

Introduction to infectious disease data

Clinic on the Meaningful Modeling of Epidemiological Data, 2017

African Institute for Mathematical Sciences

Muizenberg, South Africa

May-June, 2017

Calistus Ngonghala, PhD
Assistant Professor in Mathematics
University of Florida

Faikah Bruce Steve Bellan Juliet Pulliam

Slide Set Citation: DOI:10.6084/m9.figshare.5044603

The ICI3D Figshare Collection

Goals

Overview the types of available data

Relate available types of data with SEIR model output

 Highlight different approaches to data collection and presentation.

What is an infectious disease?

Disease

A deviation from the normal physiological status of an organism that negatively affects its survival or reproduction

Infectious Disea e ICI3D

A disease in one organism (the host) that is caused by another organism (pathogen or parasite) which has entered the host's body

Ebola Virus

Tuberculosis Bacteria

Pathogen: Microorganism that causes disease (virus, bacteria, parasite)

"a set of standard criteria for deciding whether a person has a particular disease [or infection]"

"a set of standard criteria for deciding whether a person has a particular disease [or infection]"

Person:

Place:

Time:

Clinical description:

A "case" study

"a set of standard criteria for deciding whether a person has a particular disease [or infection]"

Person: Residents of Meliandou, recent visitors to Meliandou

Place: West Africa, Guinea

<u>Time</u>: On or after November 15, 2013

<u>Clinical description</u>: Elevated body temperature or subjective fever or symptoms, including severe headache, fatigue, muscle pain, vomiting, diarrhea, abdominal pain, or unexplained hemorrhage

UNCONFIRMED OR SUSPECTED CASES

Confirmed case: signs and symptoms *plus* laboratory confirmation

<u>Probable case</u>: signs and symptoms in an individual meeting person, place, and time criteria *plus* contact with a known case *or* more specific clinical signs

<u>Possible case</u>: signs and symptoms in an individual meeting person, place, and time criteria *plus* a physician diagnosis

<u>Suspect case</u>: signs and symptoms in an individual meeting person, place, and time criteria

Not a case: failure to fulfill the criteria for a confirmed, probable, possible, or suspect case

"a set of standard criteria for deciding whether a person has a particular disease [or infection]"

Person:

Place:

Time:

Clinical description:

"a set of standard criteria for deciding whether a person has a particular disease [or infection]"

Person: Residents of Meliandou, recent visitors to Meliandou

Place: West Africa, Guinea

<u>Time</u>: On or after November 15, 2013

<u>Clinical description</u>: Elevated body temperature or subjective fever or symptoms, including severe headache, fatigue, muscle pain, vomiting, diarrhea, abdominal pain, or unexplained hemorrhage

"a set of standard criteria for deciding whether a person has a particular disease [or infection]"

<u>Person</u>: Residents of and recent visitors to West Africa, including Senegal, Guinea, Sierra Leone and Liberia, as well as their close contacts or others in their community

Place: Worldwide

Time: On or after November 15, 2013

<u>Clinical description</u>: Illness with onset of fever and no response to treatment for usual causes of fever in the area, and at least one of the following signs: bloody diarrhoea, bleeding from gums, bleeding into skin (purpura), bleeding into eyes and urine.

Incidence of Infection

Infectivity = 1

(everyone exposed becomes infected)

Infected

Diseased

Infectious

Incidence of infection

Mathematical expression?

SEIR Model

$$\frac{dS}{dt} = \nu - \frac{\beta SI}{N} - \mu S$$

$$\frac{dE}{dt} = \frac{\beta SI}{N} - \sigma E - \mu E$$

$$\frac{dI}{dt} = \sigma E - \gamma I - \mu I$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

$$\nu$$
birth rate
$$\mu$$
mortality rate
$$\sigma$$
1 / latent period
$$\gamma$$
1 / infectious period
$$\beta$$
transmission coefficient

Ways of collecting data on cases

Ways of collecting data on cases

- Passive
- Active

Epidemiological studies

- Case-series
- Case-control
- Cohort
- Outbreak investigations

Prevalence

$$\frac{E+I}{N}$$

Mathematical expression?

SEIR Model

$$\frac{dS}{dt} = \nu - \frac{\beta SI}{N} - \mu S$$

$$dE \quad \beta SI$$

$$\frac{dE}{dt} = \frac{\beta SI}{N} - \sigma E - \mu E$$

$$\frac{dI}{dt} = \sigma E - \gamma I - \mu I$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

$$u$$
 birth rate

$$\mu$$
 mortality rate

$$eta$$
 transmission coefficient

of infection of antibodies (seroprevalence)

Prevalence

Prevalence

N

SEIR Model

$$\frac{dS}{dt} = \nu - \frac{\beta SI}{N} - \mu S$$

$$\frac{dE}{dt} = \frac{\beta SI}{N} - \sigma E - \mu E$$

$$\frac{dI}{dt} = \sigma E - \gamma I - \mu I$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

u birth rate

 μ mortality rate

σ 1 / latent period

γ 1 / infectious period

eta transmission coefficient

Mathematical expression?

of infection

of antibodies (seroprevalence)

Seroprevalence

Can be related to:

- Prevalence of infection
- Past exposure

May or may not be:

- Prevalence of resistance
- Specific to infection of interest

Seroprevalence

Levels of data aggregation

Aggregated data

De-identified data

Personally identifying data

Levels of data aggregation

De-identified data

Aggregated data

Visualizing data before R...

Summary

- Linking model output with data is important
- Incidence and prevalence can be tabulated in SEIR model
- Case definition: uniform set of criteria for determining whether an individual has a disease
- Case definition can change across time/place
- Data collection methods affect data interpretation

This presentation is made available through a Creative Commons Attribution license. Details of the license and permitted uses are available at

http://creativecommons.org/licenses/by/3.0/

© 2010-2017 International Clinics on Infectious Disease Dynamics and Data

Bruce F, Bellan SE, Pulliam JRCP. "Introduction to Infectious Disease Data" Clinic on the Meaningful Modeling of Epidemiological Data. DOI:10.6084/m9.figshare.5044603.

For further information or modifiable slides please contact figshare@ici3d.org.

See the entire ICI3D Figshare Collection. DOI: 10.6084/m9.figshare.c.3788224.

