − 1

)(
d, d + 1, . . . , 2d − 1

)
· · ·

(
(m − 1)d, (m − 1)d + 1, . . . ,md − 1

)
.

Let L =
(
L(i, j)

)
be a Latin square of order n such that (α, α, α) ∈ Aut(L). We replace each

symbol in L by its least non-negative representative. For any row i we have

n−1∑
j=0

L(i, j) =
n(n − 1)

2
and so

m−1∑
r=0

n−1∑
j=0

L(dr, j) = m
n(n − 1)

2
. (4.4)

Similarly, for any column j we have

n−1∑
i=0

L(i, j) =
n(n − 1)

2
. (4.5)
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Consider the the first row and column of the d×d block of L with its “top-left corner” indexed
by (dr, ds), for arbitrary 0 6 r, s 6 m − 1. Then

d−1∑
t=1

L(dr + t, ds) =

d−1∑
t=1

L(dr + d − t, ds) change of variables

=

d−1∑
t=1

L
(
α−t(dr), α−t(ds + t)

)
=

d−1∑
t=1

αt(L(dr, ds + t)
)

by (1.3)

≡

d−1∑
t=1

(
L(dr, ds + t) + t

)
(mod d) (4.6)

Thus

m
n(n − 1)

2
=

m−1∑
r=0

m−1∑
s=0

( d−1∑
t=0

L(dr + t, ds)
)

by (4.5)

≡

m−1∑
r=0

m−1∑
s=0

( d−1∑
t=0

(
L(dr, ds + t) + t

))
(mod d) by (4.6)

= m2
d−1∑
t=0

t +

m−1∑
r=0

n−1∑
j=0

L(dr, j) change of variables

= m2 d(d − 1)
2

+ m
n(n − 1)

2
. by (4.4)

We conclude that m2d(d − 1)/2 ≡ 0 (mod d), but this contradicts our assumption that d is
even and m is odd. �

Theorem 4.3.16 generalises a result (the m = 1 case of Theorem 4.3.16), which was
proved by Euler [97] in the context of orthomorphisms of Zn. We extend Theorem 4.3.16
to include the case of when α has fixed points in the following theorem, thus generalising
Theorem 4.3.15.

Theorem 4.3.17. Suppose that α ∈ Sn has precisely m non-trivial cycles of length d. If α has
no fixed points, then α ∈ Ξn if and only if m is even or d is odd. If α has at least one fixed
point, then α ∈ Ξn if and only if n 6 2md.

Proof. The theorem is true if α does not have a fixed point, by Theorem 4.3.16. So assume
α has at least one fixed point, i.e. n > md. If n > 2md then α < Ξn by Theorem 4.3.6. If
md < n 6 2md, Theorem 4.3.15 guarantees the existence of a Latin square of order n with
automorphism ω = (0, 1, . . . ,md−1)(md)(md+1) · · · (n−1) and so ωm ∈ Ξn by Lemma 4.3.4.
Since ωm has the same cycle structure as α, Lemma 4.3.3 implies α ∈ Ξn. �

Automorphisms with two non-trivial cycles

In this subsection we classify when α ∈ Ξn for α ∈ Sn that consist of precisely two non-trivial
cycles.
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Theorem 4.3.18. Suppose α ∈ Sn consists of a d1-cycle, a d2-cycle and d∞ fixed points.

• If d1 = d2 then α ∈ Ξn if and only if 0 6 d∞ 6 2d1.

• If d1 > d2 then α ∈ Ξn if and only if (a) d2 divides d1, (b) d1 > dn/2e, (c) d2 > d∞ and
(d) if d2 is even then d∞ > 0.

Proof. The d1 = d2 case is resolved by Theorem 4.3.17, so assume d1 > d2. By Lemma 4.3.3
we can assume α = αsimp. We depict the structure of a Latin square L with (α, α, α) ∈ Aut(L)
in Figure 4.5. Let D1 = {0, 1, . . . , d1 − 1}, D2 = {d1, d1 + 1, . . . , d1 + d2 − 1} and D∞ =

{d1 + d2, d1 + d2 + 1, . . . , n − 1}, so di = |Di| for i ∈ {1, 2,∞}. Hence L is partitioned into
nine submatrices Mi j, where i, j ∈ {1, 2,∞}, such that the rows of Mi j are indexed by Di and
the columns of Mi j are indexed by D j. We write k : mk in some Mi j if every element of Dk

appears in Mi j precisely mk times.

L D1 D2 D∞

D1

1 : d1 − d2 − d∞
2 : d1

∞ : d1

1 : d2 1 : d∞

D2
1 : d2 2 : d2 − d∞

∞ : d2

2 : d∞

D∞ 1 : d∞ 2 : d∞ ∞ : d∞

F 4.5: Diagram of L with d1 > d2 the only non-trivial cycle lengths.

Corollary 4.3.9 and Theorem 4.3.8 imply that M∞∞ (shaded dark gray in Figure 4.5) is a
subsquare that has the symbol set D∞. Observe that {r ∈ N : r divides d2} is a strongly lcm-
closed set that does not contain d1. Therefore Corollary 4.3.9 also implies that the submatrix
K formed by M22, M2∞, M∞2 and M∞∞ (comprising of the shaded regions in Figure 4.5) is
also a subsquare. Theorem 4.3.8 implies that K has the symbol set D2 ∪D∞. Since M∞∞ and
K are both subsquares, we can deduce that L indeed has the structure depicted in Figure 4.5.

The necessity of the conditions (a)–(d) can be observed in Figure 4.5 in the following
way.

(a) Applying Theorem 4.3.8 to any entry in M12 gives lcm(d1, d2) = lcm(d1, d1) = d1, so
d2 must divide d1.

(b) Since K is a subsquare, Lemma 1.2.4 on page 17 implies that n−d1 = d2 + d∞ 6 bn/2c.
Thus d1 > n − bn/2c = dn/2e.

(c) We have d2 > d∞ otherwise M2∞ is impossible.

(d) If d∞ = 0 then Corollary 4.3.9 implies that K = M22 is a d2 × d2 subsquare with
an automorphism consisting of a single cycle of length d2. So d2 must be odd by
Theorem 4.3.15.
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For the rest of the proof assume that conditions (a)–(d) hold. Our task is to find a Latin
square L such that (α, α, α) ∈ Aut(L).

Case I: d1 is odd, d2 is odd and d∞ = 0. We define a contour C = C(i, j), satisfying the
conditions of Lemma 4.3.14, in the following way.

