Ir-Catalyzed ortho-Borylation of Phenols Directed by Substrate-Ligand Electrostatic Interactions: A Combined Experimental/in Silico Strategy for Optimizing Weak Interactions

Buddhadeb Chattopadhyay, ${ }^{\dagger}{ }^{\S}$ Jonathan E. Dannatt, ${ }^{\dagger}$ Ivonne L. Andujar-De Sanctis, ${ }^{\dagger}$ Kristin A. Gore, ${ }^{\dagger}$ Robert E. Maleczka, Jr. ${ }^{\dagger} *$ Daniel A. Singleton, ${ }^{\star, *}$ and Milton R. Smith, III ${ }^{\dagger}$,
${ }^{\dagger}$ Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824-1322 USA
*Department of Chemistry, Texas A\&M University, PO Box 30012, College Station, Texas 77842
${ }^{\text {§ }}$ Center of Bio-Medical Research, Division of Molecular Synthesis \& Drug Discovery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India

Supporting Information

Experimental Section 5
General Information 5
Borylation of Anisole: 5
Borylation of 4-Chloroanisole with $\mathrm{B}_{2} \mathrm{pin}_{2}$ (2a): 6
Borylation of 4-Fluoroanisole with $\mathrm{B}_{2} \mathrm{pin}_{2}$ (2c): 6
Borylation of 4-Cyanophenol with limiting $\mathrm{B}_{2} \mathrm{pin}_{2}$ (1b) 7
Borylation of 4-Fluorophenol with limiting $\mathrm{B}_{2} \mathrm{Pin}_{2}$ (1c) 8
General Procedure for the Synthesis of Pinacolborane (Bpin) Protected Phenols: 8
Preparation of 2-(4-chlorophenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 8
Preparation of 2-(4-fluorophenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 9
Preparation of 2-(4-methoxyphenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 9
Preparation of 2-(4-bromophenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 10
Preparation 4,4,5,5-tetramethyl-2-(p-tolyloxy)-1,3,2-dioxaborolane: 10
Preparation of 2-(4-(tert-butyl)phenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 10
Preparation of 4,4,5,5-tetramethyl-2-(4-(trifluoromethyl)phenoxy)-1,3,2-dioxaborolane: 11
Preparation of ethyl 4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)benzoate: 11
Preparation of 2-(4-bromo-2-chlorophenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 12
Preparation of 2-(2,4-dichlorophenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 12
Preparation of 2-(3,4-dimethylphenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 12
Preparation of 2-(4-chloro-3-methylphenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 13
Preparation of 2-(2-methoxy-4-methylphenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 13
Preparation of ethyl 3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)benzoate: 14
Preparation of 4,4,5,5-tetramethyl-2-(o-tolyloxy)-1,3,2-dioxaborolane: 14
Preparation of 4,4,5,5-tetramethyl-2-phenoxy-1,3,2-dioxaborolane: 15
Preparation of 2-(3-methoxyphenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 15
Preparation of 2-(3-chlorophenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: 15
Preparation of 4,4,5,5-tetramethyl-2-(naphthalen-2-yloxy)-1,3,2-dioxaborolane: 16
Preparation of the Authentic Boronic Esters for Phenols: 16
2-(2-Hydroxyphenyl)1,3,2-dioxaborolane from 2-hydroxyphenylboronic acid and ethylene glycol: 16
2-(3-Hydroxyphenyl)1,3,2-dioxaborolane from 3-hydroxyphenylboronic acid and ethylene glycol: 17
2-(4-Hydroxyphenyl)1,3,2-dioxaborolane from 4-hydroxyphenylboronic acid and ethylene glycol: 17
2-(2-Hydroxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane from 2-hydroxyphenylboronic acid and pinacol: 18
2-(3-Hydroxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 18
2-(4-Hydroxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane from 4-hydroxyphenylboronic acid and pinacol: 18
Synthesis of 2,2'-bi(1,3,2-dioxaborolane) from Tetrahydroxydiboron: 19
Borylation of 4-Chlorophenol with B_{2} pin $_{2}$ (1a): 19
Gram Scale Borylation of 4-Chlorophenol (1a): 20
Borylation of 2-Chloro-5-hydroxypyridine with $\mathrm{B}_{2} \mathrm{pin}_{2}$ (1b): 20
Borylation of 4-Fluorophenol with $\mathrm{B}_{2} \mathrm{pin}_{2}$ (1c): 21
Borylation of 4-methoxyphenol with $\mathrm{B}_{2} \mathrm{pin}_{2}$ (1d): 22
Borylation of 4-bromolphenol with $\mathrm{B}_{2} \operatorname{pin}_{2}$ (1e): 22
Borylation of 4-methylphenol with $\mathrm{B}_{2} \mathrm{pin}_{2}$ (1f): 23
Borylation of 4-tertbutylphenol with $\mathrm{B}_{2} \mathrm{pin}_{2}(1 \mathrm{~g})$: 24
Borylation of 4-trifluoromethylphenol with $\mathrm{B}_{2} \operatorname{pin}_{2}$ (1h): 24
Borylation of 4-carboethoxyphenol with $\mathrm{B}_{2} \mathrm{pin}_{2}$ (1i): 25
Borylation of 4-bromo-2-chlorophenol with $\mathrm{B}_{2} \mathrm{pin}_{2}$ (1j): 26
Borylation of 2,4-dichlorophenol with $\mathrm{B}_{2} \mathrm{pin}_{2}(1 \mathrm{k})$: 26
Borylation of 3,4-dimethylphenol with $\mathrm{B}_{2} \mathrm{pin}_{2}$ (11): 27
Borylation of 4-chloro-3-methylphenol with $\mathrm{B}_{2} \mathrm{pin}_{2}$ (1m): 28
Borylation of 2-methoxy-4-methylphenol with $\mathrm{B}_{2} \mathrm{pin}_{2}$ (1n): 28
Borylation of 3-carboethoxyphenol with $\mathrm{B}_{2} \mathrm{pin}_{2}$ (10): 29
Borylation of ortho-cresol with $\mathrm{B}_{2} \mathrm{pin}_{2}(1 \mathrm{p})$: 29
Borylation of phenol with $\mathrm{B}_{2} \mathrm{eg}_{2}(1 \mathrm{q})$: 30
Borylation of 4-Fluorophenol with $\mathrm{B}_{2} \mathrm{eg}_{2}$ (1r): 30
Borylation of 3-carboethoxyphenol with $\mathrm{B}_{2} \mathrm{eg}_{2}$ (1s) 31
Borylation of ortho-cresol with $\mathrm{B}_{2} \mathrm{eg}_{2}$ (1t): 32
Borylation of 3-methoxyphenol with $\mathrm{B}_{2} \mathrm{eg}_{2}$ (1u): 32
Borylation of 3-chlorophenol with $\mathrm{B}_{2} \mathrm{eg}_{2}(1 \mathrm{v})$: 33
Borylation of 2-methoxyphenol with $\mathrm{B}_{2} \mathrm{eg}_{2}$ (1w): 34
Borylation of 2-naphthol with $\mathrm{B}_{2} \mathrm{eg}_{2}$ (1x): 34
Evidence for 2-(4-fluorophenoxy)-1,3,2-dioxaborolanephenols formation under the reaction conditions: 35
Control for effects of toluene on borylation selectivity: 36
Control for effects of toluene and triethylamine on borylation selectivity: 36
Example of effects of triethylamine on $\mathrm{B}_{2} \mathrm{eg}_{2}$ reaction: 37
Synthesis of 2-(4-fluorophenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane from 4-
fluorophenol and the isolated trisboryl Ir catalyst: 38
Borylation of phenol with Ligand 4a: 39
Borylation of phenol with Ligand 4b: 40
Borylation of phenol with Ligand 4c: 40
Borylation of phenol with Ligand 4d: 41
2-(4-fluorophenoxy)-1,3,2-dioxaborolane from 4-fluorophenol following Route B: 42
2-(2-fluorophenoxy)-1,3,2-dioxaborolane from 2-fluorophenol Route A: 42
2-(2-fluorophenoxy)-1,3,2-dioxaborolane from 2-fluorophenol Route B: 44
2-(2-fluorophenoxy)-1,3,2-dioxaborolane from 2-fluorophenol Route C: 45
Computational Procedures and Results 46
General 46
Guide to Structures, Structure Titles and Their Organization 46
Calculated Structures, Energies, and Selected NPA Charges 48
Reactants: 48
4-MeO-C6 ${ }^{4} \mathrm{H}_{4} \mathrm{OBpin}$ ' M06/6-31+G** (3) 48
4-MeO-C ${ }_{6} \mathrm{H}_{4} \mathrm{OBpin}$ ' M06/6-31G* (3) 48
4-F-C6 $\mathrm{H}_{4} \mathrm{OBeg} \mathrm{M} 06 / 6-31+\mathrm{G}^{* *}$ 48
4-F-C $6_{6} \mathrm{H}_{4} \mathrm{OBeg}$ M06/6-31G* 49
4-F-C ${ }_{6} \mathrm{H}_{4} \mathrm{OB}$ pin M06/6-31+G** 49
4-F-C ${ }_{6} \mathrm{H}_{4} \mathrm{OB}$ pin M06/6-31G* 50
(bpy) $\operatorname{Ir}(\mathrm{Beg})_{3} \mathrm{M} 06 / \mathrm{BS} 1$ 50
(bpy)Ir(Beg) $)_{2}$ (Bpin') M06/BSsmall 51
(bpy) $\operatorname{Ir}(\text { Beg })_{2}$ (Bpin') M06/BS1 52
(bpy) $\operatorname{Ir}(\text { Bpin })_{3}$ M06/BSsmall 52
(bpy)Ir(Bpin)3 M06/BS 1 53
(tbut-bpy) $\operatorname{Ir}(\mathrm{Beg})_{3}$ M06/BSsmall 54
Transition Structures: 55
TS3-OBpin' anti M06/BSsmall 55
TS3-OBpin' anti M06/BS1 57
TS3-OMe ${ }_{\text {anti }}$ M06/BSsmall 57
TS3-OMe ${ }_{\text {anti }}$ M06/BS1 59
TS3-OBpin' ${ }_{\text {syn }}$ M06/BSsmall 60
TS3-OBpin' syn M06/BS1 61
TS3-OMe Conformer B M06/BSsmall 62
TS3-OMe ${ }_{\text {syn }}$ M06/BS1 63
TS5-OBeganti M06/BSsmall 64
TS5-OBeganti M06/BS1 65
TS5-F M06/BSsmall 66
TS5-OBeg syn M06/BSsmall 67
TS5-OBeg syn Conformer B M06/BSsmall 68
TS for (bpy)IrBpin ${ }_{3}+4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{OBpin}$, meta to F , M06/BSsmall 69
TS for (bpy) $\mathrm{IrBpin}_{3}+4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{OBpin}$, ortho to F , M06/BSsmall 70
Spectral Copies 73
References 178

Experimental Section

General Information

All commercially available chemicals were used as received unless otherwise indicated. Bis(pinacolato)diboron $\left(\mathrm{B}_{2} \mathrm{pin}_{2}\right)$ and tetrahydroxydiboron $\left(\mathrm{B}_{2}(\mathrm{OH})_{4}\right)$ were generously supplied by BoroPharm, Inc., and pinacolborane (HBpin) was purchased from Anderson Chemical Company. $\operatorname{Bis}\left(\eta^{4}-1,5\right.$-cyclooctadiene)-di- μ-methoxy-diiridium $(\mathrm{I}) \quad[\operatorname{Ir}(\mathrm{OMe})(\operatorname{cod})]_{2}$ was prepared per literature procedure. ${ }^{1}$ Cyclohexane (CyH) and tetrahydrofuran (THF) were refluxed over sodium/benzophenone ketyl, distilled and degassed. Column chromatography was performed on Silia P-Flash silica gel. Thin layer chromatography was performed on 0.25 mm thick aluminumbacked silica gel plates and visualized with ultraviolet light $(\lambda=254 \mathrm{~nm})$ and iodine. Sublimations were conducted with a water-cooled cold finger.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on 500 MHz NMR spectrometers. The boron bearing carbon atom was not observed due to quadrupolar relaxation. All coupling constants are apparent J values measured at the indicated field strengths in Hertz ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, t $=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{ddd}=$ doublet of doublet of doublets, bs = broad singlet). High-resolution mass spectra (HRMS) were obtained at the Michigan State University Mass Spectrometry Service Center using electrospray ionization (ESI+ or ESI-). ${ }^{2}$ Melting points were measured in a capillary melting point apparatus and are uncorrected.

Borylation of Anisole:

The reaction was conducted using a modified version of a previously reported ${ }^{3}$ procedure. In a glovebox, a 5 mL conical vial was charged with anisole ($435 \mu \mathrm{~L}, 4.0 \mathrm{mmol}$), $[\operatorname{Ir}(\mathrm{OMe})(\operatorname{cod})]_{2}(10$ $\mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015 \mathrm{mmol}$), dtbpy ($8 \mathrm{mg}, 3 \mathrm{~mol} \%, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \operatorname{Pin}_{2}(254 \mathrm{mg}, 1.0 \mathrm{mmol}, 0.25$ equiv), and dry cyclohexane (3 mL). The vial was sealed and placed in a preheated aluminum block at $80^{\circ} \mathrm{C}$ for 16 h . The volatiles were then removed on the rotary evaporator, and the conversion and isomer ratios were determined by GC/FID. The results are shown in the scheme.

Borylation of 4-Chloroanisole with \mathbf{B}_{2} pin 2 (2a):

2.0 mmol
conversion: 47\% (based on anisole)
o/m (wrt OMe) $=71 / 29$
mono/di $=92 / 08$

In a glovebox, a 5 mL conical vial was charged with $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015$ mmol), dtbpy ($8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}$), and $\mathrm{B}_{2} \mathrm{pin}_{2}(127 \mathrm{mg}, 0.25$ equiv, 0.5 mmol). Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere and stirred for 5 min at room temperature. To this mixture, 4-chloroanisole ($285 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$ and was stirred for 4 h . GC analysis showed that conversion of the starting material was 47% based on the consumption of the anisole and the borylation results ${ }^{4}$ are as follows: mono/di $=92 / 08$, ortho/meta $($ wrt OMe $)=71 / 29$.

Borylation of 4-Fluoroanisole with \mathbf{B}_{2} pin $_{2}$ (2c):

2.0 mmol

conversion: 49\% (based on anisole) $\mathrm{o} / \mathrm{m}(\mathrm{wrt} \mathrm{OMe})=06 / 94$ mono/di $=93 / 07$

In a glovebox, a 5 mL conical vial was charged with $[\mathrm{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015$ mmol), dtbpy ($8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}$), and $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($127 \mathrm{mg}, 0.25$ equiv). Dry cyclohexane (3 mL) was added under an inert atmosphere and stirred for 5 min at room temperature. To this mixture, 4-fluoroanisole ($252 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$ and was stirred for 4 h . GC analysis showed that conversion of the starting material was 49% based on the consumption of the anisole and the borylation results are as follows: mono/di $=93 / 07$, ortho/meta $($ wrt OMe$)=06 / 94$.

Borylation of 4-Chlorophenol with limiting B_{2} pin 2 (1a)

2.0 mmol

isomer ratio, o/m (wrt OH) = >99/1
mono:diborylation = 96:4
conversion = 43\%

In a glovebox, a 5 mL conical vial was charged with 4-chlorophenol ($257 \mathrm{mg}, 2.0 \mathrm{mmol}$) and pinacolborane ($319 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015 \mathrm{mmol})$, dtbpy ($\left.8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}\right)$, and $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($127 \mathrm{mg}, 0.25$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 4 h . The borylation results are shown in the scheme above and the results are based on GC and ${ }^{1} \mathrm{H}$ NMR data.

Borylation of 4-Cyanophenol with limiting B_{2} pin 2 (1b)

2.0 mmol
isomer ratio, o/m $(\mathrm{wrt} \mathrm{OH})=53 / 47$
mono:diborylation $=>99: 1$
conversion $=10.2 \%$

In a glovebox, a 5 mL conical vial was charged with 4 -cyanophenol ($238 \mathrm{mg}, 2.0 \mathrm{mmol}$) and pinacolborane ($319 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015 \mathrm{mmol})$, dtbpy ($\left.8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}\right)$, and $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($127 \mathrm{mg}, 0.25$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 4 h . The borylation results are shown in the scheme and the results are based on the crude ${ }^{1} \mathrm{H}$ NMR Data.

Borylation of 4-Fluorophenol with limiting $\mathbf{B}_{2} \mathrm{Pin}_{2}(1 \mathbf{c})$

In a glovebox, a 5 mL conical vial was charged with 4-fluorophenol ($224 \mathrm{mg}, 2.0 \mathrm{mmol}$) and pinacolborane ($319 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015 \mathrm{mmol})$, dtbpy ($\left.8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}\right)$, and $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($127 \mathrm{mg}, 0.25$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 4 h . The borylation results are shown in the scheme and the results are based on GC data.

General Procedure for the Synthesis of Pinacolborane (Bpin) Protected Phenols:

In a glovebox, under a N_{2} atmosphere phenols $(0.5 \mathrm{mmol})$ and HBpin (0.55 mmol) were charged in a 2 mL vial, and stirred at room temperature for 1-30 min until the reaction was complete (quantitative conversion). The product was characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{11} \mathrm{~B}$ NMR in air-free, screw cap NMR tubes.

Preparation of 2-(4-chlorophenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane:

quantitative conversion

The Bpin protected 4-chlorophenol was prepared as described in the general procedure using 4chlorophenol ($0.5 \mathrm{mmol}, 64 \mathrm{mg}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 152.0,129.2,128.1,120.8,83.7,24.6$.
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.7$ (s).

Preparation of 2-(4-fluorophenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane:

The Bpin protected 4-fluorophenol was prepared as described in the general procedure using 4fluorophenol ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.03-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 158.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=241 \mathrm{~Hz}\right), 149.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 120.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}}-\right.$
$\mathrm{F}=8.6 \mathrm{~Hz}), 115.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23.4 \mathrm{~Hz}\right), 83.6,24.6$.
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.7$ (s).
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{F}}-121.1(\mathrm{td}, J=13.3,8.3,4.9 \mathrm{~Hz}$).

Preparation of 2-(4-methoxyphenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane:

quantitative conversion

The Bpin protected 4-methoxyphenol was prepared as described in the general procedure using 4methoxyphenol ($54 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.76(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}$, $12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{c}} 155.3,147.3,120.1,114.3,83.5,55.6,24.6$.
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.7$ (s).

Preparation of 2-(4-bromophenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane:

 quantitative conversion

The Bpin protected 4-bromophenol was prepared as described in the general procedure using 4bromophenol ($87 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{H} 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.95(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 152.6,132.2,121.4,115.7,83.8,24.6$.
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.7$ (s).

Preparation 4,4,5,5-tetramethyl-2-(p-tolyloxy)-1,3,2-dioxaborolane:

quantitative conversion

The Bpin protected p-cresol was prepared as described in the general procedure using the p-cresol ($54 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.07-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) 1.29(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 151.2,132.4,129.8,119.2,83.5,24.6,20.7$
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.7$ (s).
Preparation of 2-(4-(tert-butyl)phenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane:

 quantitative conversion

The Bpin protected 4-tert-butylphenol was prepared as described in the general procedure using 4-tert-butylphenol ($75 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H}), 1.30(\mathrm{~s}$, 9H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 151.0,145.6,126.1,118.8,83.5,34.2,31.5,24.6$.
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.7$ (br s).
Preparation of 4,4,5,5-tetramethyl-2-(4-(trifluoromethyl)phenoxy)-1,3,2-dioxaborolane:

The Bpin protected 4-trifluorophenol was prepared as described in the general procedure using 4trifluorophenol ($81 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 156.0,126.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.9 \mathrm{~Hz}\right), 125.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32 \mathrm{~Hz}\right), 124.2$, $\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=271 \mathrm{~Hz}\right), 119.8,83.9,24.6$.
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.7$ (s).
Preparation of ethyl 4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)benzoate:

quantitative conversion

The Bpin protected ethyl 4-hydroxybenzoate was prepared as described in the general procedure using ethyl 4-hydroxybenzoate ($83 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.98-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 166.2,157.2,131.3,125.4,119.4,83.9,60.7,24.6,14.3$.
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.7$ (br s).

Preparation of 2-(4-bromo-2-chlorophenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane:

 quantitative conversion

The Bpin protected 4-bromo-2-chlorophenol was prepared as described in the general procedure using 4-bromo-2-chlorophenol ($104 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.52(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}$, $\mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 148.9,132.7,130.7,126.4,122.6,115.9,84.2,24.6$.
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.6$ (s).
Preparation of 2-(2,4-dichlorophenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane:

The Bpin protected 2,4-dichlorophenol was prepared as described in the general procedure using 2,4-dichlorophenol ($82 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.35(J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.29$ (s, 12H).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta_{\mathrm{C}} 148.5,129.8,127.8,126.0,122.1,117.1,84.2,24.6$.
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.6$ (s).
Preparation of 2-(3,4-dimethylphenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane:

$\xrightarrow[\text { rt, neat, } 10 \mathrm{~min} .]{1.1 \text { equiv. } \mathrm{HBpin}}$ quantitative conversion

The Bpin protected 3,4-dimethylphenol was prepared as described in the general procedure using 3,4-dimethylphenol ($61 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (dd, $J=$ $8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 151.4,137.6,131.2,130.2,120.7,116.6,83.4,24.6,19.9,19.0$.
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.8$ (s).

Preparation of 2-(4-chloro-3-methylphenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane:

quantitative conversion

The Bpin protected 4-chloro-3-methylphenol was prepared as described in the general procedure using 4-chloro-3-methylphenol ($71 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=$ $8.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 151.9,136.9,129.5,128.4,121.9,118.3,83.7,24.6,20.2$
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.7$ (s).
Preparation of 2-(2-methoxy-4-methylphenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane:

The Bpin protected 2-methoxy-4-methylphenol was prepared as described in the general procedure using 2-methoxy-4-methylphenol ($69 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 6.95(J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 3.83$ $(\mathrm{s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 149.7,140.7,133.5,121.1,120.1,113.0,83.4,55.6,24.5,21.3$.
${ }^{11} \mathrm{~B} \operatorname{NMR}\left(176, \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{B}} 21.9$ (s).

Preparation of ethyl 3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)benzoate:

 quantitative conversion

The Bpin protected ethyl 3-hydroxybenzoate was prepared as described in the general procedure using ethyl 3-hydroxybenzoate ($83 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.77-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H})$, $4.37(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 166.2,153.4,131.8,129.2,124.3,124.1,120.7,83.8,61.0,24.6$, 14.3.
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.7$ (s).

Preparation of 4,4,5,5-tetramethyl-2-(o-tolyloxy)-1,3,2-dioxaborolane:

$\xrightarrow[\text { rt, neat, } 10 \text { min. }]{1.1 \text { equiv. HBpin }}$

quantitative conversion
The Bpin protected o-cresol was prepared as described in the general procedure using o-cresol (54 $\mathrm{mg}, 0.5 \mathrm{mmol})$ and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{ddd}, J=7.3,7.3$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.33$ (s, 12H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 151.9,130.9,128.4,126.7,123.3,119.4,83.5,24.6,16.4$
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.7$ (s).

Preparation of 4,4,5,5-tetramethyl-2-phenoxy-1,3,2-dioxaborolane:

quantitative conversion
The Bpin protected phenol was prepared as described in the general procedure using phenol (47 $\mathrm{mg}, 0.5 \mathrm{mmol})$ and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$) and stirring for ten minutes.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.29(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.0$
$\mathrm{Hz}, 1 \mathrm{H}), 1.33$ (s, 12H)
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 153.4,129.3,123.1,119.5,83.5,24.6$.
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.7$ (s).

Preparation of 2-(3-methoxyphenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane:

quantitative conversion
The Bpin protected 3-methoxyphenol was prepared as described in the general procedure using 3methoxyphenol ($62 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.15(\mathrm{t}, J=8.2 \mathrm{~Hz}), 6.72(\mathrm{ddd}, J=8.0,2.3,0.87 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{t}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{ddd}, J=8.3,2.4,0.87 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 160.5,154.5,129.7,111.9,108.6,105.9,83.6,55.3,24.6$.
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.7$ (s).
Preparation of 2-(3-chlorophenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane:

$\xrightarrow[\text { rt, neat, } 10 \mathrm{~min} .]{\text { 1.1 equiv. HBpin }}$

quantitative conversion

The Bpin protected 3-chlorophenol was prepared as described in the general procedure using 3chlorophenol ($64.3 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.17(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{ddd}, J=$ $7.8,3.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (ddd, $J=8.3 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta_{\mathrm{C}} 154.1,134.4,130.0,123.4,120.1,117.9,83.8,24.6$.
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.7$ (s).
Preparation of 4,4,5,5-tetramethyl-2-(naphthalen-2-yloxy)-1,3,2-dioxaborolane:

The Bpin protected 2-naphthol was prepared as described in the general procedure using 2naphthol ($72 \mathrm{mg}, 0.5 \mathrm{mmol}$) and HBpin ($80 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.78(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (ddd, $J=8.1,5.9,1.3$
$\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{ddd}, J=8.2,6.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 151.3,134.2,130.1,129.3,127.6,127.2,126.3,124.5,120.7$, 115.2, 83.7, 24.6.
${ }^{11} \mathrm{~B}$ NMR (176, MHz, CDCl_{3}): $\delta_{\mathrm{B}} 21.9$ (s).

Preparation of the Authentic Boronic Esters for Phenols:

2-(2-Hydroxyphenyl)1,3,2-dioxaborolane from 2-hydroxyphenylboronic acid and ethylene glycol:

A 5 mL conical vial was charged with 2-hydroxyphenylboronic acid ($276 \mathrm{mg}, 2.0 \mathrm{mmol}$), ethylene glycol ($122 \mathrm{mg}, 2.0 \mathrm{mmol}$) and molecular seives ($3 \AA, 1.0 \mathrm{gm}$). Dry THF (3.0 mL) was added and the vial was capped with a teflon pressure cap and stirred at room temperature. After 30 min , the reaction mixture was filtered immediately through a short pad of celite under an inert atmosphere, which was then evaporated under reduced pressure to afford 265.0 mg of the boronic ester (80%) as oil. The compound is highly air sensitive and decomposed rapidly.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.64(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.42(\mathrm{~m}, 1 \mathrm{H})$, 6.90-6.93 (m, 2H), 4.42 (s, 4H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 163.4,135.8,134.1,119.7,115.6,65.9$.
${ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 31.3$ (br. s).
HRMS (ESI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BO}_{3}[\mathrm{M}-\mathrm{H}]^{-} 163.0568$, found 163.0568 .

2-(3-Hydroxyphenyl)1,3,2-dioxaborolane from 3-hydroxyphenylboronic acid and ethylene

 glycol:

A 5 mL conical vial was charged with 3-hydroxyphenylboronic acid ($276 \mathrm{mg}, 2.0 \mathrm{mmol}$), ethylene glycol ($122 \mathrm{mg}, 2.0 \mathrm{mmol}$) and molecular seives ($3 \AA$, 1.0 gm). Dry THF (3.0 mL) was added and the vial was capped with a teflon pressure cap and stirred at room temperature. After 30 min , the reaction mixture was filtered immediately through a short pad of celite under an inert atmosphere, which was then evaporated under reduced pressure to afford 255 mg of the boronic ester (77\%) as white solid ($\mathrm{mp}=128-129^{\circ} \mathrm{C}$). The compound is highly air sensitive and decomposed rapidly.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.34(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=7.5$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50$ (br. s., 1H), 4.39 (s, 4H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 155.2,128.9,126.6,120.5,119.2,66.1$.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\text {в }} 31.5$ (br. s).
HRMS (ESI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BO}_{3}[\mathrm{M}-\mathrm{H}]^{-} 163.0568$, found 163.0568.
2-(4-Hydroxyphenyl)1,3,2-dioxaborolane from 4-hydroxyphenylboronic acid and ethylene glycol:

2.0 mmol
2.0 mmol
yield: 77\% (isolated)
A 5 mL conical vial was charged with 3-hydroxyphenylboronic acid ($276 \mathrm{mg}, 2.0 \mathrm{mmol}$), ethylene glycol ($122 \mathrm{mg}, 2.0 \mathrm{mmol}$) and molecular seives ($3 \AA, 1.0 \mathrm{gm}$). Dry THF (3.0 mL) was added and
the vial was capped with a teflon pressure cap and stirred at room temperature. After 30 min , the reaction mixture was filtered immediately through a short pad of celite under an inert atmosphere, which was then evaporated under reduced pressure to afford 260 mg of the boronic ester (79\%) as white solid $\left(\mathrm{mp}=131-132{ }^{\circ} \mathrm{C}\right)$. The compound is highly air sensitive and decomposed rapidly.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H})$, 4.37 ($\mathrm{s}, 4 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 158.5,136.9,115.0,66.0$.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 31.5$ (br. s).
HRMS (ESI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BO}_{3}[\mathrm{M}-\mathrm{H}]^{-} 163.0568$, found 163.0568.

