Supporting Information

for

Gas Hydrates Phase Equilibria and Formation from High Concentration NaCl Brines up to 200 MPa

Yue Hu¹, Taras Y. Makogon², Prasad Karanjkar³, Kun-Hong Lee⁴, Bo Ram Lee^{1,4}* and Amadeu K. Sum¹*

¹Hydrates Energy Innovation Laboratory, Chemical & Biological Engineering Department, Colorado School of Mines, Golden, CO 80401 – USA

²Wood Group, Flow Assurance Department, Houston, TX 77084 – USA

³ConocoPhillips, Production Assurance, Bartlesville, OK, 74004 – USA

⁴Department of Chemical Engineering, Pohang University of Science & Technology, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673 – KOREA

*Corresponding authors E-mail: boramlee.hydrates@gmail.com, asum@mines.edu

1. HAZOP (Hazard and operability) Study for High Pressure Apparatus

The experimental setup (Fig. 3 in the manuscript) was manufactured for the measurement of hydrate phase equilibrium and formation kinetics in high salinity system and very high pressure. For safety considerations, a hazard and operability (HAZOP) study for the system was done based on the worst what-if scenario in terms of pressure/temperature/explosive issues.

- What if all gas pressurized in the system vents to the room?
- What if there is an emergency situation?
- What if hydrates plug a line during an experiment?
- What if all chiller temperature increases over the safety set value?
- What if the electrical power shuts down?

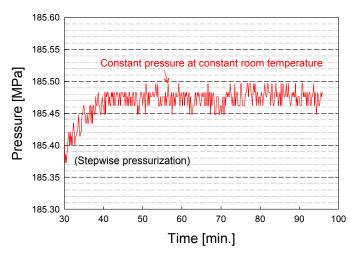


Fig. S1 Pressure test at around 186 MPa (~27,000 psi) with nitrogen gas.

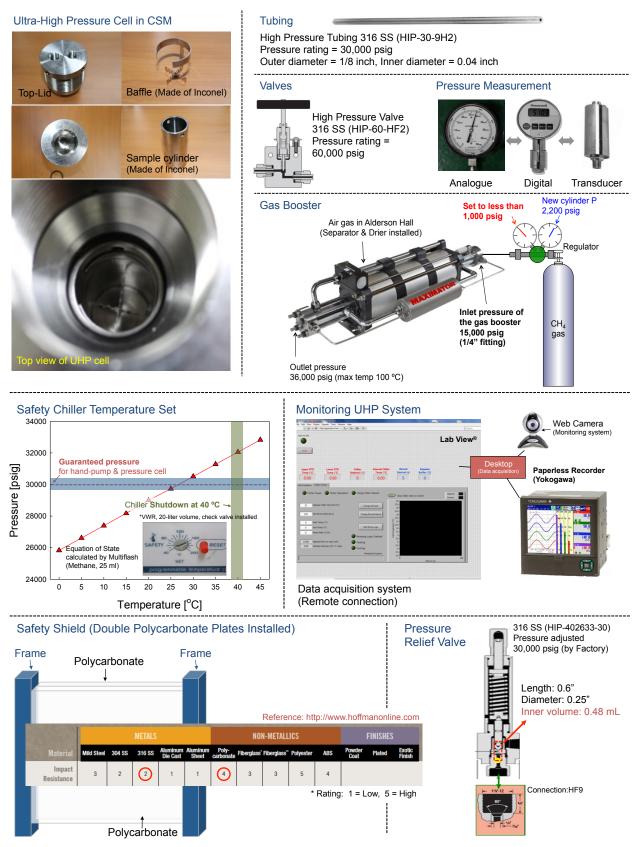


Fig. S2 Development of the high pressure system with various HAZOP considerations.

2. Reproducibility in Measurements of Hdrate Phase Equilibrium

All measurements of hydrate phase equilibrium were repeated with a fresh solution to check the accuracy and reproducibility.

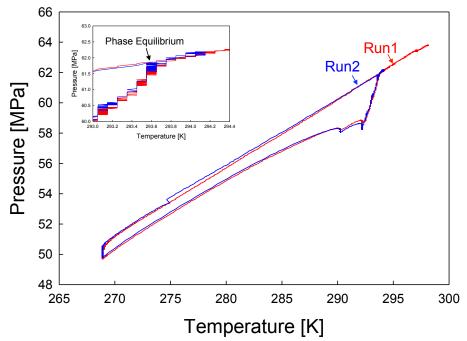


Fig. S3 Temperature and pressure trace in repeat experiments for the measurement of hydrate phase equilibrium with 12 wt% NaCl system.