C(d1 − i, i − 1) = d1 for 1 6 i 6 d2,

C(d1 − d2 − i, d2 + i − 1) = 0 for 1 6 i 6 d1 − d2,

C(d1 − i, d1 + i − 1) = 0 for 1 6 i 6 d2,

C(d1 + d2 − i, i − 1) = 0 for 1 6 i 6 d2,

C(d1 + d2 − i, d1 + i − 1) = d1 for 1 6 i 6 d2.

This contour is illustrated in Figure 4.6(a) for d1 = 9 and d2 = 3.
Case II: d1 is even, d2 is odd, and d∞ = 0. We define a contour C = C(i, j), satisfying the

conditions of Lemma 4.3.14, in the following way.

C(i − 1, d1 − i) = 0 for 1 6 i 6 d1/2,
C(d1/2, d1) = 0,
C(d1/2 + i, d1/2 − i) = 0 for 1 6 i 6 d1/2 − d2,

C(d1 − d2 + i, d1 + d2 − i) = 0 for 1 6 i 6 d2 − 1,
C(d1 − d2 + i, d2 − i) = d1 for 1 6 i 6 d2 − 1,
C(0, 0) = d1,

C(d1 + i − 1, d2 − i) = 0 for 1 6 i 6 d2,

C(d1 + i − 1, d1 + d2 − i) = d1 for 1 6 i 6 d2.

This is illustrated in Figure 4.6(b) for d1 = 12 and d2 = 3.

. . . . . . . . 0 . . .

. . . . . . . 0 . . . .

. . . . . . 0 . . . . .

. . . . . 0 . . . . . .

. . . . 0 . . . . . . .

. . . 0 . . . . . . . .

. . d . . . . . . . . 0

. d . . . . . . . . 0 .
d . . . . . . . . 0 . .

. . 0 . . . . . . . . d

. 0 . . . . . . . . d .
0 . . . . . . . . d . .

(a) d := d1 = 9 and d2 = 3.

d . . . . . . . . . . 0 . . .
. . . . . . . . . . 0 . . . .
. . . . . . . . . 0 . . . . .
. . . . . . . . 0 . . . . . .
. . . . . . . 0 . . . . . . .
. . . . . . 0 . . . . . . . .
. . . . . . . . . . . . 0 . .
. . . . . 0 . . . . . . . . .
. . . . 0 . . . . . . . . . .
. . . 0 . . . . . . . . . . .
. . d . . . . . . . . . . . 0
. d . . . . . . . . . . . 0 .

. . 0 . . . . . . . . . . . d

. 0 . . . . . . . . . . . d .
0 . . . . . . . . . . . d . .

(b) d := d1 = 12 and d2 = 3.

F 4.6: Some contours C.

For the remainder of this proof we will not continue to define C inside the subsquare K
because K can be found independently of the rest of L. With the assumptions of the theorem,
Theorem 4.3.15 implies that K exists.

Case III: d1 is even, d2 is even and d∞ = 1. We cannot have d∞ = 0 by condition (d). We
define a contour C = C(i, j), which we claim satisfies the conditions of Lemma 4.3.14, in the
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following way.

C(i − 1, d1 − i) = 0 for 1 6 i 6 d1/2 − d2,

C(d1/2 − d2 + i − 1, d1/2 + d2 − i) = d1 for 1 6 i 6 d2,

C(d1/2 + i, d1/2 − i) = 0 for 1 6 i 6 d1/2 − 1,
C(0, 0) = d1 + d2,

C(d1/2 − d2 + i − 1, d1 + d2 − i) = 0 for 1 6 i 6 d2/2,
C(d1/2 − d2/2, d1 + d2) = 0,
C(d1/2 − d2/2 + i, d1 + d2/2 − i) = 0 for 1 6 i 6 d2/2,
C(d1, 0) = 0,

and if d1/d2 ≡ 1 (mod 2) then

C(d1 + i, d1/2 + d2/2 − i) = 0 for 1 6 i 6 d2/2 − 1,
C(d1 + d2/2 + i − 1, d1/2 + d2 − i) = 0 for 1 6 i 6 d2/2,
C(d1 + d2, d1/2) = 0,

otherwise

C(d1 + i, d1/2 + d2 − i) = 0 for 1 6 i 6 d2/2 − 1,
C(d1 + d2/2 + i − 1, d1/2 + d2/2 − i) = 0 for 1 6 i 6 d2/2,
C(d1 + d2, d1/2 + d2/2) = 0.

These contours are illustrated in Figure 4.7 for (d1, d2) ∈ {(12, 4), (16, 4)}. We let f = d1 + d2

and shade the cell orbit containing (d1, 0). Two cells (i, j) and (i′, j′) are on the same cell orbit
of M21 if and only if i − j ≡ i′ − j′ (mod d2), since d2 divides d1.

When d1/d2 is odd, d2 does not divide d1/2 and hence d1/2 ≡ d2/2 (mod d2). Therefore
the set of values of i − j (mod d2) for the entries (i, j, 0) in M21 is

{0} ∪ {2i : 1 6 i 6 d2/2 − 1} ∪ {2i − 1 : 1 6 i 6 d2/2} = {0, 1, . . . , d2 − 1}. (4.7)

When d1/d2 is even, we instead find d1/2 ≡ 0 (mod d2) and the set of values of i− j (mod d2)
for the entries (i, j, 0) in M21 is also given by (4.7). In either case, each cell orbit of M21

contains a unique 0. Hence C satisfies the conditions of Lemma 4.3.14.
Case IV: addition of a fixed point. Suppose that we have a contour C for the parameters

d1, d2, d∞ with d∞ < d2. Let n = d1 + d2 + d∞. We will construct a contour for parameters d1,
d2, d∞ + 1 by adding a fixed point t in the following way. Pick a row i and column j of C in
the block M11 such that C(i, j) = 0. Set C(i, j) = t. Set C(i, n + 1) = 0, C(n + 1, i) = 0. Since
d∞ + 1 6 d2 the subsquare K still can be completed by Theorem 4.3.15. Again C satisfies the
conditions of Lemma 4.3.14. �
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f . . . . . . . . . . 0 . . . . .
. . . . . . . . . . 0 . . . . . .
. . . . . . . . . d . . . . . 0 .
. . . . . . . . d . . . . . 0 . .
. . . . . . . d . . . . . . . . 0
. . . . . . d . . . . . . 0 . . .
. . . . . . . . . . . . 0 . . . .
. . . . . 0 . . . . . . . . . . .
. . . . 0 . . . . . . . . . . . .
. . . 0 . . . . . . . . . . . . .
. . 0 . . . . . . . . . . . . . .
. 0 . . . . . . . . . . . . . . .

0 . . . . . . . . . . .
. . . . . . . 0 . . . .
. . . . . . . . . 0 . .
. . . . . . . . 0 . . .