2-(2-Hydroxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane from 2-

hydroxyphenylboronic acid and pinacol:

A 5 mL conical vial was charged with 2-hydroxyphenylboronic acid ($276 \mathrm{mg}, 2.0 \mathrm{mmol}$), pinacol $(236 \mathrm{mg}, 2.0 \mathrm{mmol})$ and molecular seives $(3 \AA, 1.0 \mathrm{~g})$. Dry THF $(3.0 \mathrm{~mL})$ was added and the vial was capped with a teflon pressure cap and stirred at room temperature. After 30 min , the reaction mixture was filtered immediately through a short pad of celite under inert atmosphere, which was then evaporated under reduced pressure to afford 330 mg of the boronic ester (80%) as colorless oil. The NMR data of this compound were in accordance with the literature reported compound. ${ }^{5}$

2-(3-Hydroxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

This compound is commercially available and was purchased from Sigma-Aldrich and used without any further purification.

2-(4-Hydroxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane from 4-

hydroxyphenylboronic acid and pinacol:

A 5 mL conical vial was charged with 4-hydroxyphenylboronic acid ($276 \mathrm{mg}, 2.0 \mathrm{mmol}$), pinacol $(236 \mathrm{mg}, 2.0 \mathrm{mmol})$ and molecular seives $(3 \AA, 1.0 \mathrm{~g})$. Dry THF $(3.0 \mathrm{~mL})$ was added and the vial was capped with a teflon pressure cap and stirred at room temperature. After 30 min , the reaction mixture was filtered immediately through a short pad of celite under an inert atmosphere, which was then evaporated under reduced pressure to afford 341 mg of the boronic ester (78%) as white solid ($\mathrm{mp}=102-105^{\circ} \mathrm{C}$). The NMR data of this compound were in accordance with the literature reported compound. ${ }^{6}$

Synthesis of 2,2'-bi(1,3,2-dioxaborolane) from Tetrahydroxydiboron:

This compound was synthesized by modifying the previously reported procedure. ${ }^{7}$ A 100 mL round bottom flask was charged with tetrahydroxydiboron ($1.0 \mathrm{~g}, 11.2 \mathrm{mmol}, 1$ equiv), dry MgSO_{4} ($1.61 \mathrm{~g}, 1.2$ equiv) and dry THF ($\sim 20 \mathrm{~mL}$) then sealed with a septa. To this solution was added freshly distilled ethylene glycol ($1.31 \mathrm{~mL}, 23.4 \mathrm{mmol}, 2.1$ equiv). After stirring for 24 h at room temperature, the reaction mixture was filtered through a medium glass frit using approximately 30 mL THF to aid transfer and wash the MgSO_{4}. The THF solution was evaporated under reduced pressure to afford a white solid. The solid was dried under highvac to yield 1.53 g of pure $\mathrm{B}_{2} \mathrm{eg}_{2}$ (97%). It should be noted that if further purification is necessary $\mathrm{B}_{2} \mathrm{eg}_{2}$ sublimes at 0.01 mm Hg pressure and $65-70^{\circ} \mathrm{C} .\left(\mathrm{mp}=159-160^{\circ} \mathrm{C}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 4.21$ (s, 4H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 65.3$.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\text {в }} 30.9$ (br. s).
HRMS (ESI) m / z calcd for $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~B}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$143.0687, found 143.0685.

Borylation of 4-Chlorophenol with \mathbf{B}_{2} pin 2 (1a):

1.0 mmol

yield: 80\% (isolated)

In a glovebox, a 5 mL conical vial was charged with 4-chlorophenol ($129 \mathrm{mg}, 1.0 \mathrm{mmol}$) and pinacolborane ($160 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol})$, dtbpy ($\left.16 \mathrm{mg}, 6.0 \mathrm{~mol} \%, 0.06 \mathrm{mmol}\right)$, and $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($254 \mathrm{mg}, 1.0$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h . After completion (judged by GC), the cyclohexane was removed under reduced pressure and chromatographic separation with silica gel (chloroform as eluent) gave 203 mg of the ortho-borylated product (80%) as a white solid ($\mathrm{mp}=$ $59-60^{\circ} \mathrm{C}$). The NMR data was in accordance with the literature reported data. ${ }^{5}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 162.1,134.8,133.6,124.5,117.1,84.9,24.8$.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 30.7$ (br. s).

Gram Scale Borylation of 4-Chlorophenol (1a):

15.5 mmol 10.85 mmol
yield: 74% (isolated)
In a glovebox, a 100 mL air free flask was charged with 4-chlorophenol ($2.0 \mathrm{~g}, 15.5 \mathrm{mmol}$) and HBpin ($2.18 \mathrm{~g}, 17.05 \mathrm{mmol}$). After stirring for 5 minutes, a solid had formed. Then, $[\operatorname{Ir}(\mathrm{OMe}) \operatorname{cod}]_{2}$ $(150 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.226 \mathrm{mmol})$, dtbpy ($125 \mathrm{mg}, 3 \mathrm{~mol} \%, 0.465 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{Pin}_{2}(2.75 \mathrm{~g}, 10.85$ $\mathrm{mmol})$, and dry cyclohexane (25 mL) were added. The flask was sealed and heated at $80^{\circ} \mathrm{C}$. After 3 h , the reaction was complete (judged by GC/FID), and the volatiles were removed under reduced pressure. Purification by column chromatography with chloroform as the eluent afforded 2.92 g of the analytically pure ortho-borylated product (74\%) as a white solid.

Borylation of 2-Chloro-5-hydroxypyridine with $\mathbf{B}_{2} \mathbf{p i n}_{2}$ (1b):

In a glovebox, a 5 mL conical vial was charged with 2-chloro-5-hydroxypyridine ($129 \mathrm{mg}, 1.0$ mmol) and pinacolborane ($160 \mu \mathrm{~L}, 1.1$ equiv) in THF (1.5 mL) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015 \mathrm{mmol})$, dtbpy $(8 \mathrm{mg}, 3.0$ $\mathrm{mol} \%, 0.03 \mathrm{mmol}$), and $\mathrm{B}_{2} \mathrm{pin}_{2}(127 \mathrm{mg}, 0.5$ equiv) was charged. Additional THF (1.5 mL) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 5 hours. The reaction was then cooled to room temperature and transferred to a round bottom flask. It was washed in with additional THF (3 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ and degased with N_{2} for 5 minutes. Then, $\mathrm{KHF}_{2}\left(2.2 \mathrm{~mL}, 8.8 \mathrm{mmol}, 4.0 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was added via syringe dropwise. The reaction was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 10 minutes, then the ice bath was removed and the reaction warmed to room temperature. After stirring at room temperature for 16 h , the reaction was filtered, and the recovered solid washed with THF to afford the organotrifluoroborate product (87\%) as a white solid ($\mathrm{mp}=226-230^{\circ} \mathrm{C}$ dec).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta_{\mathrm{H}} 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{q}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 7.15(\mathrm{br}, 1 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$: $\delta_{\mathrm{C}} 156.18,140.18,135.58,127.59$ (q, 1.88 Hz)
${ }^{11}$ B NMR ($\left.160 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta_{\mathrm{B}} 2.65(\mathrm{q}, J=51.5 \mathrm{~Hz})$
HRMS (ESI) m / z calcd for $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{BClF}_{3} \mathrm{NO}[\mathrm{M}-\mathrm{K}]^{-1} 195.9955$, found 195.9948

Borylation of 4-Fluorophenol with B_{2} pin2 (1c):

In a glovebox, a 5 mL conical vial was charged with 4-fluorophenol ($112 \mathrm{mg}, 1.0 \mathrm{mmol}$) and pinacolborane ($160 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol})$, dtbpy ($\left.16 \mathrm{mg}, 6.0 \mathrm{~mol} \%, 0.06 \mathrm{mmol}\right)$, and B $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($178 \mathrm{mg}, 0.7$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 24 h . GC-FID showed 100% conversion of
the starting material. The ratio of products was 10:90 (ortho:meta wrt to OH), and 82:18 (monoborylation:diborylation).

Borylation of 4-methoxyphenol with B_{2} pin 2 (1d):

1.0 mmol
yield: 58% (isolated)
In a glovebox, a 5 mL conical vial was charged with 4-methoxyphenol ($124 \mathrm{mg}, 1.0 \mathrm{mmol}$) and pinacolborane ($160 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol})$, dtbpy ($\left.16 \mathrm{mg}, 6.0 \mathrm{~mol} \%, 0.06 \mathrm{mmol}\right)$, and $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($178 \mathrm{mg}, 0.7$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 24 h . After completion (judged by GC), the ratio of ortho/meta (wrt OH) borylated product was found to be $65 / 35$. The cyclohexane was removed under reduced pressure and chromatographic separation with silica gel (chloroform as eluent) gave 144.0 mg of the ortho-borylated product (58\%) as a colorless oil. NMR data was in accordance with the literature reported data. ${ }^{5}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=9.5,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.83$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (s, 3H), 1.37 ($\mathrm{s}, 12 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 157.9,152.6,121.3,118.0,116.5,84.5,55.8,24.8$.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 31.1$ (br. s).

Borylation of 4-bromolphenol with B2pin2 (1e):

1.0 mmol

yield: 63\% (isolated)

In a glovebox, a 5 mL conical vial was charged with 4-bromophenol ($173 \mathrm{mg}, 1.0 \mathrm{mmol}$) and pinacolborane ($160 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol})$, dtbpy ($\left.16 \mathrm{mg}, 6.0 \mathrm{~mol} \%, 0.06 \mathrm{mmol}\right)$, and $\mathrm{B}_{2} \mathrm{pin}_{2}$
($178 \mathrm{mg}, 0.7$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 24 h . After completion (judged by GC), the cyclohexane was removed under reduced pressure and chromatographic separation with silica gel (chloroform as eluent) gave 188 mg of the ortho-borylated product (63\%) as a yellow solid ($\mathrm{mp}=$ $68-69^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.37$ ($\mathrm{s}, 12 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 162.6,137.8,136.4,117.6,111.9,84.9,24.8$.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\text {в }} 30.6$ (br. s).
HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BBrO}_{3}[\mathrm{M}-\mathrm{H}]^{-}$297.0300, found 297.0299.

Borylation of 4-methylphenol with B_{2} pin 2 (1f):

In a glovebox, a 5 mL conical vial was charged with 4-methylphenol ($108 \mathrm{mg}, 1.0 \mathrm{mmol}$) and pinacolborane ($160 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\mathrm{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol})$, dtbpy ($\left.16 \mathrm{mg}, 6.0 \mathrm{~mol} \%, 0.06 \mathrm{mmol}\right)$, and $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($178 \mathrm{mg}, 0.7$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 24 h . After completion (judged by GC), cyclohexane was removed under reduced pressure and chromatographic separation with silica gel (chloroform as eluent) gave 199 mg of the borylated product (85%) as a pale yellow solid ($\mathrm{mp}=$ $\left.35-36{ }^{\circ} \mathrm{C}\right)$. The NMR data were in accordance with the literature reported data. ${ }^{5}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ (s, 3H), 1.38 (s, 12H).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta_{\mathrm{C}} 161.5,135.6,134.6,128.5,115.3,84.4,24.8,20.3$.
${ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 31.0$ (br. s).

Borylation of 4-tertbutylphenol with \mathbf{B}_{2} pin $_{2}(1 \mathrm{~g})$:

1.0 mmol

yield: 84\% (isolated)

In a glovebox, a 5 mL conical vial was charged with 4-tertbutylphenol ($150 \mathrm{mg}, 1.0 \mathrm{mmol}$) and pinacolborane ($160 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\mathrm{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol})$, dtbpy ($\left.16 \mathrm{mg}, 6.0 \mathrm{~mol} \%, 0.06 \mathrm{mmol}\right)$, and $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($178 \mathrm{mg}, 0.7$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 24 h . After completion (judged by GC), cyclohexane was removed under reduced pressure and chromatographic separation with silica gel (chloroform as eluent) gave 233 mg of the borylated product (84%) as a white solid ($\mathrm{mp}=78-79$ ${ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.37$ ($\mathrm{s}, 12 \mathrm{H}$), 1.31 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 161.5,141.9,131.9,131.2,115.0,84.4,34.0,31.5,24.8$.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\text {в }} 30.6$ (br. s).
HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BO}_{3}[\mathrm{M}-\mathrm{H}]^{-} 275.1822$, found 275.1825 .

Borylation of 4-trifluoromethylphenol with B_{2} pin $_{2}$ (1h):

1.0 mmol

yield: 65\% (isolated)

In a glovebox, a 5 mL conical vial was charged with 4-trifluoromethylphenol ($162 \mathrm{mg}, 1.0 \mathrm{mmol}$) and pinacolborane ($160 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 20 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol})$, dtbpy ($\left.16 \mathrm{mg}, 6.0 \mathrm{~mol} \%, 0.06 \mathrm{mmol}\right)$, and $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($178 \mathrm{mg}, 0.7$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum
block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 24 h . After completion (judged by GC), cyclohexane was removed under reduced pressure and chromatographic separation with silica gel (chloroform as eluent) gave 188 mg of the borylated product (63%) as a white solid ($\mathrm{mp}=75-76$ ${ }^{\circ} \mathrm{C}$)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=9.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.39$ (br. s., 12 H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 166.1,133.2(\mathrm{q}, J=3.7 \mathrm{~Hz}), 130.7(\mathrm{q}, J=3.1 \mathrm{~Hz}), 124.5(\mathrm{q}, J=$ $271.8 \mathrm{~Hz}), 121.9(\mathrm{q}, J=33.0 \mathrm{~Hz}), 116.0,85.1,24.8$.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 30.6$ (br. s).
HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BF}_{3} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{-}$287.1069, found 287.1072.

Borylation of 4-carboethoxyphenol with \mathbf{B}_{2} pin 2 (1i):

1.0 mmol
yield: 51% (isolated)
In a glovebox, a 5 mL conical vial was charged with 4-carboethoxyphenol ($166 \mathrm{mg}, 1.0 \mathrm{mmol}$) and pinacolborane ($160 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol})$, dtbpy ($\left.16 \mathrm{mg}, 6.0 \mathrm{~mol} \%, 0.06 \mathrm{mmol}\right)$, and $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($178 \mathrm{mg}, 0.7$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 h . After completion (judged by GC), cyclohexane was removed under reduced pressure and chromatographic separation with silica gel (chloroform as eluent) gave 144 mg of the borylated product (51%) as a white solid ($\mathrm{mp}=106$ $107{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 8.33(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.0(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.36-1.40(\mathrm{~m}$, Bpin 12 H and ester 3 H overlapped).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 167.3,166.3,138.1,135.4,122.1,115.6,84.9,60.6,24.8,14.5$;
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 30.8$ (br. s).
HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$293.1563, found 293.1565.

Borylation of 4-bromo-2-chlorophenol with B_{2} pin $_{2}$ (1j):

In a glovebox, a 5 mL conical vial was charged with 4-bromo-2-chlorophenol ($207 \mathrm{mg}, 1.0 \mathrm{mmol}$) and pinacolborane ($160 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol})$, dtbpy ($\left.16 \mathrm{mg}, 6.0 \mathrm{~mol} \%, 0.06 \mathrm{mmol}\right)$, and B $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($178 \mathrm{mg}, 0.7$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 24 h . After completion (judged by GC), cyclohexane was removed under reduced pressure and chromatographic separation with silica gel (chloroform as eluent) gave 250 mg of the borylated product (75%) as a brown solid ($\mathrm{mp}=109$ $110{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 1.38 (s, 12H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 157.9,136.3,136.1,121.8,111.5,85.4,24.8$.
${ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 30.0$
HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BBrClO}_{3}[\mathrm{M}-\mathrm{H}]^{-} 330.9910$, found 330.9910 .

Borylation of 2,4-dichlorophenol with $\mathrm{B}_{2} \mathbf{p i n}_{2}(1 \mathrm{k})$:

1.0 mmol
i) 1.1 equiv HBpin, rt, 5 min ii) $3.0 \mathrm{~mol} \%[\mathrm{lr}(\mathrm{OMe})(\mathrm{cod})]_{2}$
$6.0 \mathrm{~mol} \%$ dtbpy, 0.7 equiv $\mathrm{B}_{2} \mathrm{pin}_{2}$
$\mathrm{CyH}, 80^{\circ} \mathrm{C}, 8 \mathrm{~h}$
yield: 49\% (isolated)

In a glovebox, a 5 mL conical vial was charged with 2,4-dichlorophenol ($163 \mathrm{mg}, 1.0 \mathrm{mmol}$) and pinacolborane ($160 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol})$, dtbpy ($\left.16 \mathrm{mg}, 6.0 \mathrm{~mol} \%, 0.06 \mathrm{mmol}\right)$, and $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($178 \mathrm{mg}, 0.7$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum
block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 8 h . After completion (judged by GC), cyclohexane was removed under reduced pressure and chromatographic separation with silica gel (chloroform as eluent) gave 141 mg of the borylated product (49%) as a yellow solid ($\mathrm{mp}=108$ $109{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.38 (s, 12H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 162.3,157.4,133.4,124.7,121.5,85.3,24.8$.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 31.1$ (br. s).
HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BCl}_{2} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{-}$287.0415, found 287.0418.

Borylation of 3,4-dimethylphenol with \mathbf{B}_{2} pin 2 (11):

In a glovebox, a 5 mL conical vial was charged with 3,4-dimethylphenol ($122 \mathrm{mg}, 1.0 \mathrm{mmol}$) and pinacolborane ($160 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol})$, dtbpy ($\left.16 \mathrm{mg}, 6.0 \mathrm{~mol} \%, 0.06 \mathrm{mmol}\right)$, and $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($178 \mathrm{mg}, 0.7$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 24 h . After completion (judged by GC), cyclohexane was removed under reduced pressure and chromatographic separation with silica gel (chloroform as eluent) gave 169 mg of the borylated product (68%) as an oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$, 1.38 (s, 12H).
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 161.9,143.2,136.0,127.5,116.5,84.2,24.8,20.3,18.5$.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 30.8$ (br. s).
HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{BO}_{3}[\mathrm{M}-\mathrm{H}]^{-} 247.1508$, found 247.1509.

Borylation of 4-chloro-3-methylphenol with \mathbf{B}_{2} pin $_{2}$ (1m):

In a glovebox, a 5 mL conical vial was charged with 4-chloro-3-methylphenol ($143 \mathrm{mg}, 1.0 \mathrm{mmol}$) and pinacolborane ($160 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 20 min at room temperature. To this mixture, $[\mathrm{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol})$, dtbpy ($\left.16 \mathrm{mg}, 6.0 \mathrm{~mol} \%, 0.06 \mathrm{mmol}\right)$, and $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($178 \mathrm{mg}, 0.7$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 20 h . After completion (judged by GC), cyclohexane was removed under reduced pressure and chromatographic separation with silica gel (10% ethylacetate in hexane as eluent) gave 159 mg of the ortho-borylated product (59\%) as a red liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 162.0,142.0,135.2,125.1,117.9,84.7,24.7,20.6$.
${ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 30.5$ (br. s).
HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BClO}_{3}[\mathrm{M}-\mathrm{H}]^{-} 267.0962$, found 267.0964.

Borylation of 2-methoxy-4-methylphenol with B2pin2 (1n):

1.0 mmol
i) 1.1 equiv HBpin, rt, 5 min
ii) $3.0 \mathrm{~mol} \%[\operatorname{lr}(\mathrm{OMe})(\mathrm{cod})]_{2}$
$6.0 \mathrm{~mol} \%$ dtbpy, 0.7 equiv $\mathrm{B}_{2} \mathrm{pin}_{2}$ $\mathrm{CyH}, 80^{\circ} \mathrm{C}, 20 \mathrm{~h}$

yield: 66\% (isolated)

In a glovebox, a 5 mL conical vial was charged with 2-methoxy-4-methylphenol ($138 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ and pinacolborane ($160 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol})$, dtbpy ($16 \mathrm{mg}, 6.0 \mathrm{~mol} \%, 0.06 \mathrm{mmol}$), and $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($178 \mathrm{mg}, 0.7$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 20 h . After completion (judged by

GC), cyclohexane was removed under reduced pressure and chromatographic separation with silica gel (10% ethylacetate in hexane as eluent) gave 175 mg of the ortho-borylated product (66\%) as a pale yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 150.8,147.1,129.0,126.6,116.7,84.4,56.0,24.8,20.8$.
${ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 30.5$ (br. s).
HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{BO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$265.1614, found 265.1603.

Borylation of 3-carboethoxyphenol with B_{2} pin 2 (10):

In a glovebox, a 5 mL conical vial was charged with 3-carboethoxyphenol ($166 \mathrm{mg}, 1.0 \mathrm{mmol}$) and pinacolborane ($160 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol})$, dtbpy ($\left.16 \mathrm{mg}, 6.0 \mathrm{~mol} \%, 0.06 \mathrm{mmol}\right)$, and B B $2 \mathrm{pin}_{2}$ (1.0 equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at 80 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 5 h . GC-FID showed a 100% conversion of the starting material. The ratio of products was 18:82 (ortho:meta wrt OH).

Borylation of ortho-cresol with \mathbf{B}_{2} pin 2 (1p):

In a glovebox, a 5 mL conical vial was charged with ortho-cresol ($108 \mathrm{mg}, 1.0 \mathrm{mmol}$) and pinacolborane ($160 \mu \mathrm{~L}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015 \mathrm{mmol})$, dtbpy ($\left.8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}\right)$, and $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($178 \mathrm{mg}, 0.7$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert
atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 4 h . GC-FID showed a 100% conversion of the starting material. The ratio of products was 1:99 (ortho:meta wrt OH).

Borylation of phenol with $\mathrm{B}_{2} \mathrm{eg}_{2}(\mathbf{1 q})$:

In a glovebox, a 5 mL conical vial was charged with $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015$ $\mathrm{mmol})$, dtbpy ($8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{eg}_{2}(213 \mathrm{mg}, 1.5$ equiv, 1.5 mmol$)$, phenol (94 $\mathrm{mg}, 1.0 \mathrm{mmol})$, dry $\mathrm{PhMe}(2.5 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(209 \mu \mathrm{~L}, 1.5$ equiv, 1.5 mmol$)$. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$ for 2 h . The solvent was evaporated under reduced pressure and dry chloroform (10 mL) was added. To this mixture, pinacol (354 mg , 3.0 equiv) was added and stirred at room temperature for 40 min . Upon completion (judged by GC), the crude mixture was passed through a short pad of silica gel (chloroform as eluent) to afford the 142 mg of the ortho-borylated product (65\%) as a colorless oil. The ratio of mono/o,o-di borylated product was found to be $82 / 18$ by the GC-FID and the diborylated product was assigned by the crude NMR spectra, but was not isolated. The NMR data were in accordance with the literature reported data. ${ }^{5}$

Borylation of 4-Fluorophenol with $\mathbf{B}_{2} \mathrm{eg}_{2}(1 r):$

In a glovebox, a 5 mL conical vial was charged with $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015$ mmol), dtbpy ($8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{eg}_{2}$ ($170.07 \mathrm{mg}, 1.2$ equiv, 1.2 mmol), $4-$ fluorophenol ($112 \mathrm{mg}, 1.0 \mathrm{mmol}$), dry $\operatorname{PhMe}(2.5 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(209 \mu \mathrm{~L}, 1.5$ equiv, 1.5 mmol$)$. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at 80
${ }^{\circ} \mathrm{C}$ for 2 h . Solvent was evaporated under reduced pressure and dry chloroform (10 mL) was added. To this mixture, pinacol ($354 \mathrm{mg}, 3.0$ equiv) was added and stirred at room temperature for 40 min. Upon completion (judged by GC), the crude mixture was passed through a short pad of silica gel (chloroform as eluent) to afford the 118 mg of the ortho-borylated product (50%) as a brown oil. The ratio of mono/o,o-di borylated product was found to be $89 / 11$ by the GC-FID and the diborylated product was assigned by the crude NMR spectra, but not isolated. The NMR data of the isolated product were in accordance with the literature reported data. ${ }^{5}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.27$ (m, OH and ArH overlapped, 2H), 7.06 $(\mathrm{dt}, \mathrm{J}=8.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 159.6(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 156.3(\mathrm{~d}, J=237.6 \mathrm{~Hz}), 120.6(\mathrm{~d}, J=21.2$ $\mathrm{Hz}), 120.4,116.7(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 84.8,24.8$.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\text {в }} 30.4$ (br. s).
${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{F}}-126.0(\mathrm{td}, J=21.5,13.3,5.1 \mathrm{~Hz})$.

Borylation of 3-carboethoxyphenol with $\mathrm{B}_{2} \mathrm{eg}_{2}$ (1s)

1.0 mmol
i) $1.5 \mathrm{~mol} \%[\mathrm{rr}(\mathrm{OMe})(\mathrm{cod})]_{2}, 3.0 \mathrm{~mol} \% \mathrm{dtbpy}$, 1.5 equiv $\mathrm{B}_{2} \mathrm{eg}_{2}$, $\mathrm{PhMe}(2.5 \mathrm{~mL})$, 1.5 equiv $\mathrm{Et}_{3} \mathrm{~N}, 80^{\circ} \mathrm{C}, 2 \mathrm{~h}$
ii) solvent removed, $\mathrm{CHCl}_{3}(10 \mathrm{~mL}), 3.0$ equiv. pinacol, rt, 40 min .

In a glovebox, a 5 mL conical vial was charged with $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015$ mmol), dtbpy ($8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{eg}_{2}$ ($213 \mathrm{mg}, 1.5$ equiv, 1.5 mmol), $3-$ carboethoxyphenol ($166 \mathrm{mg}, 1.0 \mathrm{mmol}$), dry $\mathrm{PhMe}(2.5 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(209 \mu \mathrm{~L}, 1.5$ equiv, 1.5 $\mathrm{mmol})$. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$ for 2 h . Solvent was evaporated under reduced pressure and dry chloroform (10 mL) was added. To this mixture, pinacol ($354 \mathrm{mg}, 3.0$ equiv) was added and stirred at room temperature for 40 min . Upon completion (judged by GC), the crude mixture was passed through a short pad of silica gel (chloroform as eluent) to afford the 163 mg of the ortho-borylated product (56\%) as colorless oil. In this reaction, no di-borylation was observed.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.56(\mathrm{~m}, 2 \mathrm{H}), 4.37$ (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.38-1.41 (m, Bpin 12H and ester 3H overlapped, 15 H).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 166.3$, 163.4, 135.7, 135.3, 120.2, 116.4, 84.9, 61.1, 24.8, 14.3.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 30.6$ (br. s).
HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{BO}_{5}[\mathrm{M}-\mathrm{H}]^{-}$291.1407, found 291.1403.

