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S1 Bayesian interval sampling with multiplicity

The Bayesian Interval Sampling algorithm requires the generation of nresample×
(n+1) random weights from the Dirichlet distribution. When the sample size n
is large the resampling procedure may require a significant amount of CPU time.
This is true in particular for rare event simulations in which a large majority
of observations does not contribute to the observable (e.g. the cost of system
malfunctions in a very reliable system, which is 0 for the overwhelming majority
of cases). For such cases the required sample size n can be in the millions.

However, the inference process can be made considerable more efficient if the
data set contains duplicate observations. Let us consider the extended set of
order statistics {x(0):(n+1)} with x(0) = xL and x(n+1) = xR, and assume that
x(k) to x(k+m) are m+ 1 identical observations. We define the reduced data set

{z0:n−m+2} = {x(0):(k), x(k+m):(n+1)} (1)
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in which the duplicate observation occurs only twice. We may then use the
property (assuming i < j without loss of generality)

{P1:i−1,Pi + Pj , Pi+1:j−1, Pj+1:k} ∼ Dir[α1:i−1,αi + αj , αi+1:j−1, αj+1:k]
(2)

to merge overlapping point intervals in

F�n =

[
n+1∑
i=1

WiHx(i)
,

n+1∑
i=1

WiHx(i−1)

]
(3)

with {W1:n+1} ∼ Dir [1, . . . , 1]. This results in

F�n =

[
n−m+2∑

i=1

W̃iHzi(x),

n−m+2∑
i=1

W̃iHzi−1
(x)

]
(4)

with the adjusted weight vector

{W̃1:n−m+2} ∼ Dir [1, . . . , 1,m, 1, . . . , 1] , (5)

where a weightm has been assigned to the k+1 position. With this modification,
only (n−m + 2) random samples are required to sample a random realisation
of F�n. When n−m� n this results in a correspondingly large speedup.

S2 Further examples

This section presents the computation of c-credible intervals for two additional
quantities of interest, both applied to data from the log-normal distribution
with log-mean 0 and log-standard deviation 1.

We first consider the truncated mean, which discards one or both extremes
of the inferred distribution. Figure S1 shows the probability box for a truncated
mean µ99%, discarding the largest 1% of sampled distribution for each resam-
pling step. This can be considered the counterpart to the conditional value
at risk (CVaR99%), which reports the mean of the remaining tail contribution:
µ = 0.99µ99% + 0.01CVaR99%. Because the sample size n = 15 is insufficient
to meaningfully compute a 99% quantile, we used 1000 data samples from the
(0,1)-log-normal distribution instead. Note that the resulting upper and lower
distributions are very similar, implying that the resulting uncertainty is pre-
dominantly probabilistic in nature. Estimates of the truncated mean are hardly
affected by unknown features of the distribution.

Finally, we estimate the location for the 99% quantile q99% (also known as
the 0.99 value-at-risk), which is also the cutoff point for the truncated mean
µ99%. The resulting probability box and interval are shown in Fig. S2. Table
S1 summarises all results, including those from Figure 3 in the main text.
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Figure S1: Probability box for the truncated mean µ99%, considering only the
99% probability mass associated with the smallest values. Based on 1000 sam-
ples from a (0,1)-log-normal distribution and nresample = 10, 000. The black dot
denotes the true value of the median of the originating distribution (≈ 1.51).
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Figure S2: Probability box for the 99% quantile q99%. Based on 1000 samples
from a (0,1)-log-normal distribution and nresample = 10, 000. The black dot
denotes the true value of the median of the originating distribution (≈ 10.2).

Table S1: Interval estimates
Nsample parameter Nresample credibility result
15 median 1000 90 % [0.34, 3.60]
15 mean 1000 90 % [1.21,∞)
1000 99% quantile 10,000 99 % [7.76, 14.2]
1000 99% truncated mean 10,000 99 % [1.38, 1.70]
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S3 Connections to other methods

In the following we discuss various limiting cases of the robust posterior prior
F�n described in the paper, and we make connections to other inference methods
described in the literature.

S3.1 Conditional distribution for x

It is illustrative to consider the restriction of the random imprecise distribution
F�n to a given position x, assuming x /∈ {x1:n}. Repeated application of (2) to
(3) and {W1:n+1} ∼ Dir [1, . . . , 1] results in the random probability interval

F�n(x) =
[
W−x , 1−W+

x

]
, (6a)

with
{W−x ,W 1

x ,W
+
x } ∼ Dir[n−(x), 1, n+(x)]. (6b)

Here n−(x) is the number of observations smaller than x and n+(x) is the
number of observations larger than x.