. . . . . . 0 . . . . .

(a) d := d1 = 12, d2 = 4.

f . . . . . . . . . . . . . . 0 . . . . .
. . . . . . . . . . . . . . 0 . . . . . .
. . . . . . . . . . . . . 0 . . . . . . .
. . . . . . . . . . . . 0 . . . . . . . .
. . . . . . . . . . . d . . . . . . . 0 .
. . . . . . . . . . d . . . . . . . 0 . .
. . . . . . . . . d . . . . . . . . . . 0
. . . . . . . . d . . . . . . . . 0 . . .
. . . . . . . . . . . . . . . . 0 . . . .
. . . . . . . 0 . . . . . . . . . . . . .
. . . . . . 0 . . . . . . . . . . . . . .
. . . . . 0 . . . . . . . . . . . . . . .
. . . . 0 . . . . . . . . . . . . . . . .
. . . 0 . . . . . . . . . . . . . . . . .
. . 0 . . . . . . . . . . . . . . . . . .
. 0 . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . . . .
. . . . . . . . . . . 0 . . . .
. . . . . . . . . 0 . . . . . .
. . . . . . . . 0 . . . . . . .

. . . . . . . . . . 0 . . . . .

(b) d := d1 = 16, d2 = 4.

F 4.7: Some more contours C.

4.3.5 Autotopisms of small Latin squares
Falcón [113] identified Ωn for n 6 11. We tabulate the isotopisms in Ω12, Ω13 and Ω14 in
Appendix A.4. Appealing to Lemma 4.3.3, we only list the cycle structures of autotopisms
and write cycle structures in an abbreviated form. For example 42·22·12 is an abbreviation for
the cycle structure (4, 4, 2, 2, 1, 1).

The first column of Figures A.7, A.8 and A.9 gives the cycle structure of α. If α, β and γ
all have the same cycle structure (which we indicate by ∼), we give no additional information
about β and γ. In other cases we list all possible cycle structures of β and γ in the second
column. If β ∼ γ, we only give the cycle structure of β and otherwise we list the cycles
structures of β and γ as an ordered pair in parentheses.

Every isotopism θ ∈ In for n 6 14 can either be shown to have θ < Ωn using the infor-
mation in this chapter, or has θ ∈ Ωn. Chris Mears provided some assistance in finding Latin
squares with a given autotopism.



CHAPTER 5

Future research

To review, in this thesis we have found several congruences satisfied by Rk,n and have found
links between Rk,n and numbers of other combinatorial objects, such as orthomorphisms and
partial orthomorphisms of Zn. Latin square autotopisms played a key role in finding congru-
ences for Rk,n, which we also studied in detail.

The purpose of this concluding chapter is to list some open problems and future research
ideas related to topics that arose within this thesis.

Divisors
The main motivation for this thesis was Figure 2.1 on page 39 which shows that Rk,n tends to
have many small divisors. We have made some progress towards finding theoretical reasons
for these divisors, however the theory developed leaves some open questions. For example,
Figures 2.4, 2.7, 2.9 and 3.2 and Appendices A.2 and A.3 all display a surprisingly large
power of 2 divisor.

Question 5.0.19. Why does such a large power of 2 divide Rk,n?

The following two questions are motivated by Figure A.6 where we plot the largest integer
a such that pa divides Rk,n for k ∈ {4, 5} and p ∈ {2, 3}.

Question 5.0.20. Is there a significant difference in the largest power of 2 dividing Rn and
the largest power of p dividing Rn, for other primes p, as n→ ∞?

Question 5.0.21. How do the prime power divisors pa of Rk,n behave asymptotically for a
fixed k > p as n→ ∞ or as both k → ∞ and n→ ∞?

Also, Figure 1.6 motivates the following question.

Question 5.0.22. Is the number of isomorphism classes of quasigroups of order n always
odd?

We were unable to resolve the following question in Section 2.4.
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Question 5.0.23. What is Rk,n (mod k) for prime k > 7?

We have modified the template in Section 2.1 to find (a) some divisors of the number of
graph decompositions in Section 2.6, (b) divisors of some sets of Latin rectangles and Latin
hypercuboids in Section 2.5 and (c) some congruences for the number of even and odd Latin
squares in Section 2.7. Some of the results of Section 3.3 on compound orthomorphisms
were, in some sense, obtained by using the template.

Question 5.0.24. What other combinatorial numbers can we use this template to find divisors
of?

Judging from the data in Figure 1.14 on page 23, it appears the converse of Theorem 2.7.8
might also be true. Specifically, Figure 1.14 implies that Rn . Rn (mod n) for n ∈
{2, 3, 5, 7}. Drisko [84] showed that Un . Un (mod n) for all prime n.

Question 5.0.25. Is it true that Rn . Rn (mod n) if n is prime?

Orthomorphisms
In Section 3.3.4 we make progress on the problem of partial orthomorphism completion.
However, the question in general remains largely open.

Question 5.0.26. Which partial orthomorphisms admit a completion? When is ρa,n = 1?

The results presented in Section 3.3.4 consider when partial orthomorphisms complete to
a d-compound orthomorphism of Zn. Cavenagh, Hämäläinen and Nelson [51] found condi-
tions for the completion of a partial orthomorphism to a “quadratic orthomorphism.” This
raises the following question.

Question 5.0.27. What other classes of orthomorphism can we use to find conditions for the
completion of a partial orthomorphisms of Zn?

The following was conjectured by Snevily [293]. It was shown true for odd n by Das-
gupta, Karolyi, Serra and Szegedy [69].

Conjecture 5.0.28. If S ,U ⊆ Zn with |S | = |U | = a, then there exists a partial orthomorphism
ν : S → U of Zn if and only if S and U are not both cosets of Zn of even order a.

If L is a Latin square with (α, α, α) ∈ Atop(L) where α = (0, 1, . . . , n−1) and L′ is a Latin
square with (α, α, ε) ∈ Atop(L′), then L and L′ must be orthogonal.

Question 5.0.29. For which isotopisms θ and ϕ does the existence of two Latin squares L and
L′, with θ ∈ Atop(L) and ϕ ∈ Atop(L′), imply that L and L′ are orthogonal?

Figure 2.10 gives a Steiner Latin square that is also a diagonally cyclic Latin square
(DCLS).

Question 5.0.30. What are the properties of the orthomorphisms that arise from Steiner Latin
squares that are also DCLSs?
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Numbers
Doyle [81] gave a formula for the number of k × n Latin rectangles. There are 2k−1 variables
in his formula that sum to n. However, many of the summands are 0, so we could simplify
the sum considerably if we knew which ones.