Borylation of ortho-cresol with $\mathrm{B}_{2} \mathrm{eg}_{2}$ (1t):

1.0 mmol
i) $1.5 \mathrm{~mol} \%[\operatorname{lr}(\mathrm{OMe})(\mathrm{cod})]_{2}, 3.0 \mathrm{~mol} \% \mathrm{dtbpy}$, 1.5 equiv $\mathrm{B}_{2} \mathrm{eg}_{2}$, $\mathrm{PhMe}(2.5 \mathrm{~mL}$),
1.5 equiv $\mathrm{Et}_{3} \mathrm{~N}, 80^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$
ii) solvent removed, $\mathrm{CHCl}_{3}(10 \mathrm{~mL}), 3.0$ equiv. pinacol, rt, 40 min .

yield: 73\% (isolated)

In a glovebox, a 5 mL conical vial was charged with $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015$ $\mathrm{mmol})$, dtbpy ($8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{eg}_{2}(213 \mathrm{mg}, 1.5$ equiv, 1.5 mmol$)$, o-cresol (108 $\mathrm{mg}, 1.0 \mathrm{mmol}$), dry $\mathrm{PhMe}(2.5 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(209 \mu \mathrm{~L}, 1.5$ equiv, 1.5 mmol$)$. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$ for 2.5 h . Solvent was evaporated under reduced pressure and dry chloroform (10 mL) was added. To this mixture, pinacol ($354 \mathrm{mg}, 3.0$ equiv) was added and stirred at room temperature for 40 min . Upon completion (judged by GC), the crude mixture was passed through a short plug of silica gel (chloroform as eluent) to afford the 172 mg of the ortho-borylated product (73%) as a solid $(\mathrm{mp}=$ $51-52^{\circ} \mathrm{C}$). No di-borylation was found in this reaction.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=7.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 161.8,134.9,133.2,124.4,119.4,84.4,24.8,16.0$.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 30.9$ (br. s).
HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BO}_{3}[\mathrm{M}-\mathrm{H}]^{-} 233.1351$, found 233.1354.

Borylation of 3-methoxyphenol with $\mathrm{B}_{2} \mathrm{eg}_{2}(1 \mathrm{u})$:

1.0 mmol
i) $1.5 \mathrm{~mol} \%[\mathrm{rr}(\mathrm{OMe})(\mathrm{cod})]_{2}, 3.0 \mathrm{~mol} \% \mathrm{dtbpy}$, 1.5 equiv $\mathrm{B}_{2} \mathrm{eg}_{2}$, $\mathrm{PhMe}(2.5 \mathrm{~mL})$, 1.5 equiv $\mathrm{Et}_{3} \mathrm{~N}, 80^{\circ} \mathrm{C}, 2 \mathrm{~h}$
ii) solvent removed, $\mathrm{CHCl}_{3}(10 \mathrm{~mL}), 3.0$ equiv. pinacol, rt, 40 min .

yield: 80\% (isolated, ortho-only)
mono/di $=81 / 19$ (GC)

In a glovebox, a 5 mL conical vial was charged with $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015$ mmol), dtbpy ($8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{eg}_{2}$ ($213 \mathrm{mg}, 1.5$ equiv, 1.5 mmol), 3methoxyphenol ($124 \mathrm{mg}, 1.0 \mathrm{mmol}$), dry $\mathrm{PhMe}(2.5 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(209 \mu \mathrm{~L}, 1.5$ equiv, 1.5 mmol$)$.

The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at 80 ${ }^{\circ} \mathrm{C}$ for 2 h . Solvent was evaporated under reduced pressure and dry chloroform (10 mL) was added. To this mixture, pinacol ($354 \mathrm{mg}, 3.0$ equiv) was added and stirred at room temperature for 40 min. Upon completion (judged by GC), the crude mixture was passed through a short pad of silica gel (chloroform as eluent) to afford 199 mg of the ortho-borylated product (80%) as a colorless oil. The ratio of mono/o,o-di borylated product was found to be $81 / 19$ by the GC-FID and the diborylated product was assigned by the crude NMR spectra, but it was not isolated.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.43(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 165.5,164.5,136.8,107.0,100.1,84.2,55.2,24.8$.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 30.8$ (br. s).
HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BO}_{4}[\mathrm{M}-\mathrm{H}]^{-}$249.1301, found 249.1303.

Borylation of 3-chlorophenol with $\mathrm{B}_{2} \mathrm{eg}_{2}$ (1v):

1.0 mmol
i) $1.5 \mathrm{~mol} \%[\operatorname{lr}(\mathrm{OMe})(\mathrm{cod})]_{2}, 3.0 \mathrm{~mol} \% \mathrm{dtbpy}$, 1.5 equiv $\mathrm{B}_{2} \mathrm{eg}_{2}$, $\mathrm{PhMe}(2.5 \mathrm{~mL})$, 1.5 equiv $\mathrm{Et}_{3} \mathrm{~N}, 80^{\circ} \mathrm{C}, 2 \mathrm{~h}$
ii) solvent removed, $\mathrm{CHCl}_{3}(10 \mathrm{~mL}), 3.0$ equiv. pinacol, rt, 40 min.

yield: 60\% (isolated, ortho-only) mono/di $=85 / 15(\mathrm{GC})$

In a glovebox, a 5 mL conical vial was charged with $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015$ mmol), dtbpy ($8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{eg}_{2}(213 \mathrm{mg}, 1.5$ equiv, 1.5 mmol$)$, 3-chlorophenol ($129 \mathrm{mg}, 1.0 \mathrm{mmol}$), dry $\operatorname{PhMe}(2.5 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(209 \mu \mathrm{~L}, 1.5$ equiv, 1.5 mmol$)$. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$ for 2 h . Solvent was evaporated under reduced pressure and dry chloroform (10 mL) was added. To this mixture, pinacol ($354 \mathrm{mg}, 3.0$ equiv) was added and stirred at room temperature for 40 min . Upon completion (judged by GC), the crude mixture was passed through a short pad of silica gel (chloroform as eluent) to afford 199 mg of the ortho-borylated product (60%) as a white solid (mp $=62-63{ }^{\circ} \mathrm{C}$). The ratio of mono/o,o-di borylated product was found to be $85 / 15$ by the GC-FID and the di-borylated product was assigned by the crude NMR spectra, but was not isolated.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.88(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 164.3,139.4,136.6,120.1,115.9,84.7,24.8$.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 30.6$ (br. s).
HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BClO}_{3}[\mathrm{M}-\mathrm{H}]^{-} 253.0805$, found 253.0808.

Borylation of 2-methoxyphenol with $\mathrm{B}_{2} \mathrm{eg}_{2}(1 \mathrm{w}):$

i) $1.5 \mathrm{~mol} \%[\mathrm{rr}(\mathrm{OMe})(\mathrm{cod})]_{2}, 3.0 \mathrm{~mol} \% \mathrm{dtbpy}$, 1.5 equiv $\mathrm{B}_{2} \mathrm{eg}_{2}$, $\mathrm{PhMe}(2.5 \mathrm{~mL})$, 1.5 equiv $\mathrm{Et}_{3} \mathrm{~N}, 80^{\circ} \mathrm{C}, 2 \mathrm{~h}$
ii) solvent removed, $\mathrm{CHCl}_{3}(10 \mathrm{~mL}), 3.0$ equiv.

1.0 mmol

In a glovebox, a 5 mL conical vial was charged with $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015$ mmol), dtbpy ($8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{eg}_{2}(213 \mathrm{mg}, 1.5$ equiv, 1.5 mmol), 2methoxyphenol ($124 \mathrm{mg}, 1.0 \mathrm{mmol}$), dry $\mathrm{PhMe}(2.5 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(209 \mu \mathrm{~L}, 1.5$ equiv, 1.5 mmol$)$. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at 80 ${ }^{\circ} \mathrm{C}$ for 2 h . Solvent was evaporated under reduced pressure and dry chloroform (10 mL) was added. To this mixture, pinacol ($354 \mathrm{mg}, 3.0$ equiv) was added and stirred at room temperature for 40 min. Upon completion (judged by GC), the crude mixture was purified by passing it through a short pad of silica gel (chloroform as eluent) followed by kugelrohr distillation ($20 \mathrm{~mm} \mathrm{Hg} / 100$ ${ }^{\circ} \mathrm{C}$) to afford 183 mg of the ortho-borylated product (73%). NMR data of the isolated product were in accordance with the literature reported data. ${ }^{8}$

Borylation of 2-naphthol with $\mathbf{B}_{2} \mathrm{eg}_{2}(\mathbf{1 x}):$

yield: 67% (isolated)

In a glovebox, a 5 mL conical vial was charged with $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015$ mmol), dtbpy ($8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{eg}_{2}(213 \mathrm{mg}, 1.5$ equiv, 1.5 mmol), 2-naphthol ($144 \mathrm{mg}, 1.0 \mathrm{mmol}$), dry $\operatorname{PhMe}(2.5 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(209 \mu \mathrm{~L}, 1.5$ equiv, 1.5 mmol$)$. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$ for 3 h . Solvent was evaporated under reduced pressure and dry chloroform (10 mL) was added. To this mixture, pinacol ($354 \mathrm{mg}, 3.0$ equiv) was added and stirred at room temperature for 40 min . Upon completion (judged by GC), the crude mixture was passed through a short pad of silica gel
(chloroform as eluent) to afford the 181 mg of the ortho-borylated product (67\%) as a colorless oil. The NMR data were in accordance with the literature reported data. ${ }^{8}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 8.27(\mathrm{~s}, 1 \mathrm{H}) 7.79-7.81$ (m, OH and ArH overlapped, 2H), 7.70 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 159.2,138.2,137.3,128.6,128.0,127.8,126.4,123.2,109.4$, 84.8, 24.9.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 30.7$ (br. s).
Evidence for 2-(4-fluorophenoxy)-1,3,2-dioxaborolanephenols formation under the reaction conditions:

prior to any other product
Experimental: In a glove, $[\operatorname{Ir}(\mathrm{OMe})(\operatorname{cod})]_{2}(0.001 \mathrm{~g}, 1.5 \mathrm{~mol} \%)$ was dissolved in 0.05 mL deuterated toluene, $\mathrm{B}_{2} \mathrm{eg}_{2}(0.021 \mathrm{~g}, 0.15 \mathrm{mmol}, 1.5$ equiv) was dissolved in 0.4 mL deuterated toluene, dtbpy ($0.0008 \mathrm{~g}, 3 \mathrm{~mol} \%$) was dissolved in 0.05 mL , and 4-fluorophenol ($0.0112 \mathrm{~g}, 0.1$ mmol, 1 equiv) was dissolved in 0.2 mL deuterated toluene. The $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}, \mathrm{~B}_{2} \mathrm{eg}_{2}$, and dtbpy solutions were transferred to a J -Young tube and $\mathrm{C}_{6} \mathrm{~F}_{6}(3 \mu \mathrm{~L})$ was added as a reference. The 4-fluorophenol was sealed in an air tight flask with a septa. The NMR tube was taken to a spectrometer and the 4-fluorophenol was injected into the NMR tube. The tube was inverted once for mixing and inserted into the spectrometer. ${ }^{19}$ F NMR was collected. The time between addition of the phenol and the last scan for the ${ }^{19} \mathrm{~F}$ NMR was ~ 2 minutes. The only observable product in ${ }^{19} \mathrm{~F}$ NMR was the 2-(4-fluorophenoxy)-1,3,2-dioxaborolane which is shown below.

Control for effects of toluene on borylation selectivity:

In a glovebox, a 3 mL conical vial was charged with $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015$ mmol), dtbpy ($8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}$), B2pin (304.7 mg , 1.2 equiv, 1.2 mmol), 4fluorophenol ($112 \mathrm{mg}, 1.0 \mathrm{mmol}$), and dry $\mathrm{PhMe}(2.5 \mathrm{~mL})$. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$ for 2 h . Solvent was evaporated under reduced pressure and crude ${ }^{19} \mathrm{~F},{ }^{1} \mathrm{H},{ }^{11} \mathrm{~B}$ NMR were recorded. The ratio of products, $97: 3 \mathrm{~m}: \mathrm{o}$ (with respect to OH), and conversion, 45%, was judged based on integration of ${ }^{19} \mathrm{~F}$ NMR.

Control for effects of toluene and triethylamine on borylation selectivity:

$1.5 \mathrm{~mol} \%[\mathrm{lr}(\operatorname{cod})(\mathrm{OMe})]_{2}$ $\xrightarrow{3 \mathrm{~mol} \% \text { dtbpy, } 1.2 \text { equiv } \mathrm{B}_{2} \mathrm{pin}_{2}}$
PhMe, 1.5 equiv $\mathrm{Et}_{3} \mathrm{~N}, 80^{\circ} \mathrm{C}$, 2 h

40\% conversion

In a glovebox, a 3 mL conical vial was charged with $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015$ $\mathrm{mmol})$, dtbpy ($8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \operatorname{pin}_{2}(304.7 \mathrm{mg}, 1.2$ equiv, 1.2 mmol$), 4-$ fluorophenol ($112 \mathrm{mg}, 1.0 \mathrm{mmol}$), dry $\mathrm{PhMe}(2.5 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.209 \mathrm{~mL}, 1.5$ equiv, 1.5 $\mathrm{mmol})$. The v ial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$ for 2 h . Solvent was evaporated under reduced pressure and crude ${ }^{19} \mathrm{~F},{ }^{1} \mathrm{H},{ }^{11} \mathrm{~B}$ NMR were recorded. The conversion, 45%, was judged based on integration of ${ }^{19} \mathrm{~F}$ NMR. It should be noted that no borylation ortho to OH was detected.

Example of effects of triethylamine on $\mathrm{B}_{2} \mathrm{eg}_{2}$ reaction:

89

11

Full Conversion

In a glovebox, a 3 mL conical vial was charged with $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015$ mmol), dtbpy ($8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{eg}_{2}(212 \mathrm{mg}, 1.5$ equiv, 1.5 mmol$)$, 4fluorophenol ($112 \mathrm{mg}, 1.0 \mathrm{mmol}$), dry $\mathrm{PhMe}(2.5 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.209 \mathrm{~mL}, 1.5$ equiv, 1.5 $\mathrm{mmol})$. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$ for 2 h . Solvent was evaporated under reduced pressure and dry chloroform (10 mL) was added. To this mixture, pinacol ($354 \mathrm{mg}, 3.0$ equiv) was added and stirred at room temperature for 40 min after which crude ${ }^{19} \mathrm{~F}$ NMR was collected. The spectra showed full conversion and a 89:11 monoborylation:diborylation ratio.

In a glovebox, a 3 mL conical vial was charged with $[\mathrm{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 1.5 \mathrm{~mol} \%, 0.015$ $\mathrm{mmol})$, dtbpy ($8 \mathrm{mg}, 3.0 \mathrm{~mol} \%, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{eg}_{2}(212 \mathrm{mg}, 1.5$ equiv, 1.5 mmol$), 4-$ fluorophenol ($112 \mathrm{mg}, 1.0 \mathrm{mmol}$) and dry $\mathrm{PhMe}(2.5 \mathrm{~mL})$. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$ for 2 h . Solvent was evaporated under reduced pressure and dry chloroform (10 mL) was added. To this mixture,
pinacol ($354 \mathrm{mg}, 3.0$ equiv) was added and stirred at room temperature for 40 min after which crude ${ }^{19}$ F NMR was collected. The spectra showed 35% conversion and a $85: 15$ monoborylation:diborylation ratio.

Synthesis of 2-(4-fluorophenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane from 4-

fluorophenol and the isolated trisboryl Ir catalyst:

+ Other biproducts (eg HBpin)
Experimental: In a glove, isolated trisboryl catalyst ($0.0022 \mathrm{~g}, 1$ equiv) was dissolved in 0.4 mL deuterated cyclohexane and 4-fluorophenol (0.0003 g , 1 equiv) was dissolved in 0.3 mL deuterated cyclohexane. The isolated trisboryl catalyst and 4-fluorophenol solutions were transferred into a J -Young tube and one drop of $\mathrm{C}_{6} \mathrm{~F}_{6}$ was added as a reference. The tube was sealed with a J-Young valve and ${ }^{19} \mathrm{~F},{ }^{11} \mathrm{~B},{ }^{1} \mathrm{H}$ NMR were collected.
Analysis: Observed in the proton NMR, as shown below, is an iridium hydride species at -4.61 and the methyl groups on the Bpin of the phenol. The fluorine NMR shows the correct chemical shift at -121.8 ppm . Finally, the boron NMR showed the correct shift for the ArOBpin species at 21.7 ppm . Overall, this clearly demonstrates $\operatorname{ArOB}(\mathrm{OR})_{2}$ species can form from the iridium trisboryl catalyst.

Borylation of phenol with Ligand 4a:

In a glovebox, a 5 mL conical vial was charged with phenol ($188 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv) and pinacolborane ($0.320 \mathrm{~mL}, 282 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.5 \mathrm{~mol} \%), 4,4{ }^{\prime}-\mathrm{Bis}(\mathrm{N}, \mathrm{N}$-dimethylamino)-2,2-bipyridine ($\mathbf{4 a}$) ($14.5 \mathrm{mg}, 0.06 \mathrm{mmol}, 3.0 \mathrm{~mol} \%$), and $\mathrm{B}_{2} \operatorname{pin}_{2}(127 \mathrm{mg}, 0.5 \mathrm{mmol}, 0.25$ equiv)
was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.66 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h . GC-FID showed 98% conversion (based on $\mathrm{B}_{2} \mathrm{pin}_{2}$). The ratio of products was 6:94 of $\mathrm{o}:(\mathrm{m}+\mathrm{p})$ and 98:2 monoborylation: diborylation.

Borylation of phenol with Ligand 4b:

In a glovebox, a 5 mL conical vial was charged with phenol ($188 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv) and pinacolborane ($0.320 \mathrm{~mL}, 282 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.5 \mathrm{~mol} \%)$, dtbpy (4b) ($16.1 \mathrm{mg}, 0.06 \mathrm{mmol}$, $3.0 \mathrm{~mol} \%$), and $\mathrm{B}_{2} \mathrm{pin}_{2}(127 \mathrm{mg}, 0.5 \mathrm{mmol}, 0.25$ equiv) was charged. Dry cyclohexane (3 mL , 0.66 M) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h . GCFID showed 92% conversion (based on $\mathrm{B}_{2} \mathrm{pin}_{2}$). The ratio of products was 15:85 of $\mathrm{o}:(\mathrm{m}+\mathrm{p})$ and 98:2 monoborylation:diborylation.

Borylation of phenol with Ligand 4c:

In a glovebox, a 5 mL conical vial was charged with phenol ($188 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv) and pinacolborane ($0.320 \mathrm{~mL}, 282 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\mathrm{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(20 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.5 \mathrm{~mol} \%), 4,4{ }^{\prime}$-bis(trifluoromethyl)-2,2'bipyridine (4c) ($17.5 \mathrm{mg}, 0.06 \mathrm{mmol}, 3.0 \mathrm{~mol} \%$), and $\mathrm{B}_{2} \operatorname{pin}_{2}(127 \mathrm{mg}, 0.5 \mathrm{mmol}, 0.25$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.66 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 24 h . GC-FID showed 68% conversion (based on $\mathrm{B}_{2} \mathrm{pin}_{2}$). The ratio of products was 35:65 of $\mathrm{o}:(\mathrm{m}+\mathrm{p})$.

Borylation of phenol with Ligand 4d:

In a glovebox, a 5 mL conical vial was charged with phenol ($94.1 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) and pinacolborane ($0.160 \mathrm{~mL}, 141 \mathrm{mg}, 1.1 \mathrm{mmol}, 1.1$ equiv) and stirred for 5 min at room temperature. To this mixture, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(10 \mathrm{mg}, 0.015 \mathrm{mmol}, 1.5 \mathrm{~mol} \%)$, [2,2'-bipyridine]-4,4'dicarbonitrile ($\mathbf{4 d}$) ($6.2 \mathrm{mg}, 0.03 \mathrm{mmol}, 3.0 \mathrm{~mol} \%$), and $\mathrm{B}_{2} \mathrm{pin}_{2}(63.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.25$ equiv) was charged. Dry cyclohexane ($3 \mathrm{~mL}, 0.33 \mathrm{M}$) was added under an inert atmosphere. The vial was capped with a teflon pressure cap and placed into a pre-heated aluminum block at $80^{\circ} \mathrm{C}$. The reaction mixture was stirred for 24 h . GC-FID showed 26% conversion (based on $\mathrm{B}_{2} \mathrm{pin}_{2}$). The ratio of products was 44:56 of o:(m+p).

Analysis:

Below is a chart summing up the data and the equation used to calculate the energy. This data was graphed and a stong linear coorilation was observed.

R group	Hammett Value	ortho	meta+para	Energy at $80(\mathrm{kcal} / \mathrm{mol})$
NMe2	-0.83	6	94	1.93086827
tBu	-0.2	15	85	1.217242651
CF3	0.54	35	65	0.434405897
CN	0.66	44	55	0.156589232

$E=-R T \ln \left(\frac{o}{m+p}\right)$

2-(4-fluorophenoxy)-1,3,2-dioxaborolane from 4-fluorophenol following Route B:

In a glove, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(0.0006 \mathrm{~g}, 1 \mathrm{~mol} \%)$ was dissolved in 0.05 mL deuterated toluene, 4fluorophenol ($0.0112 \mathrm{~g}, 0.1 \mathrm{mmol}, 1$ equiv) was dissolved in 0.3 mL deuterated toluene, and $\mathrm{B}_{2} \mathrm{eg}_{2}(0.0141 \mathrm{~g}, 0.1 \mathrm{mmol}, 1$ equiv) was dissolved in 0.35 mL deuterated toluene then these three solutions were transferred to a J -Young tube and $\mathrm{C}_{6} \mathrm{~F}_{6}(3 \mu \mathrm{~L})$ was added as a reference. The tube was sealed with a J-Young valve the J-Young tube was then heated at $80^{\circ} \mathrm{C}$ for 12 hours. After ~ 30 minutes the solution turned from a yellow to a black color and black sediment was observed. After heating ${ }^{19} \mathrm{~F},{ }^{11} \mathrm{~B},{ }^{1} \mathrm{H}$ NMR were collected. It should be noted that this compound was not isolated. Further evidence that this reaction produces the ArOBeg species can be found in the experiments with 2-fluorophenol.
${ }^{1} \mathrm{H}$ NMR (500 MHz , toluene- D_{8}): δ_{H} 6.79-6.84 (m, 2H), 6.57-6.63 (m, 2H), 3.83 (s)
${ }^{11} \mathrm{~B}$ NMR (176 MHz , toluene- D_{8}): $\delta_{\text {в }} 22.6$ (s).
${ }^{19} \mathrm{~F}$ NMR (470 MHz , toluene- D_{8}): $\delta_{\mathrm{F}}-120.80(\mathrm{~m})$

2-(2-fluorophenoxy)-1,3,2-dioxaborolane from 2-fluorophenol Route A:

92\%

This procedure was adapted from a previous reported procedure ${ }^{9}$. To a flask under argon was added borane dimethylsulfide ($1 \mathrm{~mL}, 10.5 \mathrm{mmol}, 1$ equiv). The flask was in an ice bath, connected to a bubbler, and 2-fluorophenol ($3.1 \mathrm{~mL}, 34.7 \mathrm{mmol}, 3.3$ equiv) was added slowly. The reaction was allowed to warm to room temperature and stirred for 12 hours after which the dimethyl sulfide was distilled off via a short-path distillation head. After the distillation, the product was a solid that still contained 2 -fluorophenol. To remove the excess 2-fluorophenol, the
product was heated to $100{ }^{\circ} \mathrm{C}$ and exposed to vacuum (0.1 mBar). At this temperature, the product liquefies. After cooling, back to room temperature, the product was obtained in 92% yield (3.36 g).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.26-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.14(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 154.56,152.60,140.61,140.52,124.81-124.65$ (m), $124.47-$
124.32 (m), 122.38, 116.53, 116.39
${ }^{11} \mathrm{~B}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 16.47$ (s).
${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{F}}-132.27$ (m)

In a flask under argon was charged tris(2-fluorophenyl) borate ($2.75 \mathrm{~g}, 8 \mathrm{mmol}, 1$ equiv) and ethylene glycol ($0.497 \mathrm{~g}, 8 \mathrm{mmol}, 1$ equiv). The reaction mixture was heated to $110{ }^{\circ} \mathrm{C}$ in an oil bath and stirred under argon for 12 hours. The mixture was then distilled under vacuum to remove excess 2-fluorophenol. The resulting product was a yellow oil which was pure by ${ }^{19} \mathrm{~F}$ NMR and ${ }^{11}$ B NMR. However, the product contained extra glycol peaks in the ${ }^{1} \mathrm{H}$ NMR and could not be fully purified in our hands. The spectra are shown below.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.15-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.07(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~s}$, 4H)
${ }^{11} \mathrm{~B}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{B}} 22.88$ (s).
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{F}}-132.62(\mathrm{~m})$

${ }^{1} \mathrm{H}$ NMR

${ }^{11} \mathrm{~B}$ NMR

2-(2-fluorophenoxy)-1,3,2-dioxaborolane from 2-fluorophenol Route B:

This route follows previously reported work ${ }^{10}$. In a flask under argon was $\mathrm{BCl}_{3}(20 \mathrm{~mL}$ of 1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20 \mathrm{mmol}$, 1 equiv) and ethylene glycol ($1.24 \mathrm{~g}, 20 \mathrm{mmol}$, 1 equiv). The flask was connected to a bubbler and the ethylene glycol was added slowly at $-78^{\circ} \mathrm{C}$. After addition, the reaction was allowed to stir until the bath had warmed to room temperature. The reaction mixture was then distilled under vacuum at room temperature, removing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting
product was distilled at $75^{\circ} \mathrm{C}$ to give a viscus oil $(0.424 \mathrm{~g}, 20 \%)$ that turned a reddish brown upon warming to room temperature. The low yield is likely due to the fact that the boron trichloride solution was no longer 1 M .

In a flask under argon was added 2-chloro-1,3,2-dioxaborolane ($0.424 \mathrm{~g}, 4 \mathrm{mmol}, 1$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and 2-fluorophenol $(0.447 \mathrm{~g}, 4 \mathrm{mmol}, 1$ equiv) dropwise at room temperature. The reaction mixture was sampled for NMR without isolation. ${ }^{19} \mathrm{~F},{ }^{11} \mathrm{~B},{ }^{1} \mathrm{H}$ NMR were collected. It should be noted that this compound was not isolated.

2-(2-fluorophenoxy)-1,3,2-dioxaborolane from 2-fluorophenol Route C:

In a glove, $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(0.0006 \mathrm{~g}, 1 \mathrm{~mol} \%)$ was dissolved in 0.05 mL deuterated chloroform, 2-fluorophenol ($0.0112 \mathrm{~g}, 0.1 \mathrm{mmol}, 1$ equiv) was dissolved in 0.3 mL deuterated chloroform, and $\mathrm{B}_{2} \mathrm{eg}_{2}(0.0141 \mathrm{~g}, 0.1 \mathrm{mmol}, 1$ equiv) was dissolved in 0.35 mL deuterated chloroform then these three solutions were transferred to a J-Young tube and $\mathrm{C}_{6} \mathrm{~F}_{6}(3 \mu \mathrm{~L})$ was added as a reference. The tube was sealed with a J-Young valve the J-Young tube was then heated at $80^{\circ} \mathrm{C}$ for 12 hours. After ~ 30 minutes the solution turned from a yellow to a black color and black sediment was observed. After heating ${ }^{19} \mathrm{~F},{ }^{11} \mathrm{~B},{ }^{1} \mathrm{H}$ NMR were collected. It should be noted that this compound was not isolated.

Comparison between route A and B to 2-(2-fluorophenoxy)-1,3,2-dioxaborolane

Computational Procedures and Results

General

Calculations of structures, energies, and frequencies employed default procedures in Gaussian $09^{11,12,13}$ unless otherwise noted. Complete structures and energetics are provided in sections below. All absolute energies are in Hartrees. All relative energies are presented in $\mathrm{kcal} / \mathrm{mol}$.

NPA charges were calculated with NBO 5.9. ${ }^{14}$

Guide to Structures, Structure Titles and Their Organization

The sections below are divided into reactants and transition structures, then divided into specific structures and given a descriptive title. The first line after the title for a structure is a file name for the original calculation file, so that this file can always be located even if the file title changes. The second line after the title shows the method and basis set. The basis sets " $6-31 \mathrm{G}^{*}$ " and " $6-31+\mathrm{G}^{* *}$ " were used as their 5D formulation. For "gen" basis sets, refer to the title description for BS1 versus BSsmall. "BS1" means that the iridium atom was given an SDD basis, while the remaining atoms were given a $6-31+\mathrm{G}^{* *}$ basis set. "BSsmall" means that the iridium atom was given an SDD basis, while the remaining atoms were given a $6-31 \mathrm{G}^{*}$ basis set.

Alternative conformations for important structures are given, along with a short explanation, with labels such as "Conf B". Alternative conformations for less important structures were obtained but are not included here.