3. Methane Hydrate Phase Equilibrium Data Measured

Table S1 Measured experimental data points for methane hydrate phase equilibria with NaCl.

 Gray colored rows are data points measured in repeat experiments.

, i i i i i i i i i i i i i i i i i i i		·		
Salinity	Phase Equilibrium Measured			
Samity	Temperature (K)	Pressure (MPa)		
	295.75	34.3		
	305.75	103.7		
Pure	301.65	69.3		
Water	307.45	122.1		
	309.85	150.1		
	311.95	177.7		
	288.00	29.1		
	290.41	37.8		
12 wt.% NaCl	290.44	37.8		
	293.75	62.0		
	293.55	62.0		
	296.29	80.7		
	298.55	102.8		
	298.45	102.6		

	301.95	142.1
	304.65	183.9
	277.45	28.0
	278.26	32.0
	278.35	32.0
23 wt.%	282.25	56.9
NaCl	284.75	78.3
	287.35	99.5
	290.85	145.5
	293.25	183.4
	278.85	62.0
$\mathcal{O}($ and $\mathcal{O}($	278.75	62.0
26 wt.% NaCl	282.55	97.1
NaCI	285.55	132.2
	288.65	182.5
27 4 0/	279.45	77.8
27 wt.%	282.55	113.5
NaCl	286.05	172.7
30 wt.%	279.55	78.1
NaCl	284.45	141.4

4. Equations for Measurements of Formation Rate / Conversion Ratio / Salt Precipitation

Calculations of water conversion to hydrate and amount of salt precipitated during hydrate formation are based on following assumptions:

- Methane gas is immiscible in water. The amount of gas dissolved in water is relative small compared the total volume of gas phase in the cell.
- The solubility of sodium chloride (NaCl) in water is independent of pressure.
- The calculation does not consider the degree of supersaturation during the experiments.
- The volume change from water to hydrate is neglected.

(i) Formation rate: The number of moles of gas consumed at a given time t can be calculated through following equation:

$$\left(\Delta n_{\rm gas}\right)_t = V_{\rm tot} \left[\left(\frac{P}{zRT}\right)_{t=0} - \left(\frac{P}{zRT}\right)_t \right] = \frac{V_{\rm tot}}{v_{t=0}} - \frac{V_{\rm tot}}{v_t}$$
(1)

where $(\Delta n_{\text{gas}})_t$ is the number of moles of gas consumed to form the hydrate at time *t*. *z* and *v* represents the compressibility factor and molar volume, respectively, at temperature, *T*, and pressure, *P* in the pressure cell at given time *t*, which are calculated with an equation of state. *V*_{tot} is the total volume of gas phase in pressure cell and tubing, which is assumed to be 32.28 mL. *R* is the universal gas constant.

(ii) Conversion from water to hydrate: percentage of amount of water consumed to form hydrate over total amount of water in the system can be determined by

conversion from water to hydrate (%) =
$$\frac{(\Delta n_{gas})_t \times hydration number}{n_{water}} \times 100$$
 (2)

where hydration number used in this study is 6. n_{water} is the total number of moles of water in the system.

(iii) Sodium Chloride (NaCl) precipitation: The amount of salt precipitated is calculated by

NaCl Precipitation =
$$m_{\text{salt}} - \frac{[n_{\text{water}} - (\Delta n_{gas})_t \times \text{hydration number}] \times M_w \times c_{\text{saturation}}}{1 - c_{\text{saturation}}}$$
 (3)

where M_w and n_{water} represent the molecular weight of water and initial number of moles of water in the system, respectively. The saturation concentration of NaCl in aqueous solutions at 5.5 °C ($c_{saturation}$) is assumed to be 0.263 in this study. m_{salt} is the total amount of salt in the system.

5. Calculation of Conversion from Water to Hydrate

Once hydrate starts to form, the gas will be trapped in the hydrate cavities and system pressure will decrease. Take the system with 26 wt.% NaCl as an example.