Question 5.0.31. Which of the summands in (1.16) are 0?

Doyle halved the number of variables required by counting normalised Latin rectangles.

Question 5.0.32. Can we modify Doyle’s formula to instead count reduced Latin rectangles?

Upon inspection of Doyle’s formula, this appears to be a very difficult request.
Dougherty and Szczepanski [80] conjectured a generalisation of the Alon-Tarsi Conjec-

ture (Conjecture 1.2.9 on page 21). We prove a special case of their conjecture in Corol-
lary 2.5.12 on page 57. We also showed that R~4s

≡ 1 (mod 3) for all s > 1. The first few
values of the sequence

(
R~5s

(mod 3)
)

s>2 are (2, 1, 1, 2, . . .), obtained from Figure 2.4.

Question 5.0.33. Is R~5s
. 0 (mod 3) for all s ∈ N?

Also observe that
(
R~5s

(mod 5)
)

26s65 = (1, 1, 1, 1) as in Figure 2.4 on page 47.

Question 5.0.34. Is R~ps ≡ 1 (mod p) for all primes p and s > 1?

This relates to Corollary 2.4.4, which resolves the question in the affirmative when s = 2.
In Figure 1.3 we reproduce some estimates of Rn. For example, Kuznetsov [200] reports

that the estimate for R12 was obtained in 159.3 seconds to an accuracy of 1%. It may be that
the exact value of R12 is unknown for some time and that these estimates will be all we have
to work with. Therefore it would be interesting to see these estimates improved in the future.

Notice that

• R
~62

= 5856 and R
~62

= 3552 as given in Figure A.1 and

• R
~63

= 92793745368 and R
~63

= 3116150784 as given in Section 2.5.1.

The increasing difference between these values leads to the following question.

Question 5.0.35. Can we find estimates for R
~ns

and R
~ns

to provide evidence to support
Conjecture 2.5.3?

Subsquares
In Section 4.2 we found a bound on the maximum number of k × k subsquares in a Latin
square of order n.

Question 5.0.36. Which Latin squares have the most subsquares?

It seems reasonable to suspect that Cayley tables of elementary Abelian groups of order
pa have the most subsquares of order pr, where p is a fixed prime, r is a fixed positive integer
and a → ∞. In fact, it is known [156] that of all Latin squares of order 2a, the Cayley table
of (Z2)a achieves the maximum number of 2 × 2 subsquares for all a > 1.
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Question 5.0.37. For which n,m, k does there exist a Latin square of order n containing
exactly m subsquares of order k?

Latin squares without proper subsquares were studied by [91, 133, 214]. Wanless [320]
identified some classes of Latin squares that have exactly one proper subsquare.

Ian Wanless (private communication) reported that for n = 8, there exists a Latin square
of order n with exactly m subsquares of order k only in the following cases.

• k = 2 and m ∈ {0, 1, . . . , 52} ∪ {56, 60, 64, 68, 72, 80, 88, 112}.

• k = 3 and m ∈ {0, 1, 2, 3, 4}.

• k = 4 and m ∈ {0, 4, 12, 28}.

Conjecture 5.0.38. Let m > 0 and k > 2. For sufficiently large n, there exists a Latin square
of order n with exactly m subsquares of order k.

Autotopisms
In Section 4.1.1 we found an asymptotic divisor for Rn derived from bounding the maximum
cardinality of the autotopism group of a Latin square of order n.

Question 5.0.39. Which Latin squares have the largest autotopism group?

It also seems reasonable to suspect that Cayley tables of groups have this property. In
fact, Theorem 4.1.1 shows that the maximum for n = 2a is achieved by the Cayley table of
(Z2)a. However, this question was posed at the British Combinatorial Conference 2009, to
which Bailey [43] promptly identified several classes of Latin squares of order n that have
autotopism groups of order greater than any group table of order n.

Starting from Section 4.3 we extend the current knowledge of which θ ∈ In have ∆(θ) > 0,
where ∆(θ) is the number of Latin squares of order n with θ ∈ Atop(L). We could ask a related
question about reduced Latin squares. Let ∆R(θ) be the number of reduced Latin squares L
of order n with θ ∈ Atop(L).

Question 5.0.40. For which θ ∈ In is ∆(θ) > 0? For which θ ∈ In is ∆R(θ) > 0?

Question 5.0.41. Can we find ∆(θ) or ∆R(θ) exactly for some infinite classes of θ ∈ In?

Question 5.0.42. Can we find congruences satisfied by ∆(θ)?

These questions also generalises to Latin rectangles and Latin hypercuboids. Progress
on this topic has been made by Ahmad [1], Laywine [201], Bailey [13], Wanless [323],
McKay, Meynert and Myrvold [222], Falcón Ganfornina [113, 126] (see also [114]) and
Bryant, Buchanan and Wanless [41].

Question 5.0.43. Let on = max{Ord(θ) : θ ∈ Ωn}. We found that on = n for n 6 26 by a
computer search. Does on = n for n > 27?

Suppose L is a Latin square with θ ∈ Atop(L). It would be interesting to find conditions
for which ϕ ∈ Ωn are also in Atop(L).
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Question 5.0.44. For which pairs θ, ϕ ∈ Ωn does there exist a Latin square L such that both
θ, ϕ ∈ Atop(L)?

McKay and Wanless [225] showed that the proportion of Latin squares with non-trivial
autotopism group tends quickly to zero. This motivates the following conjecture.

Conjecture 5.0.45. For n > 0 let P(n) be the probability that a randomly chosen α ∈ Sn is a
component of some isotopism θ = (α, β, γ) with ∆(θ) > 0. Then limn→∞ P(n) = 0.

Motivated by the results of Falcón [113], we have verified computationally that the fol-
lowing problem holds for all primes p 6 23.

Question 5.0.46. If θ = (α, β, γ) ∈ Ωp for some prime p 6 23, then either θ is equivalent to
(δ, δ, ε) where δ is a p-cycle, or α, β and γ all have the same cycle structure. Is this also true
for primes p > 29?

We have no particular reason to suspect that Question 5.0.46 is true for all primes, how-
ever, we have not yet found a counter-example.