It should be noted that in the case of the structures containing the Bpin' group, the lowestenergy structures were not modeled. Rather, structures were chosen that would include the steric interactions present with the full Bpin group.

Calculated Structures, Energies, and

Selected NPA Charges

Reactants:

4-MeO-C6 H_{4} OBpin' M06/6-31+G** (3)
MeOPhOBpinprimeM06PS
M06/6-31+G**
$\mathrm{E}(\mathrm{RM} 06)=-753.634700207$
Zero-point correction $=0.253860$ (Hartree/Particle) Thermal correction to Energy 0.267961
Thermal correction to Enthalpy $=0.268905$
Thermal correction to Gibbs Free Energy= 0.212837
Sum of electronic and ZPE=-753.380840
Sum of electronic and thermal Energies= -753.366739
Sum of electronic and thermal Enthalpies $=-753.365795$
Sum of electronic and thermal Free Energies $=-753.421863$

E CV S

$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$ Total 168.14855 .651118 .005

C,0,0.8989574659,0.04675157,-1.2528236824 C, $0,0.147143111,0.1420022159,-0.0894033793$ C,0,0.7797232518,0.0740133624,1.153879395 C, $, 2.2 .1556642021,-0.0927360474,1.213870955$ C, $0,2.9156662173,-0.193500707,0.0462397102$ C,0,2.281038254,-0.1233342107,-1.1944523496 B,0,-2.1972793913,0.1988215786,0.6560508735 О, $0,-2.0720714699,-0.2448591683,1.9522671682$ C,0,-3.3523459901,-0.0416729816,2.5702695706 C,0,-4.3226602953,0.0302616351,1.3737083774 O,0,-3.489971759,0.504499287,0.3100543971 C,0,-4.9448597992,-1.2858673487,0.9605237132 Н, 0,-5.1048369947,0.7791788472,1.5561270504 H,0,-3.321650894,0.9464845268,3.0576723802 C,0,-3.6125201939,-1.1063594599,3.6031111688 H, $0,0.1954779439,0.1427025846,2.0661936029$ H,0,2.6689036733,-0.1486676044,2.1708643992 O,0,4.2561818668,-0.3567643838,0.2184561241 Н, $, 2,2.8434880167,-0.1968272326,-2.1206776068$ H,0,0.3867903425,0.1086675615,-2.2099337028 O,0,-1.2016976858,0.3322974235,-0.2511374308 Н, $,-5.6471226071,-1.6570626456,1.7159535436$ H,0,-5.4882734114,-1.1518053506,0.0201685962 H,0,-4.1717181058,-2.048116592,0.7988636411 Н, $,-2.8542415077,-1.0586443948,4.3908437469$

H,0,-4.596103354,-0.9638965788,4.0667167182 H,0,-3.576536222,-2.1061307352,3.1569519391 C,0,5.0548242612,-0.4767511146,-0.9330270354 Н, $0,6.0835984256,-0.5935424629,-0.5863129735$ H,0,4.7730559866,-1.3575107137,-1.5287183578 H,0,4.9885746627,0.4204641401,-1.5658245525

4-MeO-C6 ${ }_{6} \mathbf{H}_{4}$ OBpin' M06/6-31G* (3)
MeOPhOBpinprimeM06SB
M06/6-31G*
$\mathrm{E}(\mathrm{RM} 06)=-753.592046918$
Zero-point correction= 0.255470 (Hartree/Particle)
Thermal correction to Energy= 0.270366
Thermal correction to Enthalpy $=0.271310$
Thermal correction to Gibbs Free Energy= 0.211998
Sum of electronic and ZPE=-753.336577
Sum of electronic and thermal Energies= $\mathbf{- 7 5 3 . 3 2 1 6 8 1}$
Sum of electronic and thermal Enthalpies= -753.320737
Sum of electronic and thermal Free Energies= $\mathbf{- 7 5 3 . 3 8 0 0 4 9}$

```
    E CV S
    KCal/Mol Cal/Mol-K Cal/Mol-K
Total 169.657 57.193 124.831
```

C, $0,0.8747774221,0.0088138081,-1.2385701465$ C,0,0.1360719232,0.2037328314,-0.0798276431 C, $0,0.7799555824,0.2171098778,1.1584454789$ C,0,2.1508460814,0.026550814,1.2186764748 C,0,2.8980997939,-0.1747570698,0.0559974198 C, $0,2.2524837197,-0.1819041538,-1.1797593432$ B,0,-2.1973888152,0.2417507813,0.6676592578 O,0,-2.0575074242,-0.2500796355,1.9436105073 C, $, 0,-3.3305541474,-0.0761560441,2.5764281788$ С,0,-4.3101520839,0.039675822,1.3908261121 O, $0,-3.4911801659,0.5576827718,0.3417832092$ C, $0,-4.9259073437,-1.2638635438,0.930457812$ H,0,-5.0977650826,0.77466331,1.6091949449 H,0,-3.303383084,0.8915704284,3.1055886022 C, $0,-3.5777815934,-1.1840022239,3.5673828847$ $\mathrm{H}, 0,0.2053203954,0.3660764677,2.0681642402$ H,0,2.6750233928,0.0322175465,2.1724561333 O, $0,4.2347796131,-0.3524414377,0.2310663836$ H,0,2.8059058824,-0.3340357167,-2.1030769348 H,0,0.3532498384,0.0100333698,-2.1937112326 О,0,-1.2088109288,0.4156175841,-0.24063455 H,0,-5.6257335193,-1.6696018618,1.6719080663 H,0,-5.4701506443,-1.0993878456,-0.0060958567 H,0,-4.1457320846,-2.0140924012,0.7400413153 Н,0,-2.8144828499,-1.1629141176,4.3533803059
H,0,-4.5608685196,-1.0710057412,4.0426703873 H,0,-3.5337808713,-2.1657759073,3.0813284388 C,0,5.02069274,-0.5296510024,-0.9173126076 H,0,6.0529677434,-0.640556183,-0.5744372205 H,0,4.7289689949,-1.4326876604,-1.4763973618 H,0,4.957234035,0.3395121331,-1.5907672566

4-F-C6H4OBeg M06/6-31+G**
 pFPhOBegM06PS

M06/6-31+G**
$\mathrm{E}(\mathrm{RM} 06)=-659.807029462$

Zero-point correction= 0.157604 (Hartree/Particle) Thermal correction to Energy $=0.168384$
Thermal correction to Enthalpy $=0.169328$
Thermal correction to Gibbs Free Energy= 0.118827
Sum of electronic and ZPE $=-659.649425$
Sum of electronic and thermal Energies= -659.638646
Sum of electronic and thermal Enthalpies $=-659.637701$
Sum of electronic and thermal Free Energies= -659.688203

E CV S

$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$
Total 105.66240 .352106 .288

C,0,1.3598666814,1.714778561,-1.5472203797
C, $0,2.5449651157,1.0073793838,-1.7390209685$ C,0,3.6953658017,1.4270035763,-1.0948937266 C, $0,3.7082877172,2.5345330629,-0.2616070565$ C, $0,2.5253961893,3.2381074405,-0.0717265177$ C,0,1.3547237096,2.8299793695,-0.7102211815 F,0,4.8384961115,0.7401591254,-1.2838816112 O, $, 0.0 .2454532531,3.5917500885,-0.45999687$ B, $0,-1.0352785675,3.4152682273,-0.8628633734$ O, $,-1.5044358381,2.4174249292,-1.6851934107$ C, $0,-2.9251026767,2.5416394605,-1.7172129857$ C,0,-3.2012820295,3.9382198488,-1.1423768757 О, $,-2.0106667214,4.2828297056,-0.4465640645$ H,0,2.5799587486,0.1340445037,-2.3843164931 H,0,4.6321464033,2.8325842198,0.2257839224 H,0,2.488477073,4.1127612439,0.5722091666 H,0,-3.3819092294,4.6817385642,-1.9301593551 Н,0,-4.0499155876,3.9547729178,-0.4508208509 H, $,-3.3612390382,1.7438185463,-1.1020972688$ H,0,-3.2791635372,2.420687702,-2.7459258146 H,0,0.4485484214,1.400272523,-2.0446782849

4-F-C6H4OBeg M06/6-31G*

FPhOBeg
M06/6-31G* with ultrafine grid
$\mathrm{E}(\mathrm{RM} 06)=-659.770268208$
Zero-point correction= 0.158255 (Hartree/Particle)
Thermal correction to Energy= 0.169057
Thermal correction to Enthalpy $=0.170001$
Thermal correction to Gibbs Free Energy= 0.119105
Sum of electronic and ZPE $=-659.612013$
Sum of electronic and thermal Energies= -659.601211
Sum of electronic and thermal Enthalpies= -659.600267
Sum of electronic and thermal Free Energies $=-659.651163$
E CV S
$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$ Total 106.085 40.185107 .120

C, $0,1.3945375918,1.8285285449,-1.6838374867$
C, $, 2,2.5602509421,1.083825301,-1.8323626913$
C,0,3.6758082436,1.4061660193,-1.0781647546
C, $0,3.6630346293,2.4574856908,-0.1748389782$
С, $0,2.499043982,3.1991522201,-0.0267814409$
C,0,1.3663216693,2.8848231647,-0.7750776405
F,0,4.7946780634,0.6862629708,-1.225562134
O, $0,0.2756195208,3.6863790958,-0.575847866$
B,0,-1.0161224662,3.4578297504,-0.9123534728
О, $0,-1.50351012,2.3526009144,-1.5660111882$
C,0,-2.9197117672,2.4735356294,-1.5817039763
С, $0,-3.1898749047,3.9323152411,-1.1787985793$
О, $0,-1.9777872596,4.3789440505,-0.5960144407$
H,0,2.6120833385,0.2529971319,-2.5321285674
H,0,4.5587104413,2.6831661559,0.3987963588
$\mathrm{H}, 0,2.4469664161,4.0337696117,0.6688992634$
Н,, ,-3.4260212191,4.5641690132,-2.0472601419
H,0,-4.0072242137,4.0295571739,-0.4542724168
Н, $,-3.3451696107,1.7574616944,-0.8645276452$
H,0,-3.2987062248,2.2252674576,-2.5800632646
H,0,0.5097649482,1.5855161683,-2.264872937

4-F-C6 $\mathbf{H}_{4} \mathrm{OBpin} \mathrm{M06} / 6-31+\mathrm{G}^{* *}$
 pFPhOBPINrM06PS
 M06/6-31+G**
 $\mathrm{E}(\mathrm{RM} 06)=-816.965258089$

Zero-point correction $=0.268270$ (Hartree/Particle)
Thermal correction to Energy= 0.284168
Thermal correction to Enthalpy $=0.285112$
Thermal correction to Gibbs Free Energy $=0.224703$
Sum of electronic and ZPE=-816.696988
Sum of electronic and thermal Energies $=-816.681091$
Sum of electronic and thermal Enthalpies $=-816.680146$
Sum of electronic and thermal Free Energies $=-816.740555$
E CV S
$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$ Total 178.31863 .299127 .141

C, $0,1.3113529024,1.5205835616,-1.3280876739$ C,0,2.552358047,1.0802699327,-1.7781183977
C,0,3.6974899786,1.6807852908,-1.2818861015
C,0,3.6474023102,2.7040274395,-0.3495372323

C,0,2.4042113473,3.1413886274,0.0951052399 C, $0,1.240521335,2.5569666925,-0.3986096007$ F,0,4.8979334084,1.2538992845,-1.7194793262 O, $0,0.0511522748,3.0013935726,0.1137027324$ В, $,,-1.0944119708,3.1638832652,-0.6016402162$ O,0,-1.1914423981,3.0808424051,-1.9672369749 C,, ,-2.6059079235,3.0707301946,-2.2690089317 С, $0,-3.2161996147,3.7881866977,-1.0218214946$ O,0,-2.27956574,3.4434567612,0.0219482739 H, $0,2.638985579,0.2778070797,-2.5053107756$ H, $0,4.5705224362,3.1436571265,0.0174802413$ H,0,2.3183511341,3.9381313147,0.8293504742 C,0,-3.211696971,5.3049367752,-1.143444443 C, $,--4.5932744318,3.3009582781,-0.6219097537$ C, $,,-3.0180664446,1.6099515155,-2.3827735989$ C, $0,-2.8286985103,3.7797940689,-3.5878079683$ Н,0,0.3971202568,1.0709776017,-1.7070970401 H,0,-4.9390524394,3.859323641,0.2550411286 H,0,-5.3134077442,3.4639092458,-1.4341835954 H,0,-4.588804932,2.2381219799,-0.3629166898 Н,0,-3.4560188455,5.7355388728,-0.1662657599 Н,, ,-2.2270923224,5.6826646057,-1.4430066066 Н,0,-3.9545825991,5.6541697602,-1.8704326764 H,0,-3.9012523454,3.865702324,-3.8050882275 H,0,-2.3881214492,4.780935561,-3.5896750492 H,0,-2.363967761,3.2055045153,-4.3970114646 Н,0,-4.0665444845,1.5060888859,-2.6860673184 Н, $,-2.3926681988,1.1283287435,-3.1432772757$ Н, $,-2.8767248835,1.0739953792,-1.4361728976$

4-F-C6444OBpin M06/6-31G*

FPhOBpinrM06SB
M06/6-31G*
$\mathrm{E}(\mathrm{RM} 06)=-816.916040347$
Zero-point correction= 0.269582 (Hartree/Particle)
Thermal correction to Energy $=0.285516$
Thermal correction to Enthalpy $=0.286460$
Thermal correction to Gibbs Free Energy= 0.224280
Sum of electronic and ZPE $=-816.646458$
Sum of electronic and thermal Energies $=-816.630524$
Sum of electronic and thermal Enthalpies $=-816.629580$
Sum of electronic and thermal Free Energies $=-816.691760$

E CV S

$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$
Total 179.16463 .046130 .869
C,0,1.6140981727,2.4483414201,-1.8641145904 C,0,2.8761069565,1.9881362459,-2.2266412086 C, $0,3.8192626177,1.7370023393,-1.2445935013$ C,0,3.5389051341,1.9338492271,0.0986100565 C,0,2.2794417272,2.3920713703,0.4592034099 C, $0,1.3168504358,2.6463994847,-0.5163395443$ F,0,5.0318809535,1.2945954038,-1.6005193389 O,0,0.1155988205,3.1128149747,-0.0603945436 В,0,-1.0676078249,3.2060920498,-0.7193559525 O,0,-1.2940461351,2.8936638382,-2.0372066522 C, $0,-2.7285532996,2.9127855006,-2.2111017857$ С, $0,-3.1848507742,3.8713703728,-1.0684078667$ О,0,-2.1822332045,3.6485689138,-0.0598182958 $\mathrm{H}, 0,3.1365371714,1.8232732036,-3.2696366342$

H,0,4.304678786,1.7279823543,0.8426210985 H,0,2.018839622,2.562004695,1.5015909706 C,0,-3.105925745,5.3407509526,-1.4576127653
C, $,-4.5475563178,3.5609070577,-0.4856686777$ C, $0,-3.2144735786,1.483699401,-2.0209875512$ C, $0,-3.0468470646,3.3902961257,-3.6118528066$ H,0,0.8617283092,2.6465760772,--2.6217546956 H,0,-4.783274219,4.2828472212,0.3059421694 H,0,-5.3263283609,3.6368600836,-1.2574457969 H,0,-4.5833847329,2.558060551,-0.0472935026 Н,0,-3.2243072621,5.9507160191,-0.5539885622 H,0,-2.1338987109,5.5862056737,-1.9049931574 $\mathrm{H}, 0,-3.896073604,5.6173525576,-2.1676284205$ H,0,-4.1321264651,3.501516229,-3.7442563678 H,0,-2.5671374051,4.3493701612,-3.834069308 $\mathrm{H}, 0,-2.690953561,2.6555355321,-4.3448356694$ H,0,-4.2903431849,1.3917616907,-2.2179303947 H,0,-2.6792115307,0.8312758186,-2.7215134082 H,0,-3.0148967255,1.1242284542,-1.0032457066

(bpy) $\operatorname{Ir}(\text { Beg })_{3}$ M06/BS1

hartwigbpyIrBeg3
M06/gen
$E($ RM06 $)=-1361.09051610$
Zero-point correction= 0.370807 (Hartree/Particle)
Thermal correction to Energy= 0.396820
Thermal correction to Enthalpy= 0.397764
Thermal correction to Gibbs Free Energy= 0.312274
Sum of electronic and ZPE $=-1360.719709$
Sum of electronic and thermal Energies= $=1360.693696$
Sum of electronic and thermal Enthalpies $=-1360.692752$
Sum of electronic and thermal Free Energies= $\mathbf{- 1 3 6 0 . 7 7 8 2 4 2}$
E CV S
$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$
Total 249.00896 .269179 .929

B,0,1.692786538,12.8875448334,5.6407656346 B,0,1.9813407921,11.0298443329,3.7297630086 B, $0,2.5173353617,10.5405820385,6.2661351842$ C,0,-0.313858819,11.4863345859,8.3591765148 $\mathrm{H}, 0,0.7578461528,11.4258263238,8.536344993$ C, $0,-1.2139960623,11.7020569535,9.3945373931$ H,0,-0.8554876842,11.8022225559,10.4145743272
C,0,-2.5663027972,11.7930745875,9.086367329
C, $0,-2.9677323752,11.6680411218,7.7627857913$

C,0,-2.0055334431,11.4458336439,6.7760237953 C, $0,-2.3443384128,11.3246805757,5.3389888575$ C,0,-3.6597886399,11.2669859103,4.877493239 Н, $,-4.4937107382,11.2768093166,5.5730802863$ С, $0,-3.8982838978,11.1824670144,3.5117633314$ C,0,-2.8193721186,11.1636806168,2.6362122535 Н, $,-2.9611748436,11.1070408649,1.5610692923$ С,0,-1.5341434789,11.2137389003,3.1644467089 H,0,-0.641687234,11.210616385,2.5372942534 C,0,2.8456097582,14.8196181405,5.3001008243 C,0,2.4661738637,14.6921788455,6.776041294 C,0,3.721511406,10.674745681,2.2824305398 C, $, 2,2.6229038522,11.4663456143,1.5761223675$ C,0,4.6495345825,10.4053582545,7.0468070627 C,0,3.9951349957,9.0272958918,7.1353288773 Ir, $0,0.8049060841,11.1320867066,5.382676982$ $\mathrm{N}, 0,-0.6976375434,11.3548694517,7.0856429012$ N,0,-1.303435399,11.28464317,4.4814613811 O,0,2.5223113011,13.5545856727,4.7468952648 O,0,1.5077292852,13.6453799433,6.7996429221 O,0,3.325246147,10.6691859361,3.6422147631 O,0,1.5055506585,11.3549988938,2.4456980143 O,0,3.564516933,11.2883921813,6.8107521722 O,0,2.7735711824,9.1765045249,6.4302732749 Н, $0,-4.0190809885,11.7588583445,7.5064017687$ H,0,-4.9181772896,11.1331424297,3.1381252705 Н, $0,-3.3037344439,11.9669904327,9.8659669906$ Н, 0,3.9106673422,15.0304681471,5.1475994242 H,0,2.0303885932,15.6086920765,7.1919229211 H,0,2.260272192,15.6002563754,4.7902101051 H,0,3.3297327658,14.4000872858,7.3923367112 H,0,5.1779455984,10.6965289354,7.9628417092 H,0,3.7842218503,8.7369388026,8.176870744 $\mathrm{H}, 0,3.7832275041,9.6382493623,1.9159221903$ H,0,2.3702681998,11.0699632013,0.5850799403 H,0,4.7122539856,11.1346044837,2.1837074623 H,0,2.8891374413,12.5289093149,1.4724844531 H,0,5.3505372492,10.4673992771,6.2006598375 H,0,4.5984865931,8.2362790618,6.6737666376
(bpy) $\operatorname{Ir}(B e g)_{2}$ (Bpin') M06/BSsmall
bypIRBeg2BpinprimeM06SB
M06/gen
$\mathrm{E}(\mathrm{RM} 06)=-1439.60530524$
Zero-point correction $=0.428507$ (Hartree/Particle) Thermal correction to Energy= 0.457180
Thermal correction to Enthalpy $=0.458124$
Thermal correction to Gibbs Free Energy= 0.366862 Sum of electronic and ZPE $=-1439.176799$
Sum of electronic and thermal Energies $=-1439.148125$
Sum of electronic and thermal Enthalpies $=-1439.147181$
Sum of electronic and thermal Free Energies=-1439.238443
E CV S
$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol-K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$
Total 286.885106 .972192 .077

B,0,1.7292028143,12.8794869661,5.6177213404 B, $0,1.9828687113,10.9924072899,3.7534100062$ В,0,2.5122670622,10.5715560996,6.2906498292 C, $0,-0.3305631132,11.6179680635,8.355687241$ H,0,0.7436274806,11.6093684422,8.5303988905 C,0,-1.2389279101,11.8494695936,9.3797482848 Н, $,--0.8854428638,12.016097121,10.3939230327$ C, $0,-2.5925335339,11.8695331394,9.0698441354$ C, $,-2.9884689129,11.6617175927,7.7559350467$ C, $0,-2.0188351467,11.4297620414,6.7804739034$ C,0,-2.3511970005,11.2289204694,5.3513933961 C,0,-3.6607354299,11.0849074062,4.8953429955 Н, $0,-4.4942275743,11.0738360368,5.5930651128$ C,0,-3.8945596561,10.9424631032,3.5344646341 C, $0,-2.8178054615,10.9509761138,2.6579764591$ Н, $,-2.9580593013,10.8521707973,1.5845177477$ C,0,-1.5368371807,11.081625397,3.1814531143 H, $0,-0.6439271763,11.096868748,2.5544673045$ C, $0,2.9368193346,14.7661970532,5.2403861523$ C,0,2.5725336914,14.6612756511,6.7221238379 C,0,3.7340146658,10.5719051112,2.3346689648 C, $0,2.6458455262,11.370992553,1.6017745808$ C,0,4.6431022825,10.4729840244,7.0706777069 С,0,4.0312684054,9.0708178518,7.1003115071 Ir, $0,0.8007923544,11.1424236928,5.3968949342$ $\mathrm{N}, 0,-0.7086431741,11.4077630145,7.0918701411$ $\mathrm{N}, 0,-1.3100154545,11.2093924036,4.4938370398$ O, $, 2.2 .5553779653,13.515655717,4.6991596892$ O,0,1.5743866924,13.6586490375,6.7655348106 O,0,3.3393972124,10.6743683255,3.6956766643 O,0,1.5101761779,11.2356355253,2.451822982 O,0,3.5413645077,11.3332022032,6.8508888606 O,0,2.7931087498,9.2114191872,6.4319165246 H,0,-4.0431852962,11.7004848042,7.4961854645 Н,0,-4.9117959329,10.8281887646,3.1648308369 H,0,-3.3373146639,12.0534705754,9.8416291827 H,0,4.0087171988,14.9339780609,5.0745207238 H,0,2.1871155889,15.5994957208,7.1421457453 H,0,2.3803246483,15.5710988427,4.7333789723 H,0,3.4346997897,14.3327553405,7.3240032786 H,0,5.1526754802,10.7435047002,8.005143512 H,0,3.858270685,8.7166020837,8.1298134033 C,0,3.833348728,9.1072463928,1.9579040043 C,0,2.3134767367,10.9422327345,0.1940812472

H,0,4.7154844886,11.0556528809,2.2151544149 H,0,2.9376962102,12.4364051772,1.6054447768 H,0,5.35868521,10.5848428477,6.2408518238 H,0,4.6518918045,8.3254143862,6.5853488015 H,0,4.5124978392,8.5998473597,2.6531595784 H,0,2.8508878793,8.6215801921,2.0397829585 H,0,4.2118201956,8.9671376682,0.9364224366 H,0,1.5208689929,11.57805572,-0.2185116115 H,0,3.1911316078,11.0251963796,-0.4611910083 H,0,1.9614770648,9.9030675958,0.172548588

(bpy) $\operatorname{Ir}(\text { Beg })_{2}$ (Bpin') M06/BS1

bypIRBeg2BpinprimeM06PS
M06/gen
$\mathrm{E}(\mathrm{RM} 06)=-1439.66858895$
Zero-point correction $=0.426348$ (Hartree/Particle) Thermal correction to Energy $=0.455049$
Thermal correction to Enthalpy $=0.455994$
Thermal correction to Gibbs Free Energy= 0.365325
Sum of electronic and ZPE=-1439.242241
Sum of electronic and thermal Energies= -1439.213540
Sum of electronic and thermal Enthalpies $=-1439.212595$
Sum of electronic and thermal Free Energies=-1439.303264

E CV S

$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$
Total 285.548107 .503190 .828
B,0,1.708738587,12.8786923147,5.5963203156 В, $0,1.9979558507,10.9676236296,3.7441294316$ B, $, 2.2 .5402411653,10.5796465499,6.3047574858$ C,0,-0.309034201,11.5540828632,8.3621601343 $\mathrm{H}, 0,0.7634861549,11.533598095,8.5429954138$ C,0,-1.2180972074,11.7718539863,9.3895387956 Н, $0,-0.8647947396,11.9188687031,10.405728112$ C, $0,-2.5724170684,11.8022456802,9.0785211538$ С, $,-2.9671066281,11.6195614997,7.7597566827$ С,0,-1.9958659297,11.4038583228,6.7804962777 C, $0,-2.3295368768,11.2344050427,5.3469408724$ C,0,-3.6432655882,11.1385087658,4.886333207 Н,0,-4.4784146975,11.1493873821,5.5802298066 C, $0,-3.8790019523,11.019857265,3.522621428$ C, $,-2.7991379252,11.0055854627,2.6481937949$ $\mathrm{H}, 0,-2.9390311985,10.9248055455,1.574205832$ С, $0,-1.5156371391,11.0924345966,3.1759392147$ H,0,-0.6237600248,11.0914764809,2.5484874113 C, $, 2.2 .8863053172,14.7888307001,5.2208878817$ C, $, 2,2.5172342471,14.6821731052,6.7011432925$ C,0,3.7315498582,10.5201309369,2.3032168183 C, $0,2.6625088531,11.3631259324,1.5912646839$ C, $, 4.4 .6783358293,10.4908552201,7.0772321654$ C,0,4.0221991776,9.1233943199,7.2611254179 Ir, $0,0.8227334328,11.1152869642,5.3946822829$ $\mathrm{N}, 0,-0.6859146006,11.368942824,7.0931569567$ N,0,-1.2874321809,11.1962767815,4.4910738173 O,0,2.5347283696,13.5238436442,4.6839911163 O,0,1.5315998965,13.6619129802,6.7398871134 O,0,3.343852731,10.6075666922,3.6707664483 O,0,1.5264094102,11.243458085,2.4470844897 O,0,3.5925416124,11.3588360288,6.7953661688 O,0,2.796179502,9.2282306014,6.5557157611

H,0,-4.0208411979,11.6619039697,7.5011493839 H,0,-4.8974211993,10.9424777113,3.1498108801 H,0,-3.316702665,11.9738197888,9.8521540254 H,0,3.9541464592,14.9770193448,5.058022682 H,0,2.1120912396,15.6129132841,7.1162027824 H,0,2.3120029162,15.575178999,4.7072222577 $\mathrm{H}, 0,3.3784230346,14.364784555,7.3083049858$ H,0,5.2161229811,10.838792212,7.9676151936 H,0,3.8171540573,8.9040087163,8.3210553778 C,0,3.7953878682,9.061729745,1.8954091239 C, $0,2.3118186598,10.9733499011,0.1768795085$ H,0,4.7232560748,10.9831246895,2.191895763 H,0,2.9823466173,12.4193686328,1.6155869238 H,0,5.3715508405,10.4964034238,6.2222453296 H,0,4.6201863425,8.3008845265,6.8503551477 $\mathrm{H}, 0,4.4736541089,8.5267900018,2.5682619593$ $\mathrm{H}, 0,2.8057239849,8.5939678412,1.9782124116$ H,0,4.158711119,8.9394506042,0.867377184 H,0,1.5402454091,11.6426056534,-0.2188301844 H,0,3.1898958463,11.0429836792,-0.4776165859 H,0,1.9282444662,9.9471597184,0.1354000661

(bpy)Ir(Bpin)3 M06/BSsmall bpyIrBPIN3M06SB
 M06/gen
 $\mathrm{E}(\mathrm{RM} 06)=-1832.47310358$