For a Dirichlet distribution Dir[α1:n], the probability distribution of a com-
pound event is the beta distribution P (A) ∼ β[

∑
i∈A αi,

∑
j /∈A αj ]. Therefore,

the lower and upper bounds can be described as:

Fn(x) ∼ β[n−(x), n+(x) + 1], (7)

Fn(x) ∼ β[n−(x) + 1, n+(x)]. (8)

These random variables are inferred lower and upper bound distributions ex-
pressing our state of knowledge regarding the value F ∗X(x) = P (X ≤ x). The
results are consistent with Bayesian estimators from Bernoulli process data,
using the extreme priors limε→0 β[ε, 1 − ε] (F0(x) ≈ 0) and limε→0 β[1 − ε, ε]
(F0(x) ≈ 1), respectively. In the language of Bayesian sensitivity analysis these
priors may be considered bounds for the family of priors Px = {β[p, 1− p] : p ∈
[0, 1]}.

S3.2 Purely probabilistic approach

We now consider the restriction of F�n to a purely probabilistic description of
uncertainty, starting from the definition

F�n = Un+1 ◦ F �n , with (9)

F �n =
1

n+ 1
F �0 +

n

n+ 1
F̂n, (10)

F �0 = [HxR
, HxL

]. (11)

A possible uninformative choice is to replace the vacuous prior F �0 by the average
of its upper and lower distributions:

F �0 →
1

2
HxL

+
1

2
HxR

, (12)
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which results in

Ḟn =Un+1 ◦
( 1

2HxL
+ 1

2HxR
+
∑n

i=1Hxi

n+ 1

)
. (13)

The random variable Ḟn(x) at x ∈ I;x 6= xi is

Ḟn(x) ∼ β
[
n−(x) +

1

2
, n+(x) +

1

2

]
. (14)

As in the previous case, we can interpret this result as the Bayesian estima-
tor for the probability F ∗X(x) = P (X ≤ x) given n = n+ + n− independent
measurements. This time, the prior is β( 1

2 ,
1
2 ), an uninformative prior which is

both the Jeffreys prior and reference prior for this problem [1]. This correspon-
dence retrospectively justifies the choice (13) as a minimally informative purely
probabilistic contraction of F�n.

S3.3 Stochastic processes and NPI

Besides the intuitive interpretation as a distribution of distributions, the Dirich-
let process may also be interpreted as a stochastic process in which each gen-
erated sample modifies the probability distribution for subsequent samples in
a rich-get-richer scheme [2]. The observations in the resulting infinite sequence
are dependent but exchangeable. The distribution and process viewpoints are
linked by De Finetti’s theorem, which states that distributions of the obser-
vations in (infinite) sequences generated in this way are distributed according
to a measure representing a latent variable. In this case, that measure is the
distribution-of-distributions representation of the Dirichlet process [3].

The robust posterior distribution F�n has the property that, on average, it
assigns a probability mass 1/(n + 1) to the interval between measurements.
Similarly, Hill [4] has proposed the ‘An assumption’ for a stepwise inference
process, stating that “conditional upon the observations X1, . . . , Xn, the next
observation Xn+1 is equally likely to fall in any of the open intervals between
successive order statistics of the given sample.” The An assumption is then
used to generate bounds on successive samples, each time adding the (possible)
generated samples to the observations to be used in An+1.

In a 1993 paper [5], Hill has made use of the concept of adherent mass
to assign the two halves of the probability associated with each interval to its
lower and upper boundaries. In combination with limits at −∞ and +∞ it was
shown that the resulting process is equivalent to the Dirichlet process defined
in Eq. (13). The purely probabilistic projection Ḟn of F�n is therefore the De
Finetti measure of an An process.

Hill’s An assumption forms the basis of the Nonparametric Predictive Infer-
ence (NPI) method (see e.g. Coolen [6]). In this approach, successive predictive
observations are generated using minimally informative interval probabilities
(probability boxes) constrained by An. The first inference step of the NPI pro-
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cess is given by the imprecise predictive distribution

FNPI
n+1 =

[
n+1∑
i=1

Hx(i)

n+ 1
,

n∑
i=0

Hx(i)

n+ 1

]
, (15)

where we make use of the extended set of order statistics {x(0):(n+1)}. This
imprecise distribution is equal to the imprecise input distribution F �N (10). This
is consistent, because our best (non-random) estimate for the (n+ 1)-predictive
distribution is the expected probability box E[F�n] = F �n .

Furthermore, we can invoke Hill’s adherent mass argument [5] to analyse the
NPI process in the case of a monotonic population parameter q. In this case, we
assign the adherent mass consistently to either the lower or upper bounds of each
interval to estimate the lower and upper bounds of q, respectively. Analogous
to Hill’s result for Ḟn we find

Qmin
NPI =q

[
CDP

[∑n
i=1Hxi +HxL

n+ 1

]]
, (16)

Qmax
NPI =q

[
CDP

[∑n
i=1Hxi

+HxR

n+ 1

]]
. (17)

This result is identical to the result [Qmin, Qmax] =
[
q[Fn], q[Fn

]
from the main

text. In other words, NPI for infinite random sequences produces bounds that
are identical to those derived using the robust posterior distribution. Therefore
we postulate that the robust posterior distribution may be considered the De
Finetti measure of the NPI process.