NOTATION

~a the dimensions of a Latin ~a-hypercuboid
α usually a permutation, sometimes used as the row permutation of an isotopism
~αs ~αs is the isomorphism (α, α, . . . , α) of length s
Apar(L) the autoparatopism group of L
Atop(L) the autotopism group of L
Aut(H) the automorphism group of the graph H
Aut(L) the automorphism group of L
β usually a permutation, often used as the column permutation of an isotopism
C a set of Latin rectangles,A ⊆ C / a contour
 the property “is a column-even Latin square”
χ(n, d) the number of partial orthomorphisms ν : S → Zn of Zn with deficit d such that

ν(i) < {0, i} for all i ∈ S
ck(n) the number of decompositions of the complete graph on n vertices into k-cycles
 the property “is a column-odd Latin square”
E a set of equations described in Section 3.2.2
E = E(G) the edge set of a graph G
ε the identity permutation
ε ε(α) is the sign of the permutation α, ε(L) is the sign of the Latin square L, etc.
 the property “is an even Latin hypercube” or “is an even Latin square”
F used to denote a set fixed by some permutation
F∗ used to denote a set permuted by some permutation, the complement of F
G a group / a graph
γ often used as the symbol permutation of an isotopism
G(L) the orbit of L under the action of a group G of isotopisms
gpd(n) the greatest prime divisor of n
H a group / a graph
(i, j, li j) an entry of a Latin rectangle L = (li j)
In the group of all isotopisms, In = Sn × Sn × Sn

Kk,n the number of k × n normalised Latin rectangles / the complete bipartite graph
k × n usually the dimensions of Latin rectangles
Kn the number of normalised Latin squares of order n / the complete graph on n

vertices
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L a Latin square, Latin rectangle or Latin hypercuboid
λn the number of canonical compatible orthomorphisms of Zn

Λs
n the set of (0, 1)-matrices with exactly s non-zero entries in each row and column

Lk,n the number of k × n Latin rectangles
Ln the number of Latin squares of order n
M a matrix, often a subsquare or subrectangle of a Latin rectangle
m sometimes m = bn/2c
[n] {1, 2, . . . , n}
N {1, 2, . . .}
~ns ~ns = (n, n, . . . , n) of length s
ν a partial orthomorphism
O the orthogonal array of a Latin square, or Latin hypercuboid
 the property “is an odd Latin hypercube” or “is an odd Latin square”
Ωn the set of isotopisms of order n that are autotopisms of some Latin square
ω(n, d) the number of partial orthomorphisms of Zn with deficit d
(M) the permanent of a matrix M
πn the number of canonical polynomial orthomorphisms of Zn

 the property “is a row-even Latin square”
ρ(E, n) the number of solutions modulo n to a system of linear congruences defined by E
Rk,n the number of reduced k × n Latin rectangles
Rn the number of reduced Latin squares of order n
 the property “is a row-odd Latin square”
S2(·, ·) the Stirling number of the second kind
 the property “is a symbol-even Latin square”
σ a permutation / an orthomorphism
 the property “is a symbol-odd Latin square”
θ an isotopism θ ∈ In
~θ the isotopism ~θ = (θ0, θ1, . . . , θs)
~u an arbitrary cell of a Latin ~a-hypercuboid
V = V(H) the vertex set of a graph H
Ξn the set of isomorphisms of order n that are autotopisms of some Latin square
Zn the ring of integers modulo n
zn the number of canonical orthomorphisms of Zn
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APPENDIX A

Appendix

A.1 Finding the autotopism and autoparatopism groups
In this section we list some GAP code that will enable us to compute the autotopism and au-
toparatopism groups of a Latin square using the GRAPE [295] package for GAP, which in turn
requires McKay’s nauty [220] package. A Latin square L will be treated as an n × n matrix
on the symbol set {1, 2, . . . , n}; this is the same format as returned by CayleyTable(Q) in
LOOPS [242].

Autotopism group

The following code receives a Latin square L = (li j) (or any other matrix) and returns the
orthogonal array of L, that is a set of triplets (i, j, li j).

OrthogonalArray:=function(L)
local r,c,OA;
OA:=[];
for r in [1..DimensionsMat(L)[1]] do
for c in [1..DimensionsMat(L)[2]] do
Append(OA,[[r,c,L[r][c]]]);

od;
od;
return OA;

end;;

The next functions construct the vertex-coloured graph G2 described by McKay, Meynert
and Myrvold [222] in GRAPE format. They prove in [222] that the automorphism group of the
graph G2 is isomorphic to the autotopism group of the Latin square L.

MMMLatinSquareGraphG2EdgeSet:=function(L)
local o,n,E;
E:=[];

143
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for o in OrthogonalArrayLatinSquare(L) do
Append(E,[[n*(o[1]-1)+((o[2]-1) mod n)+3*n+1,o[1]]]);
Append(E,[[o[1],n*(o[1]-1)+((o[2]-1) mod n)+3*n+1]]);
Append(E,[[n*(o[1]-1)+((o[2]-1) mod n)+3*n+1,o[2]+n]]);
Append(E,[[o[2]+n,n*(o[1]-1)+((o[2]-1) mod n)+3*n+1]]);
Append(E,[[n*(o[1]-1)+((o[2]-1) mod n)+3*n+1,o[3]+2*n]]);
Append(E,[[o[3]+2*n,n*(o[1]-1)+((o[2]-1) mod n)+3*n+1]]);

od;
return E;

end;;

The above function MMMLatinSquareGraphG2EdgeSet(L) returns the edge set E of the
graph G2 constructed by L. We wish to consider simple graphs, however nauty requires a
directed graph as its input. This is overcome by including every edge in both directions. The
following function MMMLatinSquareGraphG2(L)will convert the edge set E into G2 without
a vertex-colouring that can be interpreted by GRAPE. The purpose of splitting the function in
this way is so we can reuse the MMMLatinSquareGraphG2EdgeSet(L) function later for
constructing the graph required for finding the autoparatopism group of L.

MMMLatinSquareGraphG2:=function(L)
local n,E;
n:=Size(L);
E:=MMMLatinSquareGraphG2EdgeSet(L);
return EdgeOrbitsGraph(Group(()),E,n);

end;;

Now we are ready to make the function AutotopismGroupLatinSquare(L) that returns
a group isomorphic to the autotopism group of the Latin square L.

AutotopismGroupLatinSquare:=function(L)
local n;
n:=Size(L);
return AutGroupGraph(MMMLatinSquareGraphG2(L),
[[1..n],[n+1..2*n],[2*n+1..3*n],[3*n+1..3*n+n^2]]);
# this defines the required vertex-colouring

end;;

To test the code we can type, for example,

AutotopismGroupLatinSquare(CayleyTable(RandomQuasigroup(n)));

for some n.

Autoparatopism group

The next function constructs the graph G1 described by McKay, Meynert and Myrvold [222]
in GRAPE format. They prove in [222] that the automorphism group of the graph G1 is
isomorphic to the autoparatopism group of the Latin square L.

We begin with the edge set generated by the MMMLatinSquareGraphG2EdgeSet(L)
function and append some extra edges, implicitly creating 3 extra vertices in the process.