Zero-point correction= 0.706376 (Hartree/Particle) Thermal correction to Energy= 0.748008
Thermal correction to Enthalpy $=0.748952$
Thermal correction to Gibbs Free Energy= 0.633777
Sum of electronic and ZPE $=-1831.766728$
Sum of electronic and thermal Energies= $\mathbf{- 1 8 3 1 . 7 2 5 0 9 5}$
Sum of electronic and thermal Enthalpies $=-1831.724151$
Sum of electronic and thermal Free Energies= -1831.839326
E CV S
$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$
Total 469.382164 .337242 .407

B,0,1.7486487866,12.8651667202,5.6436466567

B, 0, 1.9830539063,11.0359387379,3.6889461925 B, $0,2.4691757191,10.5218527746,6.3058612124$ C,0,-0.3090934882,11.5581839099,8.317279416 $\mathrm{H}, 0,0.7663765691,11.5533320052,8.4936564246$ C,0,-1.2197329071,11.7780809625,9.3419771424 $\mathrm{H}, 0,-0.8670974295,11.9386371893,10.3575064553$ C, $0,-2.5738383881,11.7948757785,9.032022593$ C, $0,-2.967635046,11.5925422707,7.717088089$ C, $0,-1.9972237259,11.3678108224,6.7411714087$ C, $,-2.3330730153,11.1610282988,5.3141766808$ C,0,-3.6412129582,10.9778993967,4.8674179371 H,0,-4.4697768575,10.9437507891,5.5703521419 C, $0,-3.8800639162,10.820265845,3.5089187739$ C, $0,-2.810120496,10.8518738952,2.6249348467$ H,0,-2.9549574487,10.7387408195,1.5536150849 C,0,-1.5300746492,11.0221182427,3.1385853242 H,0,-0.6426709304,11.0560483323,2.5046108061 C,0,2.8592936883,14.8204745746,5.2573736617 C, $0,2.2573215111,14.8343671816,6.6928686772$ C,0,3.7103469338,10.6228821308,2.2256797264 C,0,2.6194991877,11.4795923125,1.5186102629 C, $0,4.468574594,10.4341223494,7.4118931106$ C,0,3.958479434,8.9880422786,7.1434015516 Ir,0,0.8114281091,11.1390028756,5.3472340106 $\mathrm{N}, 0,-0.6864035418,11.3517132171,7.0519106765$ $\mathrm{N}, 0,-1.2979024999,11.167077682,4.4483156474$ O,0,2.7882880966,13.4312718604,4.9117751009 O,0,1.3164152995,13.752221378,6.6314634745 O,0,3.3323097153,10.7142794212,3.5984330504 O,0,1.4963297866,11.325624533,2.4002587977 O,0,3.2786620142,11.2112615329,7.2161278646 O,0,2.9032053627,9.2018995114,6.2017991861 H,0,-4.0219707215,11.6284186225,7.4547501786 H,0,-4.8961933392,10.6728634839,3.1481702403 $\mathrm{H}, 0,-3.3195010111,11.9711573564,9.8047404054$ C,0,4.3011996185,15.2761294082,5.1561503735 C,0,1.5204003704,16.1062137773,7.0644196005 C,0,2.0045909609,15.5834015693,4.2508428038 C,0,3.2781847524,14.4949454043,7.7707570673 C,0,4.9957381147,10.6804260143,8.8118625933 C,0,3.3437245028,8.335298002,8.3753427187 C,0,3.6591790042,9.1501118408,1.837476744 C, $0,2.2316303896,11.0060356438,0.1315361402$ C,0,5.127580316,11.1449348016,2.0827970092 C, $0,2.9623814377,12.9636189738,1.4818573151$ C,0,5.4842553706,10.9122596447,6.3805577703 C,0,4.9850940687,8.0618873943,6.5212432503 H,0,5.3141459582,11.7271966489,8.90783357 H,0,4.2327562438,10.4904460043,9.5753323494 H,0,5.8680134,10.0443040222,9.0215763649 H,0,2.8252919594,7.4191188404,8.0656575647 H,0,4.1007457777,8.0673199805,9.1253450726 H,0,2.6043568767,8.9986989772,8.8446877782 H,0,4.5463634329,7.0660850967,6.3764024728 H,0,5.3061671309,8.4336117637,5.5413474194 H,0,5.8678022097,7.9555518446,7.1686752448 H,0,5.6538584824,11.9868402828,6.531393116 H,0,6.4495378338,10.397401646,6.4839307084 H,0,5.1037688008,10.7751158776,5.3591445441 H,0,4.2964231804,8.5843287431,2.5287176031 H,0,2.6398760124,8.7521155606,1.9249479304 H,0,4.0194350779,8.9797247591,0.8133840183

H,0,5.8186930988,10.4709903061,2.6074175704 H,0,5.4341122298,11.1916284465,1.0274955808 H,0,5.2311617403,12.1410891228,2.5293737038 H,0,1.4647954185,11.6721697319,-0.285882882 H,0,3.0964771166,11.0247005681,-0.5474871836 H,0,1.8234897436,9.9891549888,0.14687194 H,0,2.0714932386,13.5218564218,1.1636574521 H,0,3.2461807356,13.3192823624,2.4808613662 H,0,3.7746489623,13.1789215186,0.7739289255 H,0,2.7424580089,14.3109732033,8.7118770056 H,0,3.824142395,13.5777904346,7.5193668081 H,0,3.9888176626,15.3169516103,7.9337283593 H,0,1.1301202063,16.0184177182,8.0867361238 H,0,2.1950723884,16.9742011898,7.0349473062 H,0,0.673579444,16.2972147858,6.3962021507 H,0,4.6353765964,15.2082377245,4.1118467429 H,0,4.4086167202,16.3219859426,5.4787928511 H,0,4.9665958375,14.6511285636,5.7610002292 H,0,2.3678251583,15.3668739179,3.2381459409 H,0,0.9542709754,15.2679133089,4.3049840102 $\mathrm{H}, 0,2.0554596951,16.669497519,4.4076320459$

(bpy)Ir(Bpin)3 M06/BS1

bpyIrBPIN3M06PS
M06/gen
$\mathrm{E}($ RM06 $)=-1832.56850386$
Zero-point correction $=0.702334$ (Hartree/Particle)
Thermal correction to Energy= 0.744053
Thermal correction to Enthalpy $=0.744997$
Thermal correction to Gibbs Free Energy $=0.629418$
Sum of electronic and ZPE $=-1831.866170$
Sum of electronic and thermal Energies=-1831.824451
Sum of electronic and thermal Enthalpies=-1831.823507
Sum of electronic and thermal Free Energies= $=1831.939086$

E CV S

$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$
Total 466.900165 .113243 .258
B,0,1.702656396,12.81576038,5.629151248
B, $0,1.9907846418,10.9705100756,3.6862387279$
B, $0,2.4847626304,10.462190892,6.3036486155$
C,0,-0.2797684939,11.4783651155,8.3204529209
$\mathrm{H}, 0,0.7935219563,11.4144638053,8.4971923378$
C, $0,-1.17585085,11.737269258,9.3494956722$
$\mathrm{H}, 0,-0.8134727557,11.8669502086,10.3649678841$
C, $0,-2.5287150892,11.8308863731,9.0421983669$
C,0,-2.9338555516,11.668370084,7.7243553641
C, $0,-1.9769049769,11.4047521575,6.7430354132$
С, $0,-2.3250061564,11.2477601425,5.3120507786$
C, $0,-3.6443790777,11.1742707873,4.8631043474$
$\mathrm{H}, 0,-4.4729318695,11.1946964594,5.5649242952$
C, $0,-3.8945517716,11.059560052,3.5016037415$
C, $0,-2.8233537973,11.0250241139,2.6171767633$
$\mathrm{H}, 0,-2.9748161052,10.9442087212,1.5448429533$
C, $0,-1.5336983374,11.0893122821,3.1330136711$
H, $,-0.647293054,11.0715219421,2.497804681$
C,0,2.7879195409,14.7905815698,5.2458118742
C, $0,2.1898397111,14.790533439,6.6847297254$
C,0,3.7408429711,10.6066965416,2.2271796147
C,0,2.6275176965,11.4316830506,1.5128539037

C, $0,4.4916264785,10.4281721124,7.4111046142$ C,0,4.0098240523,8.9676172461,7.1600557767 Ir, $0,0.815336571,11.0605584375,5.3462184806$ N,0,-0.6691764905,11.3070766058,7.0524494766 $\mathrm{N}, 0,-1.2914755228,11.1920914615,4.4457559842$ O,0,2.7247012316,13.401301857,4.8899910355 O,0,1.2629460459,13.6924269636,6.6228009483 O,0,3.3452521745,10.6730021654,3.5983100081 O,0,1.5048456201,11.255277218,2.3949971653 O,0,3.2858920839,11.1802142682,7.2011673693 O,0,2.942986086,9.1493790369,6.2205229793 Н, 0,-3.9841606241,11.7640484177,7.4653439874 Н, $0,-4.9176991845,10.9987453435,3.1388471727$ Н,, ,-3.2621885236,12.0374643922,9.8176083211 С,0,4.2277381809,15.2534226683,5.1434098069 C,0,1.432621266,16.0491735662,7.0610652426 C,0,1.9253322846,15.5518687787,4.2448281496 C,0,3.2170290489,14.4644437431,7.7618638906 C,0,5.0082371019,10.701092152,8.8105140934 C,0,3.4131377961,8.3144256547,8.4008688619 C,0,3.7453585289,9.1347391822,1.8322492939 C, $0,2.2549735323,10.9372727402,0.1283894238$ C,0,5.1397753098,11.1816757621,2.1061891211 C,0,2.9298534183,12.9243334004,1.4642914159 С, $0,5.5013739831,10.9165126318,6.3778421803$ C,0,5.0506840221,8.0552810209,6.5407843596 H,0,5.3126192294,11.7518248756,8.8918073667 H,0,4.2437000316,10.5125005929,9.5711490161 H,0,5.8857435152,10.0785531909,9.0321607731 H, $, 2.9082464795,7.3895972336,8.0988832208$ H,0,4.1794502503,8.0640793884,9.1457674228 H,0,2.6667380531,8.9682191089,8.8698618887 H,0,4.6255435114,7.0539719772,6.4033933692 H,0,5.364633176,8.4252168813,5.5591344092 H,0,5.9342520276,7.966242607,7.1878080141 H,0,5.6598228448,11.9915410453,6.5295266367 H,0,6.4699442911,10.4100973302,6.4799693911 H,0,5.1191622874,10.779487087,5.3581919822 H,0,4.3954740436,8.5914550756,2.5279501092 H,0,2.7410684553,8.7014573042,1.9103434005 H,0,4.120168713,8.9812768805,0.8119045328 H,0,5.8461949581,10.5297029562,2.635533224 H,0,5.4572575503,11.2466600974,1.0563191601 H,0,5.1973076896,12.1772909315,2.560804177 Н, $0,1.4674168874,11.5760545181,-0.2897138239$ H,0,3.1190631923,10.9827953234,-0.5484881727 H,0,1.8828993079,9.9081107759,0.1492641755 $\mathrm{H}, 0,2.0303517729,13.4523639335,1.1234468252$ H,0,3.1836398323,13.3007281214,2.4623793155 H,0,3.7485634406,13.1509281292,0.7691861659 H,0,2.6828016088,14.2697560742,8.7004775896 H,0,3.7807401799,13.5582654416,7.5133742074 H,0,3.9103185438,15.2993189599,7.9266783828 H,0,1.0514058296,15.952207172,8.0846217311 H,0,2.0911917837,16.9278983695,7.0273096883 H,0,0.5792354242,16.2234878381,6.3986029941 H,0,4.5560626699,15.1959796065,4.0979175764 H,0,4.3315779317,16.2953859827,5.4755156275 H,0,4.8960373227,14.6246678035,5.7392864108 H,0,2.2927289862,15.3446274713,3.2329340955 H,0,0.8799086422,15.2236444643,4.2962921773 H,0,1.9654124076,16.6361421739,4.4083928807
(tbut-bpy) $\operatorname{Ir}(\operatorname{Beg})_{3}$ M06/BSsmall
tbutbpyIrBeg3M06SB
M06/gen
$\mathrm{E}(\mathrm{RM} 06)=-1675.28804397$
Zero-point correction= 0.597715 (Hartree/Particle)
Thermal correction to Energy $=0.634805$
Thermal correction to Enthalpy $=0.635749$
Thermal correction to Gibbs Free Energy= 0.525333
Sum of electronic and ZPE $=-1674.690329$
Sum of electronic and thermal Energies= -1674.653239
Sum of electronic and thermal Enthalpies= -1674.652295
Sum of electronic and thermal Free Energies $=-1674.762711$

B, 0, 1.8548885546,12.8827177365,5.6759359686 B,0,2.0314072582,11.1044058525,3.6960525868 В, $0,2.5769118175,10.5153153442,6.205558954$ C, $0,-0.230485539,11.5267347784,8.3526470903$ H,0,0.8428043385,11.4808370377,8.5286450327 C, $0,-1.1288038401,11.7258127962,9.3860733413$ H, $0,-0.7485607827,11.8213078145,10.4012932711$ C,0,-2.4981126425,11.8125687762,9.1147827168 С, $,-2.8759010311,11.6889063559,7.7797567543$ C, $0,-1.9194847739,11.479579329,6.7851499193$ C,0,-2.2702834828,11.3627659603,5.3494364881 С,0,-3.5815631783,11.2775600419,4.8961184422 H,0,-4.397595482,11.2572117423,5.6153180288 C, $0,-3.8668065915,11.2008896939,3.5291719012$ С, $0,-2.7752183466,11.2218648796,2.6637387478$ H,0,-2.9035099071,11.1764655877,1.5857396493 C,0,-1.4853687225,11.2933008609,3.1768419828 H,0,-0.604535897,11.3155949167,2.5327117508 C,0,3.0694090369,14.7792510066,5.3692670709 C,0,2.687304143,14.6369238496,6.8443760017 C,0,3.7510934595,10.7627584803,2.2265269518 C, $0,2.6489873105,11.573901015,1.5451672412$ C,0,4.7069973409,10.285172731,6.9559995413 C,0,4.0186841732,8.9208257244,6.9719258187 Ir,0,0.8779232505,11.1893665068,5.36274925 $\mathrm{N}, 0,-0.610033675,11.3981132199,7.0771262403$ $\mathrm{N}, 0,-1.2316409449,11.3541678187,4.4861227906$ O,0,2.6937311477,13.5464309075,4.7877061271 O,0,1.7122829426,13.6115595784,6.8584014928 O,0,3.365967227,10.7185186481,3.5843007217 O,0,1.5477598772,11.4769141595,2.4292699432

O,0,3.6465916359,11.2057690087,6.7824103867 O,0,2.7985441092,9.1381933877,6.2910810334 H,0,-3.9234231621,11.7729938175,7.505174743 C,0,-5.309998858,11.0923003743,3.0522956035 C,0,-3.4940507871,12.0459710505,10.2429314898 H,0,4.1430911606,14.9525781326,5.2207398672 H, $0,2.2729393969,15.558678084,7.2741368345$ H,0,2.5192862509,15.5988289414,4.8789658505 H, 0,3.548312285,14.3261935089,7.4569685314 H,0,5.2548650238,10.5071344851,7.8814591649 H,0,3.81377006,8.5775928135,7.999905078 H,0,3.8137130745,9.7368222657,1.828051258 H,0,2.37633814,11.1867337201,0.5540691713 H,0,4.7422484993,11.2252096718,2.1298684424 H,0,2.9318825846,12.6328504323,1.435998992 H,0,5.4049559076,10.3754061576,6.1083095654 H,0,4.6011531906,8.1409026249,6.4642301004 C,0,-4.9364014307,12.095325208,9.7444204578 С, $0,-3.3747884966,10.9064798347,11.261756251$ C, $0,-3.1736787507,13.3817310739,10.9241974671$ H,0,-5.6115157468,12.2671050972,10.5931296872 Н, $0,-5.0951118857,12.9134631792,9.0279594486$ H,0,-5.2392662975,11.151806202,9.2690145655 H,0,-4.0964755703,11.0536009725,12.0775079662 Н, $0,-3.5833795315,9.9346976233,10.7937393948$ H,0,-2.3741935418,10.8555097516,11.7097135951 H,0,-3.8801383024,13.5631221997,11.7464008248 $\mathrm{H}, 0,-2.1603479246,13.3985300714,11.3453597838$ H,0,-3.2554272415,14.2158593719,10.2140119526 C,0,-5.4082207392,11.0447844925,1.529515461 C,0,-5.9279863572,9.8072974531,3.6161925863 C,0,-6.1033689365,12.3069578441,3.5477454649 Н,0,-6.4621012123,10.9632065577,1.2323327367 Н, $0,-5.0036572267,11.9542093434,1.0644190934$ Н,0,-4.8797433449,10.1771681998,1.1113500589 H,0,-7.1431593905,12.243736187,3.197577939 Н, $,--6.1272233064,12.3700251763,4.6434153341$ Н,0,-5.6725684537,13.2426908522,3.1661616486 H,0,-6.9678519598,9.7096557619,3.2742247525 H,0,-5.3734648865,8.9215801545,3.2775048663 Н,0,-5.9370590187,9.7979917653,4.7139727339

Transition Structures:

TS3-OBpin'anti M06/BSsmall
OBegleftantimetaOMeM06SB
M06/gen
$\mathrm{E}($ RM06 $)=-2193.18937429$
Zero-point correction $=0.682041$ (Hartree/Particle) Thermal correction to Energy $=0.725667$
Thermal correction to Enthalpy $=0.726611$
Thermal correction to Gibbs Free Energy= 0.606528
Sum of electronic and ZPE $=-2192.507333$
Sum of electronic and thermal Energies= -2192.463707
Sum of electronic and thermal Enthalpies $=-2192.462763$
Sum of electronic and thermal Free Energies=-2192.582846

E CV S

$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol-K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$
Total 455.363167 .968252 .736

C,0,3.5609557514,0.2010813501,2.9702170343 C, $0,2.3465361305,0.0880035865,2.2927747296$ $\mathrm{N}, 0,2.2785030042,-0.5593437922,1.1114144307$ C,0,3.3751864716,-1.1156840926,0.5873894674 C,0,4.6124161331,-1.0392028647,1.2127062384 C,0,4.7035759076,-0.3617700765,2.4211864776 C,0,1.0737926044,0.615122503,2.8329982715 $\mathrm{N}, 0,-0.0304918251,0.3263492787,2.1234092939$ C, $0,-1.2273265207,0.6959912613,2.5770541401$ C,0,-1.3847311775,1.4150204918,3.7547369653 С, $0,-0.2502850977,1.7520638692,4.479116308$ C, $0,0.994101251,1.34167461,4.0207930673$ Ir, $0,0.3087544863,-0.5309623767,0.0197824122$ B, $0,0.7738968876,-1.3277477366,-1.7892584164$ O,0,0.1284718577,-1.0325753194,-2.9860353036 C,0,0.9155757334,-1.5097201279,-4.0592145519 C, $0,1.9085305223,-2.4744777515,-3.4082496763$ O,0,1.9052664266,-2.1064389012,-2.0389726012 C,0,1.0234849562,1.439992062,-0.7199690365 C, $0,2.0869216554,1.4159883662,-1.6264929268$ C,0,2.8718296207,2.5399166592,-1.8960164162 C, 0,2.5928304302,3.750844512,-1.268278799 C, $0,1.5134823733,3.8082964088,-0.3906657056$ C,0,0.7434749023,2.6849863014,-0.1323809168 O,0,3.8902590717,2.3473552054,-2.7824285857 O,0,-0.3230374555,2.8308628155,0.7393401607 B, $0,-1.5569078861,3.0221671987,0.2117843534$ O,0,-1.7960010473,3.3177764995,-1.1052267737 C, $0,-3.2044581235,3.1733475604,-1.297976995$ C,0,-3.4588015882,1.8341669761,-1.9546834044 B, $0,0.0269850742,-2.4545261453,0.8632607737$ O,0,0.8465310391,-3.5434628176,0.6311548739 C, $0,0.4365612398,-4.6050009427,1.4780822161$ С, $0,-0.9457924521,-4.1804325253,1.9668086668$ O,0,-0.9509735364,-2.7715314549,1.8080241884 B,0,-1.5592702547,-1.3159565562,-0.380964026 O, $,,-2.7564788645,-0.8117035008,0.1444859143$

C, 0,-3.7383286868,-1.8405281725,-0.0046317547
C,0,-5.1299591556,-1.2695284492,-0.0990509759 O, $0,-1.8205613661,-2.4765891897,-1.1085996381$ C, $0,-3.2317410506,-2.6304234433,-1.2155481861$ C, $0,-3.6802930951,-2.1145147072,-2.5672369741$ O,0,-2.6915029246,2.9426850216,0.9808773805 C,0,-3.7719421155,3.3359960681,0.1303808355 C, $0,-5.0017217722,2.5318096878,0.4640572318$ $\mathrm{H}, 0,-0.3598928704,0.6331571773,-0.9590140192$ H,0,-2.0738497859,0.4205231241,1.9483813811 H,0,1.8895428896,1.5936413519,4.5833189521 H,0,-2.3780978599,1.7211411528,4.0719988135 H,0,-0.3283530404,2.3308489026,5.397650439 H,0,3.6173041265,0.7196243619,3.9235151109 H,0,5.6564681832,-0.2764588765,2.9402466784 H,0,5.4812775667,-1.5021671394,0.7522072949 H,0,3.2297740775,-1.6359907567,-0.3603493538 H,0,-3.6669096511,-2.4907230598,0.8859922402 H,0,-3.4761725298,-3.6990579171,-1.114752638 H,0,2.3674206775,0.4966150828,-2.1420287669 H,0,3.1830905191,4.6435123143,-1.4611741205 H,0,1.2487905956,4.7441636811,0.1000083868 H,0,-1.1428811751,-4.4431884111,3.013485509 H,0,-1.7470120138,-4.6103862966,1.3420716943 H,0,1.153650664,-4.7087007114,2.3075629061 H,0,0.4260850614,-5.5461981336,0.9151738293 H,0,2.9240739484,-2.388137208,-3.8161155951 H,0,1.5892874738,-3.5236901721,-3.5001300643 H,0,1.4257541738,-0.6591151487,-4.5399500128 H,0,0.2771828525,-1.9930139444,-4.8101653761 H,0,-3.9639734093,4.4074743969,0.3136280686 H,0,-3.5494529819,3.9919680109,-1.9460222242 H,0,-5.8265425306,2.7641044999,-0.2223714833 H,0,-4.7774527469,1.4597888464,0.4008802046 H,0,-5.3327447793,2.7522039543,1.4857143879 H,0,-4.5179346576,1.7016025862,-2.216193131 H,0,-2.8618814582,1.7622991541,-2.8721315992 H,0,-3.1528474969,1.0161780839,-1.2853168724 $\mathrm{H}, 0,-5.3883935402,-0.7344461457,0.82306409$ H, $0,-5.2187500462,-0.5700726755,-0.9401640523$ H,0,-5.8664497944,-2.0721794215,-0.2412872894 Н, $0,-4.7560001344,-2.2638124763,-2.7306460373$ H,, ,-3.4491883916,-1.0438718442,-2.6623153015 H,0,-3.1306628636,-2.6399397457,-3.3567870067 C,0,4.6995672201,3.4500417737,-3.0827743924 H,0,5.4486848823,3.1023880944,-3.8001961523 H,0,4.1223670522,4.2706259896,-3.5380899383 H,0,5.2140022584,3.8367411961,-2.188206327

Atom No Charge

C 1 -0.24646
C 20.21581
N 3 -0.49138
C 40.07661
C 6
C 70.19519
N 8 -0.49548
C 10 -0.24989

C 11 -0.20403
C $12-0.24513$
Ir $13-0.02514$
B $14 \quad 1.01502$
O $15-0.80561$
C $16-0.13951$
C $17-0.14019$
O $18-0.81237$
C $19-0.27611$
C $20-0.26647$
C $21 \quad 0.31015$
C $22-0.34025$
C $23-0.24705$
C 240.28632
O $25-0.56346$
O $26-0.75724$
B $27 \quad 1.36734$
O 28 -0.77518
C $29 \quad 0.06467$
C $30-0.74261$
B $31 \quad 0.93793$
O $32-0.77879$
C $33-0.14178$
C $34-0.14238$
O $35-0.78516$
B $36 \quad 0.94922$
O $37-0.82952$
C $38 \quad 0.06238$
C $39-0.72201$
O $40-0.80472$
C $41 \quad 0.06468$
C $42-0.72889$
O $43-0.78107$
C $44 \quad 0.06465$
C $45-0.72546$
H 460.21114
H $47 \quad 0.27152$
H $48 \quad 0.24550$
H 490.26014
H $50 \quad 0.25431$
H $51 \quad 0.24890$
H 520.25604
H 530.26212
H 540.27939
H 550.22554
H 560.23221
H 570.24850
H 580.24898
H 590.24937
H 600.22786
H 610.21055
H 620.21174
H 630.22937
H 640.21083
H 650.22834
H 660.22748
H 670.21050
H $68 \quad 0.22483$
H 690.23531
H $70 \quad 0.24705$
H $71 \quad 0.25191$
H $72 \quad 0.25572$

H 73	0.23931		B	-0.24399	-2.56345	0.65302
H 74	0.26683		O	0.43811	-3.72095	0.32577
H 75	0.25790		C	-0.0918	-4.79059	1.09805
H 76	0.25045		C	-1.42036	-4.24897	1.61904
H 77	0.24391		O	-1.25678	-2.83821	1.57415
H 78	0.24995		B	-1.68431	-1.12912	-0.5156
H 79	0.23929		O	-2.82572	-0.52399	0.02681
H 80	0.24840		C	-3.92229	-1.41329	-0.21589
H 81	0.25973		C	-5.2332	-0.67313	-0.28525
C 82	-0.33347		O	-2.06603	-2.19124	-1.33442
H 83	0.23551		C	-3.48399	-2.16655	-1.47639
H 84	0.21064		C	-3.83635	-1.50577	-2.79367
H 85	0.20817		O	-2.39983	3.1299	1.17394
			C	-3.40465	3.72006	0.33899
TS3-O	Bpin'anti M06/	/BS1	C	-4.73389	3.05739	0.59075
OBegle	ftantimetaOMeM	M06PS	H	-0.25968	0.67617	-0.91419
M06/ge			H	-2.04707	0.43299	1.95736
E(RM06)	$6)=-2193.293198$	9812	H	1.97214	0.93755	4.71738
			H	-2.25093	1.54785	4.19174
Zero-po	int correction= 0	0.676815 (Hartree/Particle)	H	-0.17278	1.81744	5.5838
Therma	1 correction to E	Energy $=0.721187$	H	3.62486	-0.00098	3.97536
Thermal	1 correction to E	Enthalpy $=0.722131$	H	5.56669	-1.11961	2.9283
Thermal	1 correction to G	Gibbs Free Energy $=0.598260$	H	5.293	2.16298	0.65643
Sum of	electronic and Z	ZPE=-2192.616383	H	3.05388	-1.99014	-0.47138
Sum of	electronic and th	hermal Energies $=-2192.572011$	H	-3.95035	-2.13111	0.62335
Sum of	electronic and th	hermal Enthalpies=-2192.571067	H	-3.8534	-3.2027	-1.45882
Sum of	electronic and th	hermal Free Energies=-2192.694938	H	2.43068	0.38214	-2.09352
			H	3.67933	4.33258	-1.01355
	CV S		H	1.73501	4.50098	0.52605
KCal	/Mol Cal/Mol-K	Kal/Mol-K	H	-1.65543	-4.56742	2.64112
Total 45	2.552169 .5422	260.708	H	-2.25949	-4.52882	0.96116
			H	0.60602	-5.02793	1.91507
C	3.52785	-0.44173 2.98803	H	-0.20319	-5.68081	0.4688
C	2.31424	-0.38682 2.29983	H	2.71203	-2.50256	-3.97234
N	2.19639	-0.93317 1.07229	H	1.23725	-3.47255	-3.72655
C	3.23827	-1.55786 0.51249	H	1.45184	-0.54074	-4.56521
C	4.4707	-1.64999 1.1462	H	0.1636	-1.70622	-4.96162
C	4.61621	-1.07307 2.4021	H	-3.46211	4.78947	0.60184
C	1.09118	0.216172 .87585	H	-3.04842	4.49609	-1.67502
N	-0.02488	0.109542 .13372	H	-5.50214	3.44506	-0.08943
C	-1.18575	0.55881 2.61249	H	-4.6468	1.97405	0.44874
C	-1.28906	$\begin{array}{lll}1.17461 & 3.85324\end{array}$	H	-5.06024	3.24381	1.6191
C	-0.13791	1.324244 .61529	H	-4.28616	2.3753	-2.1433
C	1.06629	0.833424 .12755	H	-2.61978	2.27468	-2.76136
Ir	0.25694	$-0.61537-0.02621$	H	-3.04693	1.45199	-1.24629
B	0.67073	$-1.32159-1.88756$	H	-5.44348	-0.17857	0.66963
O	0.07846	-0.88065 -3.068	H	-5.22234	0.08719	-1.07502
C	0.83486	-1.36114-4.16591	H	-6.05427	-1.37132	-0.49194
C	1.69028	-2.48193 -3.57457	H	-4.91735	-1.51373	-2.98098
O	1.71963	-2.1953 -2.18324	H	-3.4775	-0.46798	-2.80923
C	1.17154	1.32868-0.59632	H	-3.33714	-2.03763	-3.61022
C	2.24253	1.27269-1.49391	C	5.09153	3.13364	-2.74241
C	3.14903	$2.32385-1.65122$	H	5.80622	2.768	-3.4834
C	2.9938	$3.49589-0.91401$	H	4.61608	4.04909	-3.12501
C	1.90764	$3.59094-0.04559$	H	5.63051	3.37345	-1.81333
C	1.01273	2.541250 .09551				
O	4.15532	$2.105-2.54807$	TS3-OMeanti M06/BSsmall			
O	-0.05743	2.729060 .95705	OMeleftmetaOBegM06SB			
B	-1.24405	3.12050 .43125	M06/gen			
O	-1.41391	3.54554-0.86189	$\mathrm{E}(\mathrm{RM} 06)=-2193.18032628$			
C	-2.82721	3.59367-1.08884				
C	-3.22778	2.35081-1.8531	Zero-point correction= 0.680323 (Hartree/Particle)			