Even though the results of the NPI process converge to those obtained using
our method, they are conceptually quite different. NPI has a process-based def-
inition that generates a series of predictive samples. The first sample is always
drawn from F �n = E[F�n], and subsequent samples are generated from subsequent
sample-dependent distributions. An infinite sequence of samples obtained in this
way is equivalent to computing a single realisation of F�n. The direct formula-
tion developed in this paper results in a significant computational advantage,
especially for resampling approaches such as Bayesian Interval Sampling, which
require many realisations of F�n.

S4 Posterior Dirichlet processes

In this section we demonstrate that F�(s)n =
[
F (s)

n ,F (s)

n

]
is a posterior dis-

tribution corresponding corresponding to the vacuous prior distribution F �0 =
[HxR

, HxL
] with concentration parameter s and observations x1:n. This is done

in two steps. First, a partial ordering is introduced on the space of cumulative
Dirichlet processes (CDPs). Second, the degenerate CDPs are expressed as lim-
its of non-degenerate CDPs. This enables us to provide a limiting definition of
the posterior CDPs.
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Definition. We define a partial ordering on CDPs F and G as follows:

F � G : F(x) equals or dominates G(x),∀x ∈ R, (18)

where dominance is defined as first order stochastic dominance [7]. In other
words, F � G if for all x each quantile of F(x) equals or exceeds the corre-
sponding quantile of G(x).

Lemma S4.1. Let F and G be CDPs with concentration parameter s:

F (s) ∼ CDP[sF ], (19)

G(s) ∼ CDP[sG], (20)

where F and G cumulative probability distributions. Then the following impli-
cation holds

(F (x) ≥ G(x),∀x ∈ R)⇒ F (s) � G(s). (21)

Proof. It follows from the properties of the Dirichlet process that the random
variable F(x) is distributed according to the beta distribution

F (s)(x) ∼ β[sF (x), s(1− F (x))]. (22)

Therefore,
F (x) > G(x)⇒ F (s)(x) dominates G(s)(x). (23)

This holds for all x, thus proving the statement (21).

The implication of this lemma is that for a given value of the concentration
parameter s the cumulative Dirichlet process preserves the partial ordering of
the shape parameter (the ‘input’ distribution) in a probabilistic sense.

Definition. We define the family of ε-contaminated priors that are further
parametrised by the concentration parameter s and a distribution function F
on I.

F (s,ε)
0 [F ] ∼CDP[s ((1− ε)HxR

+ εF )] (24a)

F (s,ε)

0 [F ] ∼CDP[s ((1− ε)HxL
+ εF )] (24b)

When the implied support of F covers that of F ∗X (the target distribution),
these Dirichlet processes have the desirable property that they almost surely
have a nonzero probability mass associated with the local neighbourhood of
the observed values {x1:n} and. Specifically, this is the case for the choices
F = uniform(I) and F = F ∗X . The ε-contaminated priors also have the limits

lim
ε↓0
F (s,ε)

0 [F ] = F (s)
0 ∼ CDP[sHxR

] (25a)

lim
ε↓0
F (s,ε)

0 [F ] = F (s)

0 ∼ CDP[sHxL
]. (25b)
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Property (21) proves that these limits exist for the Cumulative Dirichlet Pro-
cess, by virtue of their existence in the regular distribution space. The p-box

[F (s)
0 ,F (s)

0 ] can therefore be considered the envelope of the set of proper priors
on I with concentration parameter s.

For F (s,ε)
0 [F ] and F (s,ε)

0 [F ] with ε > 0 the Bayesian posterior distributions
conditioned on the observations {x1:n} is given by

F (s,ε)
n [F ] ∼ CDP

[
s ((1− ε)HxR

+ εF ) +

N∑
i=1

Hxi

]
, (26a)

F (s,ε)

n [F ] ∼ CDP

[
s ((1− ε)HxL

+ εF ) +

N∑
i=1

Hxi

]
. (26b)

Analogous to Eqs. (25) we can now define the posterior envelope distributions
as

F (s)
n = lim

ε↓0
F (s,ε)

n [F ] = Un+s ◦
(

s

n+ s
HxR

+
n

n+ s
F̂n

)
(27a)

F (s)

n = lim
ε↓0
F (s,ε)

n [F ] = Un+s ◦
(

s

n+ s
HxL

+
n

n+ s
F̂n

)
. (27b)

We conclude that F�(s)n =
[
F (s)

n ,F (s)

n

]
is indeed a tight envelope of the proper

prior CDPs with concentration parameter s bounded by the vacuous prior F �0 =
[HxR

, HxL
].
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