A.1. FINDING THE AUTOTOPISM AND AUTOPARATOPISM GROUPS 145

MMMLatinSquareGraphG1EdgeSet:=function(L)
local count,E,n;
E:=MMMLatinSquareGraphG2EdgeSet(L);
n:=Size(L);
for count in [1..n] do
Append(E,[[count,n^2+3*n+1]]);
Append(E,[[n^2+3*n+1,count]]);
Append(E,[[count+n,n^2+3*n+2]]);
Append(E,[[n^2+3*n+2,count+n]]);
Append(E,[[count+2*n,n^2+3*n+3]]);
Append(E,[[n^2+3*n+3,count+2*n]]);

od;
return E;

end;;

The remaining functions are analogues of the autotopism case.

MMMLatinSquareGraphG1:=function(L)
local n,E;
n:=Size(L);
E:=MMMLatinSquareGraphG1EdgeSet(L);
return GraphFromEdgeSet(EdgeOrbitsGraph(Group(()),E,n));

end;;

AutoparatopismGroupLatinSquare:=function(L)
local n;
n:=Size(L);
return AutGroupGraph(MMMLatinSquareGraphG1(L),
[[1..n],[n+1..2*n],[2*n+1..3*n],[3*n+1..3*n+n^2]
,[3*n+n^2+1,3*n+n^2+3]]);
# this defines the required vertex-colouring

end;;
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A.2 The number of even and odd Latin squares

n Rn Rn Rn − Rn References

2 1 0 1
3 1 0 1
4 4 0 4
5 40 16 24
6 5856 3552 2304 [5]
7 8609280 8332800 276480
8 270746124288 264535277568 6210846720 [171, 217, 340]

2 1 0 1
3 1 0 1
4 22 0 22

5 23·5 24 23·3
6 25·3·61 25·3·37 28·32

7 29·3·5·19·59 29·3·52·7·31 211·33·5
8 217·3·688543 219·3·109·1543 217·36·5·13

FA.1: Some values of Rn and Rn , along with their difference and prime factorisation.

n Rn Rn Rn − Rn

2 0 1 −1
3 1 0 1
4 4 0 4
5 16 40 −24
6 3552 5856 −2304
7 8286720 8655360 −368640
8 270746124288 264535277568 6210846720

2 0 1 −1
3 1 0 1
4 22 0 22

5 24 23·5 −23·3
6 25·3·37 25·3·61 −28·32

7 29·3·5·13·83 29·3·5·72·23 −213·32·5
8 217·3·688543 219·3·109·1543 217·36·5·13

F A.2: Some values of Rn and Rn , along with their difference and prime factorisation.



A.2. THE NUMBER OF EVEN AND ODD LATIN SQUARES 147

n Un Un Un − Un

2 1 0 1
3 0 1 −1
4 4 0 4
5 16 40 −24
6 5856 3552 2304
7 8655360 8286720 368640
8 270746124288 264535277568 6210846720

2 1 0 1
3 0 1 −1
4 22 0 22

5 24 23·5 −23·3
6 25·3·61 25·3·37 28·32

7 29·3·5·72·23 29·3·5·13·83 213·32·5
8 217·3·688543 219·3·109·1543 217·36·5·13

F A.3: Some values of Un and Un , along with their difference and prime factorisa-
tion.
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A.3 The number of four-line and five-line Latin rectangles
The following numbers were found using (1.16) and the C code has been uploaded here [302].
The values for n 6 80 are now listed at Sloane’s [290] A000573.

n R4,n

4 4
5 56
6 6552
7 1293216
8 420909504
9 207624560256

10 147174521059584
11 143968880078466048
12 188237563987982390784
13 320510030393570671051776
14 695457005987768649183581184
15 1888143905499961681708381310976
16 6314083806394358817244705266941952
17 25655084790196439186603345691314159616
18 125151207879107507418595651580525408108544
19 725286528193978151376645991587386316447154176
20 4946695754673063706940982976280298177634970763264
21 39372620049112842147403644555875630051344172847464448
22 362953223623178176928985853358776023561076140898585411584
23 3848556868310251682051540453289191302911656946425858318401536
24 46646364890123254950981334346141630039665836277086889810449137664
25 642577452766632866336746626812914310810476309618605956127608795037696
26 10007844722789723474949164515246755752126297615867851579087218636333514752
27 175373037219837331563272997448082923441580267971837196568365005992563746799616

4 22

5 23 · 7
6 23 · 32 · 7 · 13
7 25 · 3 · 19 · 709
8 26 · 3 · 149 · 14713
9 27 · 34 · 20025517

10 28 · 33 · 71 · 271 · 1106627
11 210 · 32 · 1823 · 8569184461
12 29 · 33 · 7 · 1945245990285863
13 210 · 34 · 7 · 587 · 50821 · 18504497761
14 210 · 34 · 8384657190246053351461
15 212 · 35 · 30525787 · 62144400106703441
16 214 · 35 · 2693 · 42787 · 1699482467 · 8098773443
17 216 · 35 · 131 · 271 · 17104781 · 166337753 · 15949178369
18 214 · 37 · 23 · 61 · 3938593 · 632073448679498674606517
19 217 · 36 · 7 · 13 · 61 · 197007401 · 158435451761 · 43809270413057
20 217 · 36 · 72 · 1056529591513682816198269594516734004747
21 218 · 37 · 19 · 31253 · 103657 · 1115736555797150985616406088863209
22 218 · 38 · 158419 · 366314603941483807 · 3636463205495660670300697
23 220 · 38 · 58309 · 1588208779694954759917 · 6040665277134180218
24 221 · 39 · 43 · 283 · 1373 · 8191 · 297652680582511 · 27741149414473864785280935767
25 222 · 311 · 1938799914572671 · 446065653297963631389971651136461400611927
26 223 · 39 · 7 · 19 · 31 · 5147 · 694758890407 · 4111097244170498224110627242779017943828829
27 225 · 312 · 7 · 13127 · 107027245883591876663734983579930090734219751042699442932337

F A.4: The value of R4,n and its prime factorisation for 4 6 n 6 27.
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n R5,n

5 56
6 9408
7 11270400
8 27206658048
9 112681643083776

10 746988383076286464
11 7533492323047902093312
12 111048869433803210653040640
13 2315236533572491933131807916032
14 66415035616070432053233927044726784
15 2560483881619577552584872021599994249216
16 130003705747573381528820187969499352864391168
17 8540614065591861115863858023929942463204158341120
18 714772705022049580010386905464376609190681339062386688
19 75163163562802272546579759450749095599610461567358920032256
20 9809720003910626776223482379751753587443069548693920857303547904
21 1571535264701285629600025091867663915099001357016958197822862919729152
22 305967368069117220345719015650882351240204884316352710461216388953743032320
23 71742822040206698482547032648440680248173149276783605396347465027480511202721792
24 20093299726164942410036767774030176748339141446536947374523570181642887594307280175104
25 6671363422740192076170128383025874322430996291082893578356639976639833297028025599106482176