Thermal correction to Energy $=0.724912$
Thermal correction to Enthalpy $=0.725856$
Thermal correction to Gibbs Free Energy= 0.600324
Sum of electronic and ZPE $=-2192.500003$
Sum of electronic and thermal Energies= -2192.455414
Sum of electronic and thermal Enthalpies $=-2192.454470$
Sum of electronic and thermal Free Energies $=-2192.580003$
E CV S
$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$
Total 454.889168 .996264 .206

C, $0,0.1350037065,3.9521785187,-2.0247472636$ C, $0,0.6320295662,2.8802586274,-1.2827690245$ $\mathrm{N}, 0,0.4322300422,1.6097705979,-1.6898525329$ C,0,-0.2167112834,1.3745450672,-2.8364237057 С, $0,-0.7278956633,2.3973701198,-3.6231808553$ C, $0,-0.5568388559,3.7085639664,-3.2013167176$ C, $, 0,1.4333112059,3.0649709536,-0.0537637292$ N,0,1.8658400457,1.9434036159,0.5481338894 C,0,2.64605194,2.0341776383,1.6266508773 C,0,3.0305898306,3.2540291534,2.1666970173 C, $0,2.5740000423,4.4191755886,1.5658906332$ C, $0,1.7680216624,4.3266351824,0.4415730055$ Ir,0,1.078892252,-0.0530044932,-0.3156286583 B, $0,0.3140025812,-1.6807475583,-1.2541496525$ O, $0,-0.0464597142,-2.8692332877,-0.6253082288$ C, $0,-0.5113503982,-3.7774861939,-1.6035363552$ C, $0,-0.8390913405,-2.8971161035,-2.8095025576$ О, $0,-0.0907894271,-1.7131786009,-2.5905479048$ C, $0,-0.8215318789,0.2674045179,0.7953206497$ C, $,-2.0219202518,0.1005268496,0.0932900507$

C, $0,-3.2360726228,0.5462220175,0.6064807567$ C,0,-3.2987837371,1.1590454337,1.8546762795 C,0,-2.1245706933,1.2965953812,2.5832732013 C, $0,-0.9098295615,0.8530493656,2.0655274157$ O,0,-4.3421767608,0.4040964488,-0.1976170765 B, $0,-5.5872074828,0.0695228773,0.2111761407$ О, $,-5.9730235708,-0.1958040418,1.5031451732$ C, $0,-7.3009799598,-0.7242696162,1.4242887782$ C,0,-7.2338041952,-2.2307401879,1.5449405264 O, $0,0.2210652035,1.0128089397,2.8416936486$ B, $0,2.8448463717,-0.2389572339,-1.4664358679$ O,0,2.9335940172,-0.7042654419,-2.7652741989 C,0,4.2779268473,-0.5822217476,-3.1995318129 С, $0,5.0702260667,-0.3505102956,-1.9138215624$ O,0,4.1060015115,0.1319602474,-0.9933524976 B, $0,2.4047735416,-1.3501694255,0.5713783075$ O,0,2.9420456896,-1.1005451322,1.8358784424 C,0,3.9937802723,-2.0406194747,2.0487258864 С, $0,4.118131785,-2.3540888167,3.5187949849$ O,0,2.9295415639,-2.5302510423,0.0575206862 C,0,3.6166821266,-3.1969995956,1.1131426995 C, $0,2.6909916319,-4.2363729841,1.7115861415$ О,0,-6.6098837847,-0.0375074456,-0.6985747763 C,0,-7.8042552271,-0.1922237517,0.0669617718 С, $0,-8.7974886007,-1.0453969996,-0.6801535762$ H, $0,0.344000105,-0.8195012334,0.9337408212$ H, $0,2.9608164328,1.0838237045,2.0566865733$ H, $0,1.4125894113,5.2315117575,-0.0437598576$ H,0,3.6698734702,3.2811980633,3.0455563648 H,0,2.8457871161,5.395384526,1.9632407186 $\mathrm{H}, 0,0.2863983012,4.9742452424,-1.6890986673$ $\mathrm{H}, 0,-0.9515889934,4.5379140638,-3.7851072367$ $\mathrm{H}, 0,-1.2522006801,2.1597436207,-4.5451233919$ Н, $,--0.3132125448,0.3237502923,-3.1104880616$ H,0,4.9315213458,-1.5840077109,1.681417791
$\mathrm{H}, 0,4.5151392243,-3.6783711857,0.6988151811$ H,0,-2.0374393412,-0.3739165719,-0.8900103775 H,0,-4.2515888415,1.5011308176,2.251267877
H,0,-2.1324009476,1.7573017646,3.5711888268 H,0,5.8826254649,0.3784232789,-2.0260042425 H,0,5.4976668424,-1.2894002993,-1.5232043522 H,0,4.3608800984,0.2678343245,-3.8949110725 H,0,4.5800346113,-1.4912942691,-3.7339672073 H,0,-1.9116802338,-2.646556922,-2.8539975791 H, $0,-0.5528905027,-3.3486109103,-3.767722346$ H,0,-1.3819851713,-4.3264556382,-1.2225403351 $\mathrm{H}, 0,0.2821170793,-4.5070075748,-1.8309156399$ H,0,-7.8883502761,-0.3022085297,2.2519819066 H,0,-8.2319965403,0.8137742925,0.2230952868 $\mathrm{H}, 0,4.3791434538,-1.4475300381,4.0782663665$ H,0,3.1684327368,-2.7334010991,3.9169738372 H,0,4.8986285316,-3.104813098,3.7010400124 H,0,3.1907902319,-4.8424079188,2.4790052789 Н, $0,1.8091237787,-3.753899347,2.158086744$ H,0,2.3318995812,-4.9003931953,0.9169367812 Н,0,-8.2338969359,-2.6821327312,1.56204412 H,0,-6.6715546484,-2.6606247119,0.7044442225 H,0,-6.7141090425,-2.5020561992,2.4706185886 H,0,-9.7185576215,-1.1787422716,-0.097679456 H,0,-9.0587407209,-0.5662066795,-1.6302987924 H,0,-8.377981328,-2.0333085814,-0.9049672067 C,0,0.4556152675,-0.0696025032,3.7133749556

B	0.35212	-1.27232	-1.63187
O	-0.04762	-2.57644	-1.35151
C	-0.46142	-3.19181	-2.55836
C	-0.75565	-2.01828	-3.49127
O	-0.00199	-0.94505	-2.94355
C	-0.80931	0.09313	0.84431
C	-1.99376	0.13772	0.09635
C	-3.2142	0.46517	0.6783
C	-3.30366	0.74089	2.04018
C	-2.1466	0.66259	2.80678
C	-0.92482	0.33592	2.22035
O	-4.29997	0.56037	-0.16225
B	-5.56119	0.15298	0.10524
O	-5.99624	-0.43244	1.27143
C	-7.32608	-0.90784	1.01513
C	-7.2725	-2.39546	0.74599
O	0.18672	0.26957	3.03801
B	2.91318	0.11262	-1.39505
O	3.03897	0.00184	-2.76797
C	4.40009	0.21413	-3.11763
C	5.15285	0.06461	-1.797
O	4.16464	0.31338	-0.80673
B	2.36737	-1.49497	0.28732
O	2.87741	-1.59375	1.58372
C	3.89616	-2.59584	1.57234
C	3.97466	-3.27471	2.91674
O	2.86814	-2.52759	-0.49683
C	3.51074	-3.46462	0.36687
C	2.54466	-4.59394	0.6628
O	-6.55454	0.29586	-0.834
C	-7.77881	-0.03285	-0.1712
C	-8.75547	-0.64366	-1.14257
H	0.32783	-1.00684	0.70101
H	2.96094	0.47397	2.3496
H	1.45735	5.04365	1.41744
H	3.64361	2.31442	3.91129
H	2.83957	4.64721	3.42931
H	0.40914	5.25784	-0.28405
H	-0.76885	5.41558	-2.45355
H	-1.0594	3.33133	-3.83125
H	-0.17718	1.16689	-2.91696
H	4.85443	-2.09259	1.34885
H	4.4065	-3.85011	-0.14141
H	-1.99259	-0.06951	-0.97448
H	-4.26045	0.99154	2.49004
H	-2.17426	0.8587	3.87771
H	5.98326	0.77119	-1.68382
H	5.54119	-0.95802	-1.66231
H	4.51137	1.22195	-3.54506
H	4.70575	-0.51722	-3.87454
H	-1.82363	-1.74924	-3.48637
H	-0.44737	-2.19749	-4.52785
H	-1.33601	-3.82686	-2.37417
H	0.35477	-3.82427	-2.93999
H	-7.93698	-0.70391	1.90463
H	-8.19903	0.90551	0.22882
H	4.25322	-2.55033	3.68995
H	3.00546	-3.70729	3.19182
H	4.72577	-4.07438	2.91137
H	3.01032	-5.38677	1.26109
H	1.66225	-4.21588	1.19744
H	2.19478	-5.02536	-0.28062

H	-8.27581	-2.81581	0.61053
H	-6.68126	-2.60683	-0.1541
H	-6.79554	-2.90316	1.59008
H	-9.69101	-0.91393	-0.63783
H	-8.9886	0.07389	-1.93532
H	-8.33655	-1.54098	-1.61094
C	0.38649	-1.00342	3.61846
H	1.29733	-0.94393	4.22374
H	-0.46359	-1.2852	4.25931
H	0.53656	-1.77637	2.8481

TS3-OBpin'syn M06/BSsmall
OBegleftsynmetaOMeM06SB
M06/gen
$\mathrm{E}(\mathrm{RM} 06)=-2193.18274050$
Zero-point correction= 0.681553 (Hartree/Particle)
Thermal correction to Energy= 0.725715
Thermal correction to Enthalpy $=0.726659$
Thermal correction to Gibbs Free Energy= 0.603579
Sum of electronic and ZPE $=-2192.501187$
Sum of electronic and thermal Energies $=-2192.457026$
Sum of electronic and thermal Enthalpies=-2192.456082
Sum of electronic and thermal Free Energies $=-2192.579162$

E CV S

$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$
Total 455.393168 .455259 .044

C, $0,-1.9371764833,0.8726555481,3.5723254207$
C, $0,-1.2119773504,0.2968032091,2.5300470881$
$\mathrm{N}, 0,-0.0883935347,0.8736659486,2.0559265617$ C, $0,0.3612136411,1.9975253131,2.6274752422$
C, $0,-0.301594063,2.6116420554,3.681843972$
C, $0,-1.4787613652,2.0458860699,4.1528286933$
C,0,-1.6276103723,-0.9659717072,1.8924837321
$\mathrm{N}, 0,-1.1157993623,-1.2095151257,0.6729906071$
C, $0,-1.4611233017,-2.3288340647,0.0340149622$
C, $0,-2.3131441678,-3.2743304099,0.5930320634$
C,0,-2.8122320014,-3.0505881388,1.8688655437

C,0,-2.4695110899,-1.877388031,2.5288045272 Ir, $0,0.8124757461,0.0086174257,0.179568634$ B, $0,2.5838263409,0.9790406313,0.0831000963$ O,0,3.4415221986,1.016126597,-1.0075740401 C,0,4.5960686627,1.7485825844,-0.6467072554 C,0,4.1642980508,2.5508219931,0.5804325713 O, $0,3.0409240454,1.8444606253,1.0814985735$ C,0,-0.1841498541,1.6523320326,-0.9376682403 C, $0,0.3333764476,2.9424011973,-0.7929805062$ С, $0,-0.3260227974,4.0736744263,-1.2786900702$ С, $0,-1.5260518635,3.9309102222,-1.9691110936$ C,0,-2.0463486391,2.6522899503,-2.1501835511 C, $0,-1.3936240373,1.5387812543,-1.6382335448$ O,0,0.2873860503,5.2680629959,-1.0360262706 О,0,-1.903244475,0.2765711163,-1.8848967873 B, $0,-3.1793487326,-0.057963546,-1.6004780935$ О,0,-4.1247779914,0.7862698731,-1.0637589948 C,0,-5.2634595848,-0.0142370863,-0.7512977138 C, $0,-5.2817347584,-0.2634165717,0.7407702707$ B,0,1.8230448978,-1.3920154677,1.4055325636 O,0,3.0425529219,-1.1843471506,2.0259724891 C,0,3.4855578122,-2.4228737965,2.5512439007 C,0,2.2205035654,-3.277972363,2.625587469 O,0,1.3206320751,-2.6532621451,1.7227818675 В, $0,1.6876812848,-1.4320011356,-1.0148368224$ O, $, 0.0 .9618350786,-2.1001319625,-2.0000603721$ C, $, 1.1779296857,-3.156192585,-2.5047391257$ С, $0,1.4879623103,-3.3910671048,-3.9656179124$ O,0,2.9872696892,-1.917028597,-0.9695048359 C,0,3.2006462943,-2.7044951552,-2.138606313 C,0,3.900674683,-1.8478229356,-3.1733131751 O,0,-3.659489163,-1.3254483019,-1.8400872504 C, $,,-5.0692445372,-1.2670124747,-1.6344517182$ C, $0,-5.57148449,-2.5767377317,-1.0806597072$ H,0,0.7558533086,0.419258734,-1.4051236286 H,0,-1.0172469029,-2.4611109051,-0.9522726342 H,0,-2.8329222434,-1.6829554053,3.535426706 Н,0,-2.5682317296,-4.1698038717,0.0310467167 Н,, ,-3.4621534303,-3.7801383659, 2.3493665679 H,0,-2.8659672962,0.4156750947,3.9062969707 H,0,-2.0364525814,2.5131545724,4.9621766649 H,0,0.1012305896,3.5253921621,4.1112896579 H,0,1.2929572042,2.3905318618,2.2204063494 H,0,1.5412651405,-4.0681918229,-1.9275146143 H,0,3.8293522269,-3.5666144302,-1.8703872932 H,0,1.282250609,3.1119764092,-0.2818224157 H,0,-2.0562535409,4.7872672803,-2.3782787989 H,0,-2.9774964054,2.5200703443,-2.6983469065 H,0,1.7796768877,-3.2799793104,3.6348586184 H,0,2.3864334871,-4.3204100613,2.3252178349 H,0,3.9625648402,-2.2690215425,3.5275607353 H,0,4.2308553369,-2.8548744361,1.8650521611 H,0,3.8575790538,3.5752626222,0.3112770187 H,0,4.9405754183,2.6161367726, 1.3529288243 $\mathrm{H}, 0,4.9155755781,2.3816458628,-1.4842010108$ H,0,5.412476731,1.0473240441,-0.4124897729 H,0,-6.1662822349,0.536910931,-1.0524003971 H,0,-5.5416500565,-1.0822431801,-2.6151116991 H,0,-6.6583062759,-2.5498718597,-0.9275681687 Н, $0,-5.3439497456,-3.3880657605,-1.781940978$ H,0,-5.0857575495,-2.8085857521,-0.1246074748 Н,0,-6.1769324729,-0.8156282354,1.0548597412

H,0,-4.3926507112,-0.835144366,1.0429581461 H, $,-5.2606093688,0.6973153564,1.268877419$ H,0,0.4416216598,-3.6891439974,-4.0995336164 H,0,1.6529572046,-2.4762673074,-4.5473623156 H, $, 2.1271638283,-4.186231485,-4.3726777133$ H,0,4.1573608262,-2.4190446696,-4.0753104454 H,0,3.2702762683,-0.9933029717,-3.4565740727 H,0,4.8215734075,-1.4409438762,-2.7392279068 C,0,-0.335204604,6.4220819448,-1.5280829899 $\mathrm{H}, 0,0.2960202356,7.2674475373,-1.2389702513$ H,0,-0.426075284,6.4019857507,-2.6258739611 H,0,-1.3394909132,6.5607488518,-1.095835761

TS3-OBpin'syn M06/BS1

OBegleftsynmetaOMeM06PS
M06/gen
$\mathrm{E}($ RM06 $)=-2193.28699673$
Zero-point correction= 0.677046 (Hartree/Particle) Thermal correction to Energy= 0.721590
Thermal correction to Enthalpy= 0.722534
Thermal correction to Gibbs Free Energy= 0.598428 Sum of electronic and ZPE=-2192.609951
Sum of electronic and thermal Energies $=-2192.565407$
Sum of electronic and thermal Enthalpies $=-2192.564463$
Sum of electronic and thermal Free Energies= -2192.688569
E CV S
$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$
Total 452.805169 .793261 .203
C,0,-2.1172927325,0.7460120366,3.4172143456 C,0,-1.3246651789,0.1933950911,2.4098566473 $\mathrm{N}, 0,-0.2094535381,0.8191202329,1.9773583305$ C,0,0.1535296281,1.9772375874,2.5433435662 C, $0,-0.5847723294,2.5761900929,3.5555802059$ C,0,-1.745973402,1.9518862936,3.9943535183 C,0,-1.6547714133,-1.0903744413,1.7616235462 $\mathrm{N}, 0,-1.0655232311,-1.3208230571,0.5754699288$ C,0,-1.314361967,-2.4665963584,-0.0633260952 C,0,-2.1417907932,-3.4509848111,0.4619274308 C, $0,-2.730243614,-3.2345100863,1.7011388502$ C, $0,-2.4930614539,-2.0343216979,2.3586862898$ Ir, $0,0.8192535401,0.0024363882,0.1501779479$ B, $0,2.5715726953,1.0132177663,0.191071887$ O,0,3.5451368904,1.0383046592,-0.7968148191 C,0,4.6729853198,1.7319915739,-0.2900702826 C,0,4.1105123231,2.5681664539,0.856988646 O,0,2.9198251097,1.8861516166,1.2275890352 C, $0,-0.1757910802,1.6372202678,-0.9856158349$ C, $0,0.3815481602,2.9186054212,-0.9364485256$ C,0,-0.2678874704,4.0422772941,-1.4520466385 C,, ,-1.5026509474,3.9008371592,-2.0794800573 C, $,,-2.0676873122,2.6288974406,-2.1628154967$ C,0,-1.4226345359,1.5249563619,-1.6201810693 O, $0,0.3911636303,5.230151736,-1.3053712077$ O,0,-1.9861657002,0.2688121406,-1.7601221272 B,0,-3.2621991572,-0.0154182654,-1.4272603294
О, $,-4.1898993054,0.8805221026,-0.9403230377$
C,0,-5.3401919909,0.1261201351,-0.5488871235 C,0,-5.3624876102,0.0183009315,0.9603324565

B,0,1.8647449685,-1.403166961,1.3557219845 О,0,3.1063455188,-1.2156810861,1.9413147014 C,0,3.5619577741,-2.468237009,2.4291602811 C, $0,2.2949736854,-3.3179922141,2.5294021166$ O,0,1.3702689954,-2.6710165792,1.6632977737 B,0,1.7433156374,-1.3725626693,-1.0904470655 О, $0,1.0364390744,-2.007698484,-2.1117715144$ C, $0,1.8440434043,-3.0820759763,-2.5987173754$ C,0,1.5797143147,-3.3164189795,-4.0645149425 O,0,3.0381411172,-1.8666001688,-1.033508143 C,0,3.2652807493,-2.6594627946,-2.1988681426 C,0,4.0149551163,-1.8263027718,-3.217991615 O,0,-3.7648026769,-1.2912534553,-1.5503249227 C,0,-5.1707073097,-1.2047515522,-1.3171202001 C, $0,-5.6655411483,-2.4544564386,-0.6332984894$ Н, $0,0.832791435,0.4295717951,-1.4171912137$ H,0,-0.8179481379,-2.5814550589,-1.0258155926 Н, $0,-2.9291038092,-1.8478960901,3.3367359407$ H,0,-2.3139555668,-4.3670905455,-0.0958435385 H,0,-3.3677999593,-3.9902976855,2.1549201417 H,0,-3.0297982585,0.2446344662,3.7289475472 H,0,-2.3597356967,2.3987530485,4.7727003114 H,0,-0.2501064561,3.5179560119,3.980225459 H,0,1.0777227467,2.4110968497,2.1668302918 H,0,1.575690863,-3.9863447497,-2.0219734448 H,0,3.8651384705,-3.5349160216,-1.910504156 H,0,1.3601863814,3.0874152496,-0.487162532 H, $0,-2.0285831157,4.7476412992,-2.510787028$ H,0,-3.028707722,2.4983012012,-2.6550921762 H,0,1.8833973937,-3.3341653548,3.5497888901 H,0,2.4437542836,-4.3541028318,2.2027628504 H,0,4.0692785292,-2.3313971916,3.3914250125 H,0,4.2806968373,-2.8890881522,1.7102028946 $\mathrm{H}, 0,3.8555836172,3.5902383084,0.5343596253$ H,0,4.7850457579,2.6325167861,1.7187200584 H,0,5.1285365747,2.3364775071,-1.0830261067 H,0,5.4142290925,0.9997132364,0.0650341501 Н,0,-6.2337232035,0.6613782311,-0.8987487754 H,0,-5.6631191848,-1.1077916072,-2.299447601 H,0,-6.7476610588,-2.4055909234,-0.4614184865 H,0,-5.4565502093,-3.3274009021,-1.2606521738 H,0,-5.1603744036,-2.60081145, 0.3292975376 Н, $,-6.2691098571,-0.4836363411,1.3185622405$ H,0,-4.4870623803,-0.5407313108,1.3182029628 H,0,-5.3254640483, 1.0229900147,1.3944087361 H,0,0.5356630433,-3.6083330828,-4.2179588914 H,0,1.7620865807,-2.4041974787,-4.6432410366 H,0,2.2220369843,-4.115591864,-4.4552673018 H,0,4.2786324816,-2.4114333479,-4.1076498567 H,0,3.416538227,-0.959479839,-3.5268713487 Н,0,4.9363242169,-1.4460503864,-2.7650772824 C,0,-0.2135205119,6.3793495933,-1.8400391351 H,0,0.4585380547,7.2140958935,-1.6274389191 Н,, ,-0.3497094413,6.2967796065,-2.9287303556 H,0,-1.1905591713,6.5778681921,-1.3737433707

TS3-OMe Conformer B M06/BSsmall

OMerightmetaOBegM06SBb
M06/gen
$\mathrm{E}(\mathrm{RM} 06)=-2193.17982496$

Zero-point correction $=0.680847$ (Hartree/Particle)
Thermal correction to Energy $=0.725458$
Thermal correction to Enthalpy $=0.726402$
Thermal correction to Gibbs Free Energy= 0.599436
Sum of electronic and ZPE $=-2192.498978$
Sum of electronic and thermal Energies=-2192.454367
Sum of electronic and thermal Enthalpies= -2192.453423
Sum of electronic and thermal Free Energies=-2192.580389

E CV S

$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$ Total 455.231168 .824267 .222

C,0,1.4628911864,-3.7854332846,-2.221047007 C,0,1.2190755196,-2.4879756268,-1.768441026 $\mathrm{N}, 0,1.6803437954,-2.074290212,-0.5730753639$ C,0,2.3968575101,-2.9104771621,0.1839191809 C,0,2.6726185926,-4.2137299958,-0.2041456833 C, $0,2.1914946387,-4.6583648925,-1.4282148817$ C, $0,0.4952806855,-1.4912460736,-2.5860458473$ N,0,0.5388825524,-0.2183818887,-2.1524802498 C, $0,-0.0342050774,0.7437631408,-2.8798007869$ C, $0,-0.7200986993,0.4809294424,-4.0591060312$ С,0,-0.8129771685,-0.8353848172,-4.4900394311 C,0,-0.1906866504,-1.831828517,-3.7523905051 Ir, $0,1.2211784857,0.0316035264,0.0498017853$ B,0,1.9255026815,-0.0027853286,1.9504998608 O, $0,1.3207906707,0.5471406554,3.0726342112$ C,0,2.2224648665,0.4648513112,4.1554151917 C,0,3.2419592139,-0.5928447,3.725936671 O,0,3.1137534045,-0.6514867095,2.3168159728 C,0,-0.8282299371,-0.6697251799,0.5655027674 C, $0,-1.018406071,-1.6345159693,1.5682215624$

C,0,-2.271266562,-2.2036773946,1.7908735276 C, $0,-3.3710224913,-1.8345101825,1.0232747885$ С,0,-3.200787938,-0.8831299105,0.0265978867 C, $0,-1.9495049075,-0.3143648618,-0.1891345025$ О, $0,0.0823366883,-2.0447875945,2.2818081871$ O,0,-4.2208459298,-0.487079978,-0.8081058676 В, $0,-5.5091838379,-0.2910512548,-0.4473803689$ О, $,-6.0171930987,-0.3911984588,0.8256653865$ C,0,-7.4356167864,-0.2677340932,0.699340252 C, $,--8.0110471685,0.4224576503,1.9094411497$ B, $0,3.2152708816,0.4783671023,-0.4908716524$ O,0,3.9164243988,-0.3349597945,-1.3790450491 C,0,5.2549421724,0.1272984592,-1.4578324452 C,0,5.2067476807,1.5307454053,-0.8550992026 O,0,4.0133368445,1.5455556755,-0.0929100892 B, $0,1.3952846998,2.0820081344,0.1197853234$ О,0,1.3080993885,2.857651065,-1.042991114 C,0,1.771840966,4.1647094746,-0.7082643028 C, $0,1.108443333,5.2021614518,-1.5792579916$ O,0,1.5921194141,2.8930327749,1.221768336 C, $, 0,1.5202210337,4.251418552,0.8050889683$ C, $0,0.1737447104,4.8187799675,1.2063738171$ О,0,-6.4492308233,0.0564642923,-1.3862198462 C, $,,-7.6197341443,0.4350680692,-0.6619513329$ С, $,--7.6893846019,1.9461560035,-0.6026877407$ H,0,-0.0295681847,0.704971807,0.8571658437 H,0,0.0739166575,1.7527222467,-2.4811153583 H,, ,-0.2594102592,-2.8676354231,-4.0742932278 H,0,-1.1828369632,1.2941401155,-4.6124467258 H,0,-1.3649205032,-1.0883027513,-5.3931991349 H,0,1.1072879947,-4.1072767207,-3.196000611 H,0,2.3919219093,-5.6714870284,-1.7716369603 H,0,3.2620300893,-4.8579294581,0.4433312306 H,0,2.7652370962,-2.4958422197,1.1218588622 H,0,2.8627840626,4.1808307192,-0.8801476609 $\mathrm{H}, 0,2.3266572266,4.8119171182,1.3009336743$ H,0,-2.3969882866,-2.9637398981,2.560700242 H,0,-4.3490534517,-2.2734060135,1.2049048694 H,0,-1.8732824727,0.4492402555,-0.9661089476 H,0,5.1490811151,2.3101274082,-1.6320372874 H,0,6.065640446,1.7553166046,-0.2102618112 H,0,5.5928668373, $0.1168655621,-2.5018933915$ H,0,5.9064445299,-0.546206183,-0.8798303783 H,0,3.0190357849,-1.5838244656,4.1582337313 H,0,4.2735236026,-0.3337045625,3.9972253965 H,0,1.6854465841,0.1939041655,5.0754278766 H,0,2.694068,1.4474693363,4.3127803095 H,0,1.3621672127,5.0295435197,-2.6321700413 H,0,0.0164494621,5.1580802966,-1.4827574978 H,0,1.4406658491,6.2140239826,-1.3108547738 H,0,0.0939124057,5.8898573994,0.977330705 $\mathrm{H}, 0,-0.6367072623,4.2872148338,0.6880491669$ H,0,0.0273613881,4.6806273491,2.2836085877 H,0,-8.498190628,0.0365592427,-1.1894499876 $\mathrm{H}, 0,-7.8510421724,-1.2877359574,0.6266703241$ H,0,-9.099856889,0.5296501939,1.8179231366 Н, $0,-7.7982491429,-0.1627301461,2.8111301055$ H,0,-7.5704925367,1.4177968071,2.0422442026 Н,0,-8.6104429006,2.2937220366,-0.1177821116 Н, $0,-6.8302385726,2.3501392219,-0.0491270769$ $\mathrm{H}, 0,-7.6564212322,2.3536916544,-1.6192306398$ C,0,-0.1082095948,-2.2775341258,3.6536086966
$\mathrm{H}, 0,0.8878017252,-2.4096841992,4.0926365855$ H,0,-0.6047087441,-1.4186799257,4.1308114198 $\mathrm{H}, 0,-0.689146304,-3.1918400716,3.8521771502$