(1) Volume of gas phase in the system

Table S2. The total volume of system includes both volume of cell and fitting parts.

Total VolumeCell VolumeFitting Volume		Liquid Phase Volume	Gas Phase Volume	
		Liquid Fliase Volume		
56 cm^3	1 cm^3	25 cm^3	32 cm^3	

(2) Formation rate

Table S3. The amount of hydrate formed is determined from the difference between the initial and final cell pressure and temperature.

	Initial	Final		
V _{tot}	32 cm^3	32 cm^3		
t	0 hr	18 hr		
Р	151.6 MPa	135.0 MPa		
Т	288.15 K	278.75 K		
v (predicted from EOS)	39.4725 cm ³ /mol	$40.0167 \text{ cm}^3/\text{mol}$		
п	0.8107 mol	0.7997 mol		
$(\Delta n_{gas})_t$		0.0110 mol		

(3) Conversion from water to hydrate

Table S4. The conversion to hydrates is estimated by an equation of state assumed hydrationnumber of 6.

$(\Delta n_{gas})_t$ gas occupied in hydrate	Water consumed to form hydrate			
	<i>n</i> Hydration number	<i>n_{water,H}</i> Water formed hydrate	Initial <i>n</i> _{Water} prepared	% Hydrate
0.0110 mol	6	0.0660 mol	1.2387 mol	5.3 %

6. Calculation of Sodium Chloride (NaCl) Precipitation

(1) Formation rate

Table S5. The amount of hydrate formed is determined from the difference between the initial and final cell pressure and temperature.

	Initial	Final	
V _{tot}	32 cm^3	32 cm^3	
t	0 hr	3.2 hr *	
Р	151.6 MPa	152.0 MPa	
Т	288.15 K	278.85 K	
v (predicted by EOS)	39.4725 cm ³ /mol	39.8097 m ³ /mol	
n	0.8107 mol	0.8038 mol	
$(\Delta n_{gas})_t$	6	6.8667×10 ⁻³ mol	

*After first inflection point t_{1 after}

(2) Amount of water in liquid phase

Table S6. The conversion to hydrates is estimated by an equation of state assuming a hydration number of 6. The water in the liquid phase is consumed to form the hydrates, resulting in the decrease of water in solution.

$(\Delta n_{gas})_t$ Gas	Water consumed to form hydrate		T ''' 1	Water in liquid phase	
occupied in hydrate	<i>n</i> Hydration number	$m_{water,H}$ Water formed hydrate	Initial n _{Water} prepared	M_w	$m_{\text{water,L}}$ Water in liquid
6.8667×10 ⁻³ mol	6	0.0412 mol	1.2387 mol	18 g/mol	21.5550 g

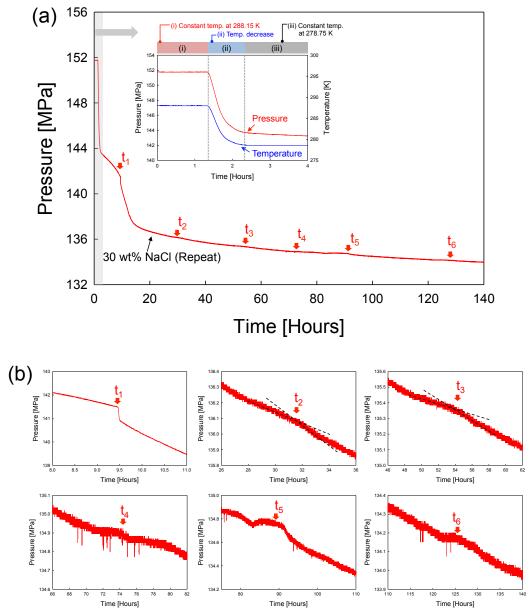

(3) Amount of salt precipitation

Table S7. As the amount of water in the liquid phase decrease with constant saturation concentration at 288.15 K, the salt will precipitate out from the solution.

	Salt in solution			
Initial <i>m</i> _{salt} prepared	$m_{water,L}$ Water in liquid phase $C_{saturation}$ Saturation concentration		$m_{\text{salt,L}}$ Salt in solution	Salt Precipitation
7.8338 g	21.5550 g	26.3 wt%	7.6919 mol	0.1419 g

7. Kinetic (Hydrate Formation Rate) Experiments in 30 wt% NaCl System

Inflection points during kinetic experiments always occurred in high salinity system as shown in figure below. This supports the competition for solid precipitation (salt or hydrates).