5 23 · 7
6 26 · 3 · 72

7 28 · 3 · 52 · 587
8 211 · 3 · 23 · 192529
9 211 · 34 · 13 · 52251029

10 216 · 36 · 19 · 97 · 8483617
11 213 · 32 · 29 · 168293 · 20936295857
12 217 · 36 · 5 · 7 · 47 · 59 · 313 · 38257310467
13 219 · 33 · 7 · 23364884851571662672051
14 227 · 34 · 101 · 449 · 1039 · 3019 · 22811 · 1882698637
15 222 · 37 · 19 · 423843896863 · 34662016427839511
16 228 · 36 · 3604099 · 40721862001 · 4526515223205743
17 225 · 35 · 5 · 15001087 · 13964976140347893908947110110827
18 228 · 39 · 1019173084339 · 237316919875331 · 559319730817259
19 228 · 36 · 7 · 47 · 149 · 532451 · 347100904121707 · 42395531645181804688477
20 232 · 39 · 7 · 67 · 163 · 360046981713037753 · 4215856658533108520354659333
21 233 · 38 · 83 · 281 · 204292081063933 · 5852323051960913177671486927343120669
22 236 · 37 · 5 · 13 · 241559 · 129661160424791080992764645120871929236425763066453631
23 239 · 310 · 5407 · 120427 · 901145309 · 3766352936022215583264814011876189449770138391
24 241 · 311 · 107 · 739951 · 2418119033203 · 318514544213636008246871 · 845851172573304061243151
25 241 · 39 · 94513 · 54260027 · 25093654805621 · 1059078880359738933703 · 1130914320793991851927211947

F A.5: The value of R5,n and its prime factorisation for 5 6 n 6 25.
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F A.6: Some values of the largest integer a such that pa divides Rk,n for k ∈ {4, 5} and
p ∈ {2, 3}.
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A.4 Autotopisms of Latin squares of orders 12, 13 and 14.
In this section we list the cycle structures of the autotopisms of Latin squares of order n for
12 6 n 6 14.

α β if β ∼ γ else (β, γ)

112 112, 26, 34, 43, 62, 12
2·110 26, 43, 62, 12
22·18 26, 43, 62, 12
23·16 23·16, 26, 43, 6·32, 62, 12
24·14 24·14, 26, 43, 62, 12
25·12 25·12, 26, 43, 62, 12

26 26, (34, 62), 43, (6·32, 62), 62, 12
3·19 34, 62, 12

3·2·17 62, 12
3·22·15 62, 12
3·23·13 6·32, 62, 12
3·24·1 62, 12
32·16 32·16, 34, 6·23, 62, 12

32·2·14 6·23, 62, 12
32·22·12 6·23, 62, 12

32·23 (32·23, 6·16), 6·32, 62, 12
33·13 33·13, 34, 62, 12

33·2·1 62, 12
34 34, (43, 12), (6·23, 62), 62, 12

α β if β ∼ γ else (β, γ)

4·18 43, 12
4·2·16 43, 12

4·22·14 43, 12
4·23·12 43, 12

4·24 43, 12
4·3·15 12

4·3·2·13 12
4·3·22·1 12
4·32·13 12

4·32·2·1 12
42·14 42·14, 42·22, 43, 12

42·2·12 42·2·12, 42·22, 43, 12
42·22 42·22, 43, 12

42·3·1 12
43 (6·32, 12), (62, 12)

52·12 52·12, 10·2

α β if β ∼ γ else (β, γ)

6·16 6·16, 6·32, 62, 12
6·2·14 62, 12

6·22·12 6·22·12, 62, 12
6·23 (6·32, 62), 62, 12

6·3·13 6·3·13, 6·32, 62, 12
6·3·2·1 6·3·2·1, 62, 12

6·32 6·32, 62, 12
6·4·12 12
6·4·2 12

62 62, 12
7·15 7·15

8·14 8·14, 8·22, 8·4
8·2·12 8·2·12, 8·22, 8·4

8·22 8·22, 8·4
9·13 9·13, 9·3
9·3 9·3

10·12 10·12, 10·2
11·1 11·1

F A.7: Cycle structures of the autotopisms of Latin squares of order 12.

α β ∼ γ

113 113

113 13

α ∼ β ∼ γ

24·15

25·13

26·1
33·14

34·1

α ∼ β ∼ γ

42·15

42·22·1
43·1

52·13

α ∼ β ∼ γ

6·3·2·12

6·3·22

62·1
7·16

8·15

8·22·1
8·4·1

α ∼ β ∼ γ

9·14

9·3·1
10·13

10·2·1
11·12

12·1
13

F A.8: Cycle structures of the autotopisms of Latin squares of order 13.
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α β if β ∼ γ else (β, γ)

114 114, 27, 72, 14
2·112 27, 14

22·110 27, 14
23·18 27, 14
24·16 24·16, 27, 14
25·14 25·14, 27, 14
26·12 26·12, 27, 14

27 (72, 14)
33·15 33·15

34·12 34·12, 62·2
42·16 42·16, 42·23

42·2·14 42·23

42·22·12 42·22·12, 42·23

43·12 43·12, 43·2

α β ∼ γ

52·14 52·14, 10·22

52·2·12 10·22

52·22 10·22

6·3·22·1 6·3·22·1
6·32·12 62·2

62·12 62·12, 62·2
7·17 7·17, 72, 14

7·2·15 14
7·22·13 14
7·23·1 14

72 72, 14

α β ∼ γ

8·16 8·16, 8·23

8·2·14 8·23

8·22·12 8·22·12, 8·23

8·4·12 8·4·12

9·15 9·15

9·3·12 9·3·12

10·14 10·14, 10·22

10·2·12 10·2·12, 10·22

11·13 11·13

12·12 12·12, 12·2
13·1 13·1

F A.9: Cycle structures of the autotopisms of Latin squares of order 14.
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A.5 Data tables for Section 3.2.3

G v e |Aut(G)| PG(a)

6 3 48 27n2a−3 − 54n2a−4 + 36n2a−5 + 8n2a−6

6 4 4 81n2a−4 − 216n2a−5 + 216n2a−6 − 96n2a−7 + 16n2a−8

6 4 8 81n2a−4 − 216n2a−5 + 216n2a−6 − 96n2a−7 + 16n2a−8

6 4 12 81n2a−4 − 216n2a−5 + 216n2a−6 − 96n2a−7 + 16n2a−8

6 5 4 27n2a−4 + 18n2a−5 − 132n2a−6 + 120n2a−7 − 32n2a−8

6 5 12 27n2a−4 + 18n2a−5 − 132n2a−6 + 120n2a−7 − 32n2a−8

6 5 16 9n2a−4 + 156n2a−5 − 468n2a−6 + 432n2a−7 − 128n2a−8

6 6 8 9n2a−4 + 48n2a−5 − 72n2a−6 + 16n2a−8

6 6 72 9n2a−4 + 36n2a−5 − 12n2a−6 − 96n2a−7 + 64n2a−8

6 7 48 9n2a−4 − 6n2a−5 + 108n2a−6 + (18g2 − 204)n2a−7 . . .