TS3-OMe ${ }_{\text {syn }}$ M06/BS1

OMerightmetaOBegM06PS
OMerightmetaOBeg
M06/gen
$\mathrm{E}($ RM06 $)=-2193.28635803$
Zero-point correction= 0.677703 (Hartree/Particle)
Thermal correction to Energy= 0.722240
Thermal correction to Enthalpy $=0.723185$
Thermal correction to Gibbs Free Energy= 0.597612
Sum of electronic and ZPE $=-2192.608655$
Sum of electronic and thermal Energies $=-2192.564118$
Sum of electronic and thermal Enthalpies=-2192.563173
Sum of electronic and thermal Free Energies $=-2192.688746$

E CV S

$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$
Total 453.213169 .542264 .289
C,0.441931,-3.483352,-2.593041
C, $0.569712,-2.219001,-2.012722$
N,1.304915,-2.037812,-0.899794
C,1.941635,-3.078836,-0.351353
C,1.84752,-4.363455,-0.868896
C,1.078883,-4.567769,-2.008924
C,-0.053175,-1.014903,-2.602687
$\mathrm{N}, 0.337962,0.168807,-2.094312$
C,-0.144866,1.298631,-2.620387
C,-1.075795,1.305149,-3.653109
С,-1.523234,0.08748,-4.15011
C,-0.997864,-1.08649,-3.627976
Ir, 1.342365,0.021732,0.008517
B,2.193419,-0.398287,1.805126
О,1.837814,0.151095,3.028325
C,2.406098,-0.638776,4.051962
C,3.548116,-1.383376,3.362119
O,3.180735,-1.380168,1.989194
C,-0.735637,-0.389684,0.697306
C,-0.979249,-1.51212,1.513585
C,-2.277024,-1.961409,1.749392
C,-3.375272,-1.302817,1.189936
С,-3.152812,-0.186258,0.397569
C,-1.850114,0.262629,0.175145
O, $0.122805,-2.139778,2.026237$
О,-4.149224,0.538924,-0.217417
B,-5.489138,0.409264,-0.121391
О,-6.180866,-0.464669,0.689051
C,-7.558306,-0.370193,0.302323
C,-8.455729,-0.600759,1.490228
B,3.348387,0.146697,-0.659894
O,3.938289,-0.899368,-1.371456
C,5.333954,-0.648709,-1.460511
C,5.460162,0.847328,-1.18977
O,4.276572,1.166993,-0.472849
B,1.830157,2.000624,0.306581
O,1.610522,2.951516,-0.69566
C,2.318562,4.133472,-0.31423

C,1.645084,5.361788,-0.873062
O,2.366915,2.602992,1.427057
C,2.400609,4.012018,1.215487
C, 1.260451,4.652152,1.981354
O,-6.316684,1.204994,-0.8798
C,-7.645057,1.006008,-0.38792
C,-8.015064,2.163418,0.514379
H,0.34055,0.78813,1.027782
H,0.235093,2.217943,-2.17519
H,-1.340451,-2.046632,-4.002109
H,-1.45147,2.248361,-4.03898
H,-2.27283,0.048404,-4.936553
H,-0.134401,-3.617955,-3.502977
H,0.986126,-5.55789,-2.448891
H,2.378177,-5.179689,-0.387184
H,2.541751,-2.850707,0.528519
H,3.338413,4.047501,-0.725603
H,3.363719,4.395287,1.582659
H,-2.459995,-2.835051,2.37019
Н,-4.383085,-1.657342,1.380934
H,-1.732546,1.162926,-0.429547
H,5.487619,1.43354,-2.120787
H,6.339636,1.108945,-0.590038
H,5.704836,-0.946715,-2.448235
H,5.854028,-1.24633,-0.69643
H,3.670846,-2.415391,3.716146
Н,4.509468,-0.861601,3.479142
H,1.64316,-1.335191,4.439382
H,2.741868,-0.001809,4.879028
H,1.658593,5.3352,-1.968026
H,0.600631,5.421832,-0.545975
H,2.164108,6.272913,-0.549717
H,1.282566,5.746592,1.909367
H, $0.294325,4.29322,1.602747$
H,1.329972,4.370607,3.036847
Н,-8.326673,0.964564,-1.248334
Н,-7.737644,-1.15378,-0.452471
Н,-9.510331,-0.517411,1.200892
H,-8.291409,-1.603734,1.896437
H,-8.252257,0.125398,2.284721
Н,-9.052419,2.090659,0.861062
Н,-7.355658,2.200247,1.391132
Н,-7.899025,3.103607,-0.033637
C,-0.049692,-3.308671,2.779816
H,0.95543,-3.648934,3.05208
Н,-0.626676,-3.12387,3.69914
Н,-0.548411,-4.098811,2.196411

TS5-OBeg ${ }_{\text {anti }}$ M06/BSsmall

OBegleftantimetaFM06SB
M06/gen
$\mathrm{E}(\mathrm{RM} 06)=-2335.05183674$
Zero-point correction $=0.753989$ (Hartree/Particle)
Thermal correction to Energy $=0.801889$
Thermal correction to Enthalpy $=0.802833$
Thermal correction to Gibbs Free Energy= 0.671652
Sum of electronic and ZPE $=-2334.297848$
Sum of electronic and thermal Energies= -2334.249948
Sum of electronic and thermal Enthalpies $=-2334.249004$
Sum of electronic and thermal Free Energies= -2334.380184

E CV S
$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$
Total 503.193183 .507276 .093

C, $0,2.4882205871,-0.5833960495,3.4863387563$
C,0,1.4708755934,-0.3563479925,2.5582308882 $\mathrm{N}, 0,1.3957136511,-1.0726067019,1.4208943513$ C, $0,2.3074362671,-2.0269957264,1.196182081$ C,0,3.3383897843,-2.2926083052,2.0802447458 C,0,3.4570395356,-1.5570623087,3.2633443447 C, $0,0.3911427701,0.6285172553,2.7917434801$ $\mathrm{N}, 0,-0.6138104586,0.6198564805,1.8960914871$ C, $0,-1.6667182521,1.4031839916,2.1101608158$ C, $0,-1.754159566,2.2716554863,3.1906867295$ C,0,-0.7048994109,2.3487073487,4.102176749 C, $0,0.3748025125,1.4877315173,3.8850018556$ Ir, $0,-0.1721018927,-0.4986024731,-0.0855457346$ В, $0,0.3811955957,-1.6061521515,-1.6945357983$ О, $0,0.0884537048,-1.3084328389,-3.0190933483$ C, $0,0.622623656,-2.3274175773,-3.8414359374$ C, $0,1.6626278374,-3.0142108966,-2.9582184924$ О, $0,1.2639309046,-2.6886001185,-1.6365404019$ C,0,1.2531379732,1.1032669029,-0.6748029831 C, $0,2.4712558331,0.6843808376,-1.228024404$ C, $0,3.5417859115,1.5557477432,-1.341380413$ C, $0,3.4583732317,2.879394433,-0.9431927793$ C,0,2.2486644328,3.3243125843,-0.4259690457 C, $0,1.168942559,2.4535689913,-0.3081836698$ F,0,4.6988791148,1.1007336913,-1.8495172386 O,0,0.0063091341,2.9785199392,0.2229007878 B, $0,-1.0917892705,3.161943271,-0.5515425342$ O,0,-1.1428436582,2.9393762256,-1.9014159059 C, $0,-2.4819898175,3.1539342893,-2.3114020428$ C, $0,-3.1838421319,3.7678547142,-1.0819765917$ O,0,-2.2605003395,3.6395966925,-0.0154753708 B, $0,-1.3431552376,-2.1141975935,0.6145882779$ O, $,-1.0015232475,-3.4521177744,0.5371327638$ C, $0,-1.9892152445,-4.212349028,1.2143141646$ C,0,-3.1594179059,-3.244946594,1.3806708229 O,0,-2.5685886992,-1.9611708158,1.2685820277 B, $0,-2.044482374,-0.4653113492,-0.9356636061$ O, $,-2.9733625609,0.5506275604,-0.6666464361$ C, $0,-4.249840163,0.0675140727,-1.055787118$ C, $0,-3.9310853602,-1.0053069464,-2.0895858538$

O,0,-2.6291055198,-1.4352654596,-1.7416517688 $\mathrm{H}, 0,-0.1841402114,0.6611414192,-1.2586512465$ H,0,-2.4560342563,1.3439715263,1.3625501668 Н,0,1.2169709776,1.49920521,4.5737457204 H,0,-2.6355782388,2.9007899198,3.2780733345 C,0,-0.695239987,3.3043538078,5.2880397464 H,0,2.5100205595,0.003850669,4.3988382783 C,0,4.592409912,-1.8416685112,4.2376958392 Н,0,4.0461883079,-3.0816740351,1.832901933 H, 0,2.1823740213,-2.579943494,0.2652789656 H,0,-4.7556834312,-0.3556270203,-0.1735547965 H,0,-4.861051701,0.8894642073,-1.4539786841 $\mathrm{H}, 0,-4.6271706137,-1.8534731594,-2.0635255781$ Н, $0,-3.9203073119,-0.5987812477,-3.1141319854$ Н,0,2.6144859623,-0.3443831985,-1.5616203672 $\mathrm{H}, 0,4.3169628933,3.5374590559,-1.0528137501$ H,0,2.1198894112,4.359022886,-0.111883335 Н,0,-3.674041999,-3.3413509055,2.3448015005 H,0,-3.9042641585,-3.3674197464,0.5761530417 H,0,-1.5894885265,-4.5493218754,2.1834794093 H,0,-2.2447057537,-5.1002968633,0.6231984157 H,0,2.6762926037,-2.6192314548,-3.1386573672 H,0,1.691965322,-4.1037553618,-3.0827710735 H,0,1.051839757,-1.8894220908,-4.7512912172 $\mathrm{H}, 0,-0.18350589,-3.0167152763,-4.1373294383$ H,0,-3.4218411188,4.8319992079,-1.2253112059 H,0,-4.1141161926,3.2440051563,-0.8255245903 H,0,-2.9204712864,2.1883192158,-2.5961524181 Н,0,-2.4945078102,3.8180679411,-3.1847461149 C,0,-1.9626544506,4.1539035474,5.3486789716 C, $0,-0.5910210445,2.5000714004,6.5888743531$ C,0,0.5082350833,4.2459827012,5.1636289662 Н,0,-1.9068230464,4.8353066171,6.2082061339 H,0,-2.086007687,4.7673509828,4.4457910887 H,0,-2.8637967675,3.5377638897,5.4740532458 Н, $0,-0.5970262496,3.1786435429,7.4535827491$ Н,0,-1.4382738246,1.8082981095,6.692881192 H,0,0.3328818462,1.908974143,6.6376058695 H,0,0.527314361,4.9457404368,6.0112086988 H,0,1.4620762771,3.7025989804,5.1587101333 H,0,0.4520994035,4.8323348126,4.2365512729 C,0,4.5473514094,-0.9351861337,5.4649033846 C,0,4.4950444631,-3.2978432964,4.7083944072 C,0,5.9299044542,-1.6214461123,3.5206350623 H,0,5.3087093303,-3.5213698007,5.4127640697 H,0,3.5407517481,-3.4841484668,5.2200042544 H,0,4.5725468917,-4.0070390822,3.8745500392 H,0,5.3863881298,-1.1759573483,6.1308784958 H,0,4.6355183399,0.1258779679,5.1929327349 H,0,3.620694648,-1.0714440052,6.039890967 H,0,6.7633097401,-1.8218558308,4.2086379745 H,0,6.0461840278,-2.2846190799,2.6539679146 H,0,6.0213821967,-0.5861062848,3.1651461832

TS5-OBeganti M06/BS1

OBegleftantimetaFM06PS
M06/gen
$\mathrm{E}(\mathrm{RM} 06)=-2335.16879005$
Zero-point correction $=0.749172$ (Hartree/Particle) Thermal correction to Energy $=0.797412$
Thermal correction to Enthalpy=0.798357

Thermal correction to Gibbs Free Energy $=0.666667$
Sum of electronic and ZPE=-2334.419619
Sum of electronic and thermal Energies $=-2334.371378$
Sum of electronic and thermal Enthalpies= -2334.370433
Sum of electronic and thermal Free Energies $=-2334.502123$

E CV S

KCal/Mol Cal/Mol-K Cal/Mol-K
Total 500.384 184.801277 .165
C, $0,-3.4125366695,-0.4555369491,-0.575360218$
C, $0,-2.0575237021,-0.1564738736,-0.7230683852$
$\mathrm{N}, 0,-1.1420138504,-1.1319793852,-0.8637726401$ C,0,-1.5536611731,-2.4019142591,-0.9546866483 C,0,-2.8857397604,-2.7586148628,-0.830717915 C, $0,-3.8545968791,-1.777303304,-0.5947916647$ C,0,-1.5374354563,1.2301498421,-0.7234656596 $\mathrm{N}, 0,-0.1973510803,1.3566962693,-0.6745458498$ C, $0,0.3301458263,2.5767974172,-0.7355494895$ C, $0,-0.4420173349,3.730053872,-0.8110496071$ C, $0,-1.8314041488,3.634851158,-0.833111025$ C,0,-2.3678054619,2.3431461803,-0.8012004549 Ir, $0,0.9596025115,-0.6028140536,-0.2411062057$ B, $0,1.7611134847,-2.4502390584,0.0477288608$ O,0,2.740303165,-2.7622322458,0.9838106552 C,0,3.0729560721,-4.1330085788,0.8500682453 C,0,1.8766472534,-4.7337649157,0.1146729853 O,0,1.2805674035,-3.6224428665,-0.541183528 C, $0,0.046346605,-0.6390965672,1.7856535501$ C, $0,-0.4859443393,-1.8721307713,2.193626596$ C,0,-1.4205678872,-1.9427302946,3.2114901833 C,0,-1.8449221079,-0.8245994102,3.909375472 C, $0,-1.2889477263,0.4000026617,3.5563760016$ C, $0,-0.3537925641,0.4828615202,2.5262291823$ F,0,-1.9406772423,-3.1494829649,3.5361142763 O,0,0.101315222,1.7481949549,2.2199167843 B, $0,1.3982805596,2.1197489058,2.3568278964$ O,0,2.3808844624,1.3564064041,2.9266849546 C,0,3.5852894114,2.1076469026,2.882069457 C,0,3.21788631,3.4248988856,2.1643108645 O,0,1.814068213,3.3641505268,1.9554371774 B, $0,1.5683579628,-0.6515706496,-2.2713582251$ O,0,1.487867336,-1.7497340072,-3.1068837129 C,0,1.8664747967,-1.35102013,-4.4178087949 C, $0,2.5756967304,-0.0154730593,-4.2086307543$ O,0,2.0664329002,0.4537990548,-2.9674958769 B, $0,2.9054623267,0.0410951558,-0.4040581208$ O,0,3.2791451151,1.3730046461,-0.1755632624 C,0,4.5565745024,1.5607057427,-0.7712873167 C,0,5.1462823762,0.1556949069,-0.8111993847 O,0,4.0063519541,-0.6858628237,-0.8444952851 H,0,1.5663632239,-0.4404959099,1.2723338139 H,0,1.4168584874,2.6286605767,-0.6926488657 H,0,-3.4452504547,2.2059775169,-0.8452854938 $\mathrm{H}, 0,0.0657141612,4.6893134416,-0.8290849515$ C,0,-2.7535223514,4.846288392,-0.8910708062 H,0,-4.1175900002,0.3519851349,-0.4085091583 C, $0,-5.3006715341,-2.1723739764,-0.3308522262$ Н, 0,-3.1494727876,-3.8121329468,-0.8816209482 H,0,-0.7640673073,-3.1401477729,-1.094380947 H,0,4.4183672555,1.9719687345,-1.7832489621 H,0,5.1512871177,2.2687658357,-0.178309358

H,0,5.771432979,-0.0266909677,-1.693206579 H,0,5.7397677558,-0.0687018138,0.08913323 H,0,-0.2077882124,-2.7999887562,1.6937368583 H,0,-2.5747774312,-0.9196146961,4.7084164214 H, $0,-1.5716554848,1.3135050144,4.075072739$ H,0,2.376686595,0.7179532442,-4.9985220828 Н,0,3.6665535143,-0.1460639679,-4.1169034298 H,0,0.9651903496,-1.2475186915,-5.0400689282 H,0,2.5099735985,-2.1168264659,-4.8654064698
Н, 0, 1.1471869451,-5.1749037099,0.8125583362
H,0,2.1549306408,-5.4952491929,-0.6229914881
H,0,3.2400254085,-4.5753635283,1.8392035704
H,0,4.0008927013,-4.2241843888,0.2657094553
H,0,3.4562257122,4.3133753824,2.7616143022
H,0,3.7132827755,3.511242477,1.1885993795
H,0,4.343789081,1.5339619364,2.3345081222
H,0,3.9411597256,2.2701089451,3.9072740326
C,0,-1.9729424945,6.1589413586,-0.9194326425 С, $0,-3.6164373383,4.7692879796,-2.1569897374$ C, $0,-3.6552436452,4.8484550616,0.35040222$ H,0,-2.6750705977,7.0004428453,-0.9658640217 H,0,-1.3601118822,6.2890222692,-0.018536688 H,0,-1.3178314814,6.2265182181,-1.7974897474 H,0,-4.277891239,5.6437714882,-2.2129247802 Н, $,-2.9916756085,4.7559564544,-3.0592197583$ H,0,-4.2493561457,3.8739102733,-2.1729919425 H,0,-4.3129182276,5.7274500207,0.3349021976 H,0,-4.2921895023,3.9571386004,0.4000753587 H,0,-3.0559130104,4.8842091521,1.2688365179
С, $0,-6.21211543,-0.9597325729,-0.147800551$ C, $,-5.8361684526,-3.001862509,-1.5039049794$ С,0,-5.3365693323,-3.0049023179,0.9583381466 Н, $0,-6.8793168113,-3.2855439661,-1.3134688981$ Н,, ,-5.8050674923,-2.4278131489,-2.4389779481 H,0,-5.2664655884,-3.9257337651,-1.656549293
H,0,-7.2387242629,-1.3008525317,0.0333302968 $\mathrm{H}, 0,-5.9153134927,-0.3475717609,0.713633755$ H,0,-6.2311324724,-0.3214868097,-1.0412511477 Н,0,-6.3710673292,-3.2845098658,1.1969772299 Н,0,-4.7497112709,-3.9265649975,0.8675925581 H,0,-4.9285574733,-2.435369299,1.8035451707

TS5-F M06/BSsmall
leftFmetaOBegM06SBa
leftFmetaOBeg
M06/gen
$\mathrm{E}($ RM06 $)=-2335.04360634$
Zero-point correction $=0.753465$ (Hartree/Particle) Thermal correction to Energy $=0.802253$
Thermal correction to Enthalpy $=0.803197$
Thermal correction to Gibbs Free Energy= 0.665879
Sum of electronic and ZPE=-2334.290142
Sum of electronic and thermal Energies $=-2334.241353$
Sum of electronic and thermal Enthalpies $=-2334.240409$
Sum of electronic and thermal Free Energies=-2334.377727

E CV S

$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$
Total 503.421183 .894289 .011

C,-0.845406,2.979139,1.338458
C,-0.965807,1.711894,0.765132 $\mathrm{N},-0.246797,0.671115,1.225768$ C, $0.563816,0.85923,2.274973$
C,0.711092,2.089906,2.88993
C, $0.006442,3.200261,2.41651$
C,-1.898403,1.427404,-0.34821
$\mathrm{N},-1.844981,0.184525,-0.86121$
C,-2.690102,-0.143243,-1.836638
C,-3.624369,0.745765,-2.352321
C,-3.703757,2.04142,-1.846456
C,-2.811804,2.365234,-0.82184
Ir,-0.322738,-1.269151,0.093399
B, 1.013388,-2.395263,1.125825
O,1.731534,-3.465959,0.606282
C,2.543539,-4.010026,1.627367
C,2.598612,-2.913483,2.692442
O,1.477513,-2.093773,2.408837
C,2.562803,-0.220007,-0.608098
C, $1.303115,-0.449642,-1.176614$
C,1.103949,0.104125,-2.439541
C,2.047613,0.877443,-3.096319
C,3.27741,1.116539,-2.494535
C,3.528908,0.551302,-1.247905
F,-0.054254,-0.133665,-3.088518 O, $4.705315,0.755887,-0.564903$ B,5.93864,0.874615,-1.103894 O,6.251674,0.789462,-2.439064 C,7.635861,1.075057,-2.559038 C,8.175776,1.002372,-1.121253 O,7.027441,1.093996,-0.298072 В, $-1.848609,-1.889095,1.419085$ O,-1.705718,-2.114265,2.776283 C, $-2.979367,-2.413344,3.322553$ C,-3.845497,-2.72595,2.104266 О,-3.177482,-2.084675,1.031467
B,-1.130479,-3.056528,-0.537744

O,-1.798829,-3.167318,-1.757291
C, $-2.532358,-4.380365,-1.74114$
C,-1.847743,-5.213279,-0.65975
O,-1.206021,-4.254983,0.161173
H,0.56003,-1.843099,-1. 173815
H,-2.598151,-1.163325,-2.209445
H,-2.843767,3.358682,-0.380219
Н,-4.282107,0.405756,-3.147706
C,-4.700095,3.077412,-2.351682
H,-1.419053,3.803664,0.926975
C,0.181564,4.562684,3.073166
H,1.390189,2.17123,3.736417
H,1.097922,-0.027439,2.616867
Н,-3.581311,-4.163178,-1.482124
H,-2.507513,-4.847311,-2.733558
Н,-2.552366,-5.805925,-0.061764
H,-1.093714,-5.896956,-1.07935
H,1.813894,1.276797,-4.081458
H,4.036499, 1.711186,-2.99522
H,-4.873307,-2.351131,2.18884
H,-3.886394,-3.809788,1.902371
Н,-3.351508,-1.539475,3.88047
H,-2.89648,-3.25465,4.021657
H,3.519214,-2.311738,2.616122
H,2.527733,-3.300723,3.716701
H,3.531121,-4.267964,1.223888
H,2.078437,-4.930992,2.011883
H,8.106258,0.348221,-3.232064
H,7.75906,2.076465,-2.99681
H,8.870872,1.816942,-0.88305
H,8.686757,0.048891,-0.922198
C,-5.589536,2.522902,-3.462077
С,-5.600106,3.523939,-1.193729
C,-3.93506,4.284742,-2.905969
H,-6.333122,4.261457,-1.55015
Н,-6.150591,2.671956,-0.772016
Н,-5.029701,3.990794,--0.380337
H,-6.291365,3.29974,-3.793591
Н,-5.004484,2.210888,-4.338182
Н,-6.183771,1.664277,-3.120275
H,-4.641449,5.041013,-3.276615
H,-3.306347,4.762206,-2.143304
Н,-3.284198,3.988843,-3.739974
C,-0.664564,5.643946,2.405399
C,-0.235104,4.464986,4.54571
C,1.654623,4.97805,2.981455
Н,-0.116616,5.44137,5.036676
H,-1.287338,4.16286,4.63868
H,0.372736,3.738006,5.099537
H,1.797946,5.962745,3.448463
H,2.317249,4.268044,3.492341
H,1.980709,5.046048,1.934685
H,-0.49985,6.604359,2.911625
H,-0.397038,5.779585, 1. 348093
H,-1.738937,5.420639,2.466845
H,2.821056,-0.634925,0.367615

TS5-OBeg syn M06/BSsmall

This structure is the higher-energy syn conformer of TS5OBeganti given above and discussed in the main text.
OBegleftsynmetaFM06SB
OBegleftsynmetaF

M06/gen
$\mathrm{E}(\mathrm{RM} 06)=-2335.04787486$
Zero-point correction $=0.753268$ (Hartree/Particle)
Thermal correction to Energy $=0.801596$
Thermal correction to Enthalpy $=0.802540$
Thermal correction to Gibbs Free Energy= 0.670267
Sum of electronic and ZPE $=-2334.294606$
Sum of electronic and thermal Energies= -2334.246279
Sum of electronic and thermal Enthalpies=-2334.245335
Sum of electronic and thermal Free Energies=-2334.377608

E CV S

$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$ Total 503.009 183.823278 .393

C,2.223685,2.047328,-1.180309
C,1.335335,1.022238,-0.855648
$\mathrm{N}, 0.004653,1.175812,-0.979581$
C,-0.45803,2.327777,-1.483367
C,0.374624,3.373629,-1.840251
C,1.758321,3.263082,-1.673131
C, 1.801767,-0.290493,-0.370643
N,0.898562,-1.02648,0.303854
C, 1.270512,-2.227496,0.747492
C,2.537832,-2.756877,0.525793
C,3.480811,-2.030718,-0.19869
С,3.081292,-0.765285,-0.640756
Ir,-1.335654,-0.357138,-0.009288
B,-3.16104,0.266252,-0.617222
О,-4.373948,-0.060271,-0.030852
C,-5.374563,0.797334,-0.544512
С,-4.7452,1.409382,-1.795929
O,-3.350471,1.246479,-1.595488
C,-1.47155,1.050736,1.718001
C,-2.251592,2.206745,1.5538
C,-2.198406,3.243275,2.469484
C,-1.404308,3.185751,3.602045
С,-0.648714,2.038556,3.80063
C,-0.688967,0.997276,2.876769
F,-2.946632,4.338386,2.253879
O,0.036206,-0.142546,3.167339
B,1.383209,-0.131444,3.09499
O,2.137733,0.914396,2.614865