Fig. S4 Measurements of growth rate for methane hydrates in 30 wt% NaCl system. (a) hydrate formation rates in 30 wt% NaCl system: (i) started experiment at 288.15 K and around 152 MPa, (ii) decreased cell temperature and (iii) maintained at 278.75 K. (b) some inflection points occurred at time of t_1 to t_6 .

8. Kinetic (Hydrate Formation Rate) Experiments in 27 wt% NaCl System

Inflection points are also observed in the experiment with 27 wt% NaCl, conducted in an autoclave cell with windows at approximately 10 MPa and 260.15 K with methane gas.

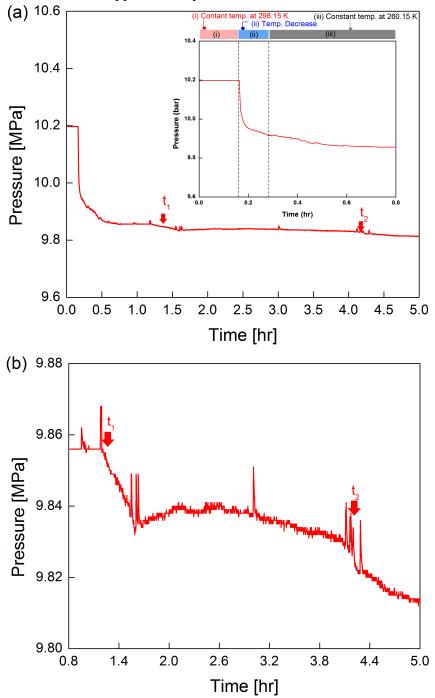


Fig. S5 Measurements of growth rate for methane hydrates in 27 wt% NaCl system. (a) Hydrate formation rates in 27 wt% NaCl system: (i) started experiment at 298.15 K and around 10.2 MPa, (ii) decreased cell temperature and (iii) maintained at 260.15 K. (b) Some inflection points occurred at time of t₁ and t₂.

9. Kinetic (Hydrate Formation Rate) Experiments in 30 wt% NaCl System

Inflection points, corresponding to sudden pressure drop, are also detected in the experiment performed at 4.5 MPa and 258.15 K through the apparatus shown in Figure S6. The variations of pressures in the supply vessel (SV) and cell with time are included in Figure S7. During hydrate formation in the experiment, the gas was sent from the supply vessel to the cell through the actuator valve to keep a constant cell pressure, as shown in the inset in Figure S7, and as such, the pressure trace of supply vessel in Figure S7 indicates the amount of gas trapped in the hydrates and demonstrate the competing effects of solids (hydrates and salts) through the observed inflection points.

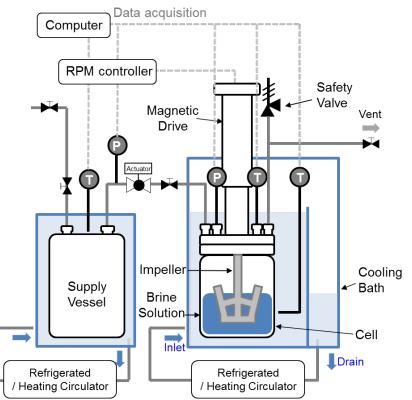
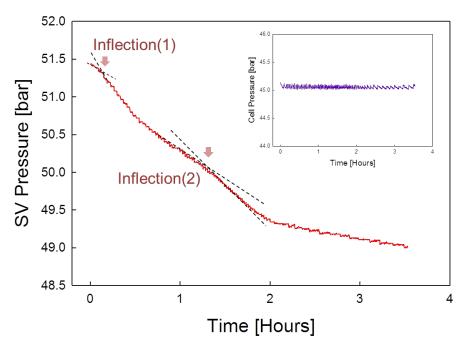



Fig. S6 Experimental apparatus used for kinetics experiments in 30 wt% NaCl system.

Fig. S7 Measurements of growth rate for methane hydrates in 30 wt% NaCl system performed at 4.5 MPa and 258.15 K. Two inflection points are observed on the supply vessel (SV) pressure trace. The inset shows the pressure in the cell, which is maintained at 4.5 MPa.