. . . + (88 − 12 ∗ g2)n2a−8

7 4 16 81n2a−4 − 216n2a−5 + 216n2a−6 − 96n2a−7 + 16n2a−8

7 5 48 27n2a−4 + 18n2a−5 − 132n2a−6 + 120n2a−7 − 32n2a−8

K2 ∪ K2 ∪ K2 ∪ K2 8 4 384 81n2a−4 − 216n2a−5 + 216n2a−6 − 96n2a−7 + 16n2a−8

F A.10: The value of PG(a) for all G ∈ Γe,v such that v > 6 and PG(a) has degree at least
2a − 4 in n.
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G v e |Aut(G)| PG(a)

5 3 4 27n2a−3 − 54n2a−4 + 36n2a−5 + 8n2a−6

5 4 2 81n2a−4 − 216n2a−5 + 216n2a−6 − 96n2a−7 + 16n2a−8

5 4 2 81n2a−4 − 216n2a−5 + 216n2a−6 − 96n2a−7 + 16n2a−8

5 4 12 9n2a−3 + 12n2a−4 − 36n2a−5 + 16n2a−6

5 4 24 81n2a−4 − 216n2a−5 + 216n2a−6 − 96n2a−7 + 16n2a−8

5 5 2 27n2a−4 + 18n2a−5 − 132n2a−6 + 120n2a−7 − 32n2a−8

5 5 2 27n2a−4 + 18n2a−5 − 132n2a−6 + 120n2a−7 − 32n2a−8

5 5 2 9n2a−4 + 156n2a−5 − 468n2a−6 + 432n2a−7 − 128n2a−8

5 5 4 27n2a−4 + 18n2a−5 − 132n2a−6 + 120n2a−7 − 32n2a−8

5 5 10 3n2a−4 + 210n2a−5 − 660n2a−6 + 720n2a−7 − 272n2a−8

5 6 2 9n2a−4 + 48n2a−5 − 72n2a−6 + 16n2a−8

5 6 2 9n2a−4 + 48n2a−5 − 72n2a−6 + 16n2a−8

5 6 2 3n2a−4 + 66n2a−5 − 12n2a−6 − 216n2a−7 + 160n2a−8

5 6 8 9n2a−4 + 36n2a−5 − 12n2a−6 − 96n2a−7 + 64n2a−8

5 6 12 3n2a−4 + 42n2a−5 + 180n2a−6 − 624n2a−7 + 400n2a−8

5 7 2 3n2a−4 + 30n2a−5 + 24n2a−6 − 72n2a−7 + 16n2a−8

5 7 4 3n2a−4 + 12n2a−5 + 144n2a−6 + (6g2 − 300)n2a−7 + (160 − 24g2)n2a−8

5 7 6 9n2a−4 − 6n2a−5 + 108n2a−6 + (18g2 − 204)n2a−7 + (88 − g2)n2a−8

5 7 12 3n2a−4 + 42n2a−5 − 36n2a−6 + 24n2a−7 − 32n2a−8

5 8 4 3n2a−4 + 12n2a−5 + 36n2a−6 + (6g2 − 12)n2a−7 + (12g2 − 56)n2a−8

5 8 8 3n2a−4 + 96n2a−6 − 78n2a−7 − 20n2a−8

5 9 12 3n2a−4 + 42n2a−6 + 42n2a−7 + (42g2 − 128)n2a−8

5 10 120 3n2a−4 + 150n2a−7 + (60g2 − 212)n2a−8

F A.11: The value of PG(a) for all G ∈ Γe,v such that v = 5 and PG(a) has degree at least
2a − 4 in n. Let g2 = gcd(2, n).
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complete bipartite graph, 13
complete mapping, 67
complete tripartite graph, 15

derangement, 18, 26

Euler, Leonhard, 1, 26, 43, 68, 69

graph decomposition, 14, 58
automorphism, 58
cycle, 60
isomorphic, 58

isomorphism, 50

Latin ~a-cuboid, see Latin hypercuboid
Latin cube, 47
Latin hypercube, 47

sign, 52
Latin hypercuboid, 46

automorphism, 50
autotopism, 50
diagonal, 52
isotopism, 50
isotopy class, 50
line, 52
normalised, 47
reduced, 47
subcuboid, 52

proper, 52
transversal, 52

Latin rectangle, 2
automorphism, 8
autotopism, 8
five-line, 30

four-line, 27, 30
intercalate, 16
isomorphism, 8
isotopism, 6
isotopism group, 6
isotopy class, 8
normalised, 2
reduced, 2
subrectangle, 16
subsquare, 16
template, 18
three-line, 26, 43
two-line, 26, 43

Latin square, 1
automorphism, 8
automorphism group, 9
autoparatopism, 9
autoparatopism group, 9
autotopism, 8
autotopism group, 9
bordered diagonally cyclic, 72
diagonal, 18
diagonally cyclic, 72
entry, 8
graph, 12
idempotent, 2, 61, 72
intercalate, 16
isomorphism, 8
isomorphism class, 8
isotopism, 6

principal, 9
isotopism group, 6
main class, 9
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orthogonal, 68
orthogonal array, 8
random, 25
subrectangle, 16
subsquare, 16

proper, 17
transversal, 18, 72
type, 9
unipotent, 2, 58, 72

neofield, 70

one-factorisation, 14, 58
orthomorphism, 67

canonical, 67
compatible, 90
compound, 85
group of translations, 69
linear, 85
orthogonal, 97
polynomial, 90

parastrophe, 8
parastrophy group, 9
paratopism, 9
partial orthomorphism, 69

(n, d)-, 70
completion, 95
compound, 95
deficit, 69
size, 95

permanent, 18, 27, 108

Steiner triple system, 60
strongly regular graph, 12