C,3.496542,0.529343,2.680285
C,3.493958,-0.884286,3.306371
O,2.134313,-1.195442,3.530101
B,-1.265917,-1.539255,-1.7666
O,-1.898844,-1.24402,-2.960733
С,-1.561983,-2.238317,-3.913374
C, $-0.972618,-3.372913,-3.078065$
O,-0.562519,-2.742371,-1.876305
B,-2.19167,-2.207306,0.311071
О,-1.650857,-3.102415,1.233941
C,-2.211075,-4.378581,0.973208
C,-3.496129,-4.065702,0.213325
О,-3.254181,-2.793802,-0.361401
H,-2.064466,-0.412089, 1.462508
H,0.505452,-2.781538,1.291307
H,3.757002,-0.157028,-1. 240147
H,2.759627,-3.744492,0.920772
C,4.866981,-2.563137,-0.544554
H,3.286091,1.890845,-1.011311
C,2.673656,4.429505,-2.017917
H,-0.074542,4.28324,-2.234411
Н,-1.538994,2.385208,-1.604919
Н,-1.507573,-4.960456,0.353979
H,-2.375541,-4.915961,1.915105
Н,-3.720439,-4.796137,-0.57475
H,-4.367435,-4.002175,0.883011
H,-2.903713,2.33066,0.688996
Н,-1.395339, 4.013746,4.306578
H,-0.021993,1.933274,4.685523
Н,-0.119408,-3.872048,-3.554777
H,-1.73093,-4.136981,-2.83838
H,-0.830392,-1.826792,-4.626499
H,-2.456518,-2.535232,-4.474471
Н,-4.982784,2.473147,-1.925694
Н,-5.041128,0.874198,-2.710825
$\mathrm{H},-5.616773,1.563277,0.210292$
H,-6.287469,0.226891,-0.75726
H,3.920044,0.533054,1.663284
H,4.055324,1.257417,3.283623
H,4.039955,-0.923824,4.258759
H,3.932256,-1.637242,2.631041
C,5.127463,-3.931208,0.080827
C,4.972817,-2.697449,-2.068964
C,5.943264,-1.592728,-0.044587
H,5.957917,-3.099517,-2.345378
H,4.203977,-3.379259,-2.457053
H,4.851564,-1.731236,-2.576301
H,6.139768,-4.268484,-0.178861
H,5.058811,-3.899717,1.17757
H,4.42219,-4.688925,-0.286584
H,6.940192,-1.96391,-0. 320404
H,5.833958,-0.589381,-0.477133
H,5.915171,-1.493995,1.049851
C,4.143287,4.106543,-1.760743
C,2.507558,4.777761,-3.502025
C,2.286384,5.638724,-1.1586
H,3.167044,5.615869,-3.767747
H,2.769421,3.922567,-4.140128
H,1.479361,5.075221,-3.74465
H,2.936009,6.492785,-1.396765
H,1.248765,5.951808,-1.330967
H,2.395143,5.413685,-0.088979

H,4.761637,4.976818,-2.017581
Н,4.330859,3.868409,-0.704362
Н,4.490324,3.263057,-2.374261

TS5-OBeg $_{\text {syn }}$ Conformer B M06/BSsmall

This structure is another higher-energy syn conformer of TS5$\mathrm{OBeg}_{\text {syn }}$ given above and discussed in the main text. In this conformer, the OBeg on the FPhOBeg is oriented for a Lewis acid/base interaction with a Beg on the Ir, but this does not lead to low-energy structure.
OBegrightsynmetaFM06SB
M06/gen
$\mathrm{E}(\mathrm{RM} 06)=-2335.05155106$
Zero-point correction= 0.754817 (Hartree/Particle)
Thermal correction to Energy= 0.802154
Thermal correction to Enthalpy $=0.803098$
Thermal correction to Gibbs Free Energy= 0.675357
Sum of electronic and ZPE $=-2334.296734$
Sum of electronic and thermal Energies= -2334.249397
Sum of electronic and thermal Enthalpies=-2334.248453
Sum of electronic and thermal Free Energies $=-2334.376194$
E CV S
$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol-K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$
Total 503.359183 .278268 .853

C,0,-3.0888518229,-0.8771872378,-0.0163867506 C, $0,-1.7751561363,-0.4188488598,-0.1205278109$ N,0,-0.7278011301,-1.2598331506,-0.0324881026
C,0,-0.9696431732,-2.568092179,0.1193253236
C, $0,-2.251940873,-3.0825325712,0.2029638739$
C,0,-3.3593160156,-2.2316565957,0.1572604141
C,0,-1.4629196442,0.9949930509,-0.4223489037
$\mathrm{N}, 0,-0.2189089636,1.2282362649,-0.8787356398$
C,0,0.0961539186,2.4595982945,-1.2749737428
С, $,,-0.7812610297,3.5327843266,-1.1619048192$ C, $,-2.0392927132,3.3403714618,-0.5932036514$ C, $0,-2.3795485221,2.0269246573,-0.2562384969$
Ir,0,1.3335567521,-0.3814666693,-0.1907953656
B, $0,2.4655921684,-1.9431344833,0.4227613833$
O,0,1.9419594721,-3.2329501551,0.6252920922
C,0,3.0419590493,-4.1043548702,0.8481725333
C,0,4.1473441436,-3.1704754821,1.3211088702

O,0,3.8111163998,-1.9222975293,0.743120183 C,0,1.1242521328,0.5377126924,1.8467228469 C,0,0.6759591045,1.8609445036,1.9775114842 C, $0,0.2554854877,2.3664434695,3.1946643529$ C, $0,0.2918327676,1.6122931643,4.35406579$ С, $, 0.0 .7828498061,0.316626401,4.2597929008$ C, $, 1.1997447008,-0.2001778822,3.0352566422$ F,0,-0.1983925439,3.6341720834,3.2505595323 O,0,1.740632477,-1.471041084,3.0427818278 B, $0,0.9595956734,-2.5683259311,3.1586959322$ О,0,-0.4140076378,-2.5629983136,3.0553318542 C,0,-0.8493167967,-3.866672465,3.3952458672 С, $, 0,0.4176127729,-4.7251365696,3.3015397537$ O,0,1.4804255309,-3.8037050729,3.4660019422 B,0,1.4294712042,-1.2063280626,-2.1338447959 O, $, 1.1 .5558471019,-2.5477900741,-2.4514341212$ C,0,1.5225226841,-2.685862855,-3.8626429597 C,0,1.7152619155,-1.2636970919,-4.387547107 O, $0,1.3571357535,-0.4346840691,-3.2954826837$ В, $0,2.9806577025,0.3165388634,-1.2155690968$ O,0,3.1139171511,1.6753117992,-1.5107335151 C,0,4.1328144311,1.8076428323,-2.4891742188 C,0,4.9277267512,0.5093412012,-2.3728400668 O,0,4.0181505532,-0.403298067,-1.7860752729 H,0,2.345747816,0.4542811917,0.7964108811 H,0,1.1151380348,2.5808487852,-1.645165392 H,0,-3.3504573774,1.8155127761,0.1874115489 Н, $0,-0.4481119737,4.517775631,-1.4775063696$ C,0,-2.99793398,4.4799201078,-0.2805046626 Н, $0,-3.9025069416,-0.1636631851,-0.1092595839$ C, $0,-4.7702420857,-2.7939398732,0.2661543711$ Н,0,-2.3737543702,-4.1605085943,0.3009850008 H,0,-0.0852136361,-3.2027740788,0.1718501021 H,0,3.6668654612,1.9121562013,-3.4823830455 H,0,4.7302490624,2.7055249848,-2.2885132602 H,0,5.2699994696,0.1249088873,-3.3425216854 H,0,5.8052241171,0.6179972415,-1.717220622 H,0,0.6508940854,2.5327971597,1.1202999224 Н, $0,-0.0402869591,2.0379796747,5.2977337968$ $\mathrm{H}, 0,0.8570742293,-0.3123357603,5.1463922811$ H,0,1.0903836718,-1.0316532553,-5.2591075041 H,0,2.7671017196,-1.0687313052,-4.6558727308 H,0,0.553318986,-3.1121512692,-4.1655501266 Н,0,2.3131478187,-3.3740782438,-4.1863133354 H,0,5.1478375797,-3.4796570895,0.993428775 H,0,4.1446933885,-3.0771561006,2.418677772 H,0,3.2981549199,-4.6021376387,-0.10044476 H,0,2.7737036035,-4.8621762258,1.5940101107 H,0,0.4722891993,-5.5024669765,4.0733021811 H,0,0.5073524958,-5.2058918908,2.3131233199 Н,0,-1.6400559708,-4.1860077505,2.7021334222 H,0,-1.2675077575,-3.8553354226,4.413169097 C, $, 0,-2.4450241523,5.8322374732,-0.7241174343$ С, $0,-4.3363191549,4.2502527251,-0.9896957263$ C, $,,-3.2099446116,4.5157745894,1.2395286233$ Н,0,-3.1688335175,6.6216088874,-0.4819366274 Н, $,-1.5052800226,6.0781836973,-0.2111476541$ H,0,-2.2692800858,5.8672110558,-1.8084595025 Н,0,-5.0319732256,5.0672823842,-0.7522532128 H,0,-4.2069295014,4.2206743663,-2.08044356 H,0,-4.8146033383,3.3112544101,-0.6821409067 H,0,-3.8342619885,5.3781740324,1.5128248783

H,0,-3.7142868568,3.6109521342,1.6038520998 H,, ,-2.2520000543, $4.5955356759,1.7717752197$ C,0,-5.8339069088,-1.6987901046,0.2601604425 С, $0,-5.0283080138,-3.7279135068,-0.9219019858$ С,0,-4.8985045058,-3.5803273016,1.5763759472 Н,0,-6.0415690229,-4.1491862256,-0.8581900138 H,0,-4.9436204446,-3.1859957123,-1.873753359 Н, $0,-4.3188195281,-4.5650384131,-0.9485278903$ H,0,-6.8287376473,-2.1531388383,0.3585153198 H, 0,-5.705068143,-0.9993462004,1.0979602734 H,0,-5.8282998721,-1.1244331902,-0.676667127 $\mathrm{H}, 0,-5.9234757618,-3.9609988012,1.6873002652$ H,0,-4.2215483289,-4.4441571053,1.6079805412 H,0,-4.6747605531,-2.9432833176,2.4434251365

TS for (bpy) IrBpin $_{3}+4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{OBpin}$, meta to F , M06/BSsmall

BPINrOBPINMetaFM06SB
M06/gen
$E($ RM06 $)=-2649.38481910$
Zero-point correction= 0.975237 (Hartree/Particle)
Thermal correction to Energy= 1.032493
Thermal correction to Enthalpy $=1.033437$
Thermal correction to Gibbs Free Energy= 0.888855
Sum of electronic and ZPE $=-2648.409582$
Sum of electronic and thermal Energies=-2648.352326
Sum of electronic and thermal Enthalpies=-2648.351382
Sum of electronic and thermal Free Energies $=-2648.495964$

C,0,-3.6033436224,3.9399971904,0.7077285974 C,0,-2.2900682983,4.1052814719,0.3012719059 C,0,-1.4609911873,3.0309867374,0.0275122365 C, $0,-1.9165675995,1.7119045868,0.1743406612$

C,0,-3.2573856145,1.5564868861,0.549338526 C,0,-4.0837960653,2.6417621285,0.822492881 Ir,0,-0.3239777333,0.1848843964,0.3195707614 $\mathrm{N}, 0,-1.470751972,-0.8744721546,2.0202936829$ C, $0,-1.301436118,-0.3898713484,3.2623462567$ C, $0,-2.0069497914,-0.9189057537,4.3447019481$ C,0,-2.8857299785,-1.9707011829,4.1307187749 C, $0,-3.0336109236,-2.4774695053,2.8472192466$ C,0,-2.3032198211,-1.8967578421,1.8187018246 C, $0,-0.3208117291,0.7080076463,3.4107039592$ $\mathrm{N}, 0,0.2424871173,1.1791713471,2.2796224728$ C,0,1.1633667904,2.148290703,2.3449555758 C,0,1.5699670366,2.7037164042,3.550195175 C,0,0.9976503953,2.2310610628,4.7243674006 C, $0,0.0458839442,1.2253743241,4.654953224$ B,0,1.4094695156,-0.9031262053,0.8468788904 O,0,1.4124047719,-2.0544906314,1.626065689 C,0,2.7257544851,-2.2037000539,2.1911272195 C,0,3.6124703113,-1.4130510709,1.1852628693 O,0,2.6979060869,-0.4218930078,0.6909075034 B, $0,-0.1406998732,-1.4628961228,-0.9108293833$ O,0,0.9961700995,-1.9075061292,-1.58175316 C,0,0.6206688074,-3.0074835871,-2.4177079553 C, $0,-0.5875469452,-3.5900696555,-1.642526381$ O,0,-1.1698275949,-2.4003274171,-1.0760405123 B, $0,0.8517144824,1.1320489461,-1.0434472597$ O,0,1.6699987975,2.2226678821,-0.7246481865 C, $0,2.2270047321,2.7465969103,-1.9430594444$ C,0,2.1201749169,1.520714557,-2.8926351829 O,0,0.943780961,0.8670036706,-2.4029212442 H,0,-1.5075342633,0.5362670811,-0.8071145115 H,0,-2.3845016057,-2.2427370167,0.7889505252 Н, 0,-1.8865289744,-0.5126934733,5.3453394438 H,0,-3.7140596326,-3.2968410019,2.6301620313 H,0,-3.4496146497,-2.3875287881,4.963224353 Н, $0,-0.3988944121,0.8383689974,5.5676500092$ H,0,1.2915704046,2.6375054612,5.6902326922 H,0,2.3206631489,3.4897222941,3.5591126225 H,0,1.5799207624,2.4617985427,1.3872963232 C, $0,-0.1763096485,-4.4828102841,-0.4780603271$ C, $0,-1.6074114881,-4.3063682865,-2.5025963388$ C, $0,1.7958896669,-3.9508065799,-2.5735458965$ C, $0,0.2388157156,-2.4284234168,-3.7751670517$ Н, 0,-0.4342967045,3.2387287156,-0.2714300283 O,0,-3.8063116974,0.2932291304,0.6591393023 H,0,-4.2273856326,4.8070293985,0.9097925851 F,0,-1.7995327125,5.3495202498,0.1741581891 H,0,-5.114451607,2.4501309383,1.1176159978 C,0,2.6833568341,-1.5696841505,3.5761406587 C, 0,3.0472224274,-3.6802358953,2.3078718248 C, $0,4.8078733423,-0.7068177622,1.7932205628$ C, $0,4.049915206,-2.2536197221,-0.0052464643$ C,0,1.3547517101,3.9137997306,-2.3848290622 C,0,3.63953661,3.222308707,-1.6705348218 C,0,1.9323068431,1.8519705472,-4.3586793933 C,0,3.276600749,0.5417305551,-2.7192607445 H,0,-1.058784253,-4.6695352124,0.1487040473 Н,0,0.2085383541,-5.4527256043,-0.8222132479 H,0,0.5813089466,-3.9950927982,0.1510532725 $\mathrm{H}, 0,-2.4130725557,-4.7047493585,-1.8713350134$ H,0,-2.054592086,-3.6430259066,-3.2524300043 Н, $0,-1.1420423077,-5.1556686336,-3.0235979053$

H,0,1.5222230455,-4.8143448216,-3.1967118294 H,0,2.6252916619,-3.4247048239,-3.0656303008 H,0,2.1577978303,-4.3235825943,-1.6081418347 H,0,-0.0146102092,-3.2132657637,-4.501052878 H,0,-0.6071542495,-1.7344428906,-3.6848892706 Н, 0,1.0889850847,-1.8539212748,-4.1659347947 $\mathrm{H}, 0,4.0777359312,-3.8320114708,2.6605232545$ H,0,2.3686301139,-4.1508436156,3.0312715388 H,0,2.9269662623,-4.1977311245,1.3486758261 Н,0,3.6249892831,-1.7124361826,4.1237308945 H,0,2.4761281803,-0.4918817387,3.5149097841 H,0,1.8740668443,-2.037222867,4.1534252183 $\mathrm{H}, 0,4.521072683,-1.6002481224,-0.7510861407$ H,0,4.773400564,-3.0282724811,0.2829120869 H,0,3.1813287995,-2.7223910675,-0.4831804656 H,0,5.3470592848,-0.1639647475,1.0055305244 H,0,4.5079892351,0.0228830769,2.5548960044 $\mathrm{H}, 0,5.5044162565,-1.4269325881,2.2467147227$ $\mathrm{H}, 0,1.7674801091,4.4178860682,-3.2693357538$ H,0,0.3342110738,3.581129559,-2.6165862231 H,0,1.2942011387,4.6490444049,-1.5710105377 $\mathrm{H}, 0,4.1377558564,3.5250717111,-2.6028383737$ H,0,3.6174444659,4.0940292568,-1.0031548543 H,0,4.237595965,2.4408772902,-1.1881854629 $\mathrm{H}, 0,1.8748147314,0.9208153247,-4.9381700175$ H,0,1.0081791956,2.4132674222,-4.5355035324 H,0,2.7807032523,2.4374127533,-4.7418916113 H,0,3.0064470457,-0.4047751836,-3.2064016312 H,0,4.2063753369,0.9186282273,-3.1680446457 H,0,3.4444052129,0.3239114777,-1.655812737 B, $0,-4.3254564282,-0.278224786,-0.4579177178$ O,0,-4.7588830171,-1.5790835177,-0.4678036582 C,0,-5.4599609302,-1.7468725111,-1.7169295788 C, $0,-4.8221804934,-0.6392480662,-2.6150978583$ O,0,-4.4911562772,0.3769388484,-1.650157253 C,0,-3.5129900136,-1.0697380707,-3.259067711 C,0,-5.7520599491,-0.047592686,-3.6536730139 C, $0,-5.2496710991,-3.1615464036,-2.2098452913$ C,0,-6.9360248232,-1.5054703024,-1.4325454078 Н, 0,-5.2160372786,0.7129061002,-4.2349481096 Н, 0,-6.0995225014,-0.8239778832,-4.3497782783 H,0,-6.6243255089,0.4316246007,-3.1962343984 Н, 0,-3.0185042871,-0.1811866843,-3.6736541518 H,0,-2.8342865924,-1.515598745,-2.5183667782 H,0,-3.6752517152,-1.7876512563,-4.0757928771 $\mathrm{H}, 0,-7.5582661283,-1.7042820328,-2.31497213$ H,0,-7.2538670067,-2.1801574722,-0.6280733767 $\mathrm{H}, 0,-7.1198658435,-0.4749314376,-1.1022103733$ Н, 0,-5.6717576634,-3.2908835669,-3.2164576465 H,0,-4.1853867199,-3.417674365,-2.2360778264 Н, 0,-5.7535965831,-3.8687956174,-1.5384677256

TS for (bpy)IrBpin $3+4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{OBPin}$, ortho to F , M06/BSsmall

BPINrOBPINOrthoFM06SB
M06/gen
$\mathrm{E}(\mathrm{RM} 06)=-2649.37950521$
Zero-point correction= 0.973595 (Hartree/Particle) Thermal correction to Energy= 1.031712 Thermal correction to Enthalpy $=1.032657$ Thermal correction to Gibbs Free Energy= 0.883138

Sum of electronic and ZPE=-2648.405911
Sum of electronic and thermal Energies= -2648.347793
Sum of electronic and thermal Enthalpies=-2648.346849
Sum of electronic and thermal Free Energies=-2648.496367

E CV S

$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K} \mathrm{Cal} / \mathrm{Mol}-\mathrm{K}$ Total 647.409231 .471314 .688

C,0,-4.5208730853,-1.7804610393,-1.0824915935 C,0,-4.174144836,-0.7330082956,-0.2338484134 C, $0,-2.8460893054,-0.3440726602,-0.0921111697$ C, $0,-1.8103840699,-0.9985624288,-0.7713668438$ C,0,-2.199296949,-2.0219097104,-1.6317220835 C,0,-3.5153252293,-2.4244760299,-1.7948707507 Ir, $0,0.2537168566,-0.6588217127,-0.0691798185$ $\mathrm{N}, 0,0.7451793556,-2.9116547165,-0.2825591348$ C, $, 0,0.5350754301,-3.6796456165,0.7999325408$ C, $, 0,0.9158775742,-5.0230342302,0.8183758826$ C,0,1.5259028261,-5.569783627,-0.2999534679 C,0,1.7441709555,-4.763945868,-1.4097790938 C, $0,1.3357786682,-3.4381978116,-1.3571967572$ C,0,-0.0827284851,-3.0158190222,1.9682392663 N,0,-0.296945788,-1.6876662389,1.8704270169 C, $0,-0.8130303937,-1.0192004669,2.9093640504$ C,0,-1.1561552917,-1.6468437756,4.0989085669 C, $,,-0.9557506967,-3.0164620214,4.2089658792$ C,0,-0.4129748912,-3.7060134284,3.1355551356 B, $0,2.0883627848,-0.4033702025,0.9471181011$ O,0,3.1191122544,-1.3408135973,0.9377070684 C,0,3.9498335323,-1.084249954,2.0815080037 С,0,3.7066127015,0.4308478483,2.328173466 O,0,2.3536950991,0.5916327167,1.8733713533 B,0,1.6295298516,0.0275895759,-1.4377606728 O,0,2.5373652685,1.0704556483,-1.2973824228 C,0,3.1549041541,1.2928082549,-2.5713939699

C,0,3.0640296081,-0.1176125571,-3.2142110367 О, $0,1.8285581991,-0.6083937139,-2.6646532446$ B,0,-0.0839334676,1.2970193887,0.3526000234 О, $0,-0.5247848291,1.7627647989,1.5932284398$ C, $0,-0.7869127577,3.1726889919,1.4855323756$ C,0,0.0624323502,3.5645258346,0.2424781332 O, $0,0.0231323642,2.3618542209,-0.532786479$ $\mathrm{H}, 0,-0.597079713,-0.2414051427,-1.4241834015$ H,0,1.4862730908,-2.7522274624,-2.1903021331 H, $, 0.0 .749953451,-5.6389811254,1.6984587803$ H,0,2.2247745431,-5.1489342973,-2.3058832739 H,0,1.8318674027,-6.6143780408,-0.3002646272 H,0,-0.2538819408,-4.7782980774,3.2076937774 H,0,-1.2185101643,-3.5468450637,5.1221653413 H,0,-1.5745097803,-1.0647252821,4.9159783799 Н, $0,-0.9325947356,0.0545563081,2.762479351$ C, $0,4.1661334172,-1.0553010686,-2.7359630344$ С,0,2.9789429291,-0.1299861776,-4.7257909152 C, $0,4.5598683193,1.817714485,-2.3577868564$ C,0,2.3178233786,2.3366621488,-3.3007316794 H,0,-2.6266820131,0.4763404951,0.5929517418 О, $,-5.1027986833,-0.0848623851,0.5447184059$ $\mathrm{H}, 0,-5.5620560303,-2.07594221,-1.1945155071$ F,, ,-1.2590275206,-2.6600035012,-2.3597971749 H,0,-3.7407039668,-3.2370392107,-2.4831031203 C,0,3.4215848167,-1.9607004439,3.2123063469 C,0,5.3795135709,-1.4622411097,1.7533761744 C,0,3.7903915125,0.8698374433,3.7756909832 C,0,4.5850822034,1.3188720765,1.4584101237 C, $0,-2.2829910818,3.3428057821,1.259972048$ C, $0,-0.3732978889,3.8429158793,2.7805738817$ C, $0,-0.4954250889,4.7061139074,-0.582432482$ C, $0,1.5267187244,3.8271259766,0.5809760755$ H,0,3.9359993895,-2.0751067699,-3.0737159697 H,0,5.14827705,-0.7772991507,-3.142489563 H,0,4.2209651461,-1.0701135352,-1.6371769164 $\mathrm{H}, 0,2.9236424177,-1.1646401258,-5.088533581$ H,0,2.09006517,0.3987142959,-5.08617258 $\mathrm{H}, 0,3.8709079231,0.3359886693,-5.1689335188$ H,0,5.06559421,1.9891473576,-3.3189846264 H,0,4.5118668666,2.7754906053,-1.8213090624 $\mathrm{H}, 0,5.1707647529,1.1299231682,-1.7621841775$ H,0,2.7648520937,2.6227169539,-4.2627186676 H,0,1.2966611452,1.9746966998,-3.4741507835 H,0,2.2459089876,3.2329285871,-2.6699441978 $\mathrm{H}, 0,6.0557559068,-1.1977227618,2.5791122876$ H,0,5.4489146234,-2.5459539889,1.5928064303 H,0,5.7285754755,-0.9642440947,0.8416463679 H,0,4.0284297295,-1.8704213836,4.1235807499 $\mathrm{H}, 0,2.3809936249,-1.7011061235,3.4566190975$ H,0,3.4414278958,-3.0100949877,2.8873144592 $\mathrm{H}, 0,4.2201359304,2.3527835232,1.5201986821$ H,0,5.6343148994,1.3016753874,1.7833144473 H,0,4.522388042,1.0141810738,0.4066925565 H,0,3.5867234259,1.9468738103,3.8427329768 H,0,3.0559321974,0.3509177398,4.4019217837 H,0,4.7949530859, $0.6888158787,4.1849631664$ $\mathrm{H}, 0,-2.5798217881,4.400546406,1.264239381$ H,0,-2.5951923369,2.8953726807,0.306926484 H,0,-2.826023976,2.8320697236,2.0664096304 H,0,-0.4555879758,4.9367545838,2.7025774516 H,0,-1.0307858497,3.5137050633,3.5961696906

H,0,0.6564732185,3.583209918,3.0510755986
H, $0,0.1608470708,4.8877945172,-1.4439242833$
H,0,-1.4963924292,4.4780803164,-0.9650311998
H,0,-0.5454548901,5.6323657889,0.0082060462
H,0,2.1007755581,3.857425798,-0.3557677361
H,0,1.662148085,4.7823095572,1.1073191294
H,0,1.9405102342,3.010359217,1.1885239007
B,0,-6.3378948075,0.2889985336,0.1309585265
O,0,-7.2601893957,0.7661247686,1.0262651964
C,0,-8.3417951555,1.2957640449,0.2391709162
C, $,--8.2130094582,0.4889704575,-1.0891851198$ O,0,-6.7953251536,0.2458658034,-1.1628160686
С, $0,-8.8885799417,-0.8744733093,-1.0255535213$
C, $,--8.6537406993,1.2290252571,-2.3342735792$
C,0,-9.6419669024,1.0899047572,0.9886032651
C,0,-8.0760458277,2.7844822645,0.0590903642
H, $0,-8.5356210955,0.5807885249,-3.211503037$
H,0,-9.7130828243,1.5130383928,-2.2620559629
$\mathrm{H}, 0,-8.0578644154,2.1318275964,-2.5037589239$
Н, $0,-8.5673072471,-1.4659131303,-1.8922343148$
H,0,-8.6027254903,-1.4204884659,-0.1165519465
Н, $0,-9.9830009585,-0.7920192863,-1.0515441257$
H,0,-10.499176501,1.4015658644,0.3751909282
H,0,-9.7812785002,0.0444002964,1.2834935192
H,0,-9.6408839782,1.6982867557,1.9015825341
Н, $0,-8.9037908616,3.2880243757,-0.4573868454$
H,0,-7.9579698951,3.2418260304,1.048937268
Н, $0,-7.1519283115,2.9626566119,-0.5060670832$

Spectral Copies

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$-NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

S176

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

References

1) Uson, R.; Oro, L. A.; Cabeza, J. A. Inorg. Synth. 1985, 23, 126-130.
2) Ms. Yu-Ling Lien and the MSU Mass Spectrometry facility are thanked for obtaining ESI+ HRMS.
3) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390-391.
4) Cheng, C.; Hartwig, J. F. Science 2014, 343, 853-857.
5) Friedman, A. A.; Panteleev, J.; Tsoung, J.; Huynh, V.; Lautens, M. Angew. Chem. Int. Ed. 2013, 52, 9755 -9758.
6) Huang, W.; Su, L.; Bo, Z. J. Am. Chem. Soc. 2009, 82, 870-878.
${ }^{7}$) Welch, C. N.; Shore, S. G. Inorg. Chem. 1968, 7, 225-230.
7) Sumida, Y.; Kato, T.; Hosoya, T. Org. Lett. 2013, 15, 2806-2809.
8) a) Pineschi, M.; Bertolini, F.; Haak, R. M.; Crotti, P.; Macchia, F. Chem. Commun., 2005, 1426-1428. b) Laurent, J-P.; Comptes Rendus Hebdomadaires des Seances de l'Academi des Sciences, 1962, 254, 866-868.
9) Blau, J. A.; Gerrard, W.; Lappert, M. F.; J. Chem. Soc. 1957, 4116-4119.
10) Gaussian 09, Revision A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
11) Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
12) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;

Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
14) NBO 5.9. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A.

Bohmann, C. M. Morales, and F. Weinhold (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2011); http://www.chem.wisc.edu/~nbo5

