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Analytic Small Sample Bias and Standard 
Error Calculations for Tests of Serial 

Correlation in Market Returns 

ABSTRACT 

This article derives anadytic finite sample approximations to the bias and standard error of a class 

of statistics which test the hypothesis of no serial correlation in market returns. They offer an alter

native to both the widely used Monte Carlo approach for calculating the bias, as well as asymptotic 

standzird error calculations. These approximations are calculated under the assvunption that returns 

are spherically symmetrically distributed (such as Gaussian) and also under the weaker assumption 

that returns follow any arbitrary continuous distribution. The class of statistics examined here in

cludes many of those employed in the finance and macroeconomics literature to test for the existence 

of random walk, including the variance ratio and the multi-period return regression on past returns. 

The accuracy of the approximations is benchmarked using simulated data, where arbitrarily tight 

estimates of the bias and standard error can be calculated. The approximations are then applied to 

adjust the statistics calculated using returns on the NYSE firom 1926-1991. 

There is a large literature in finance which documents the serial correlation properties 

of asset returns (see Bollerslev &; Hodrick (1992) for a survey). A common feature of 

this literature is that the autocorrelation-based statistics are estimated over a shorter 

sampling interval than the horizon of the statistics. For example, consider the case 

where the researcher is interested in autocorrelation of annual stock returns but, due 

to the availability of data, is able to sample yearly returns every month. From an 

efficiency standpoint, there are good reasons for employing fine sampling intervals. Al

though annual returns sampled monthly are serially correlated due to the presence of 

overlapping observations, the estimators based on more frequent sampling are known 
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to be asymptotically more efficient (see Hansen &: Hodrick (1980)). With this en

hanced efficiency, however, small sample issues become important, especially the bias 

and standard error of these estimators. 

The common approach to determining the bias under the null hypothesis of no 

correlation has been through Monte Carlo simulation (see Huizinga (1987), Fama & 

French (1988), and Lo & MacKinlay (1989)). For example, Fama & French (1988) 

estimate J-period autocorrelations via a simulation and then tabulate, for given T and 

J, the small sample bias of these estimators. These tables are then used to adjust 

autocorrelations estimated from the actual data. This approach requires simulation 

for every value of T and J used in practice, which in turn requires pre-specification of 

the distribution of returns- something that is impossible to know. For calculating the 

standard errors, it is common to use asymptotic values (Richardson & Smith, 1991), 

which are potentially very different from the actual small sample standard errors. 

The problems arising from not carefully accounting for small sample issues have been 

examined by Nelson &; Kim (1993) in the case where returns are regressed upon lagged 

dividend yields. This paper examines these issues for the long-horizon autocorrelation 

based statistics that do not employ an additional independent variable. 

There exists a large literature in statistics on the small sample moments of auto

correlation estimators (see Mariott k. Pope (1954) and Dufour & Roy (1985), among 

others). For example, the sample autocorrelation of a random series is well known to 

have a negative bias of the order T~^, where T is the number of observations used in 

the estimation. However, the results in this literature do not generally carry through to 

the frequently sampled long-horizon autocorrelation estimators because these estima

tors are nonlinear functions of different order autocorrelations (Richardson &; Smith, 

1994). Thus, analytically, little has been known about the bias and standard error 

of these estimators for an uncorrelated series. However, as shown in section I, it is 

possible to employ Taylor series expansions and derive analytical formula for both the 



finite sample bias and standard error as functions of known moments in the autocor

relation estimators. Although these formulae are approximate (due to higher-order 

Taylor series terms), we show in section II that they work well in small samples. To 

the extent that long-horizon statistics are used frequently in the literature, the results 

in this paper have application in practice. 

I. The Bias and Standard Error of Autocorrelation-Based Estimators 

The finance literature has especially focused on long-horizon statistics with frequent 

sampling intervals. The main reason for this focus is a general belief that many in

teresting phenomena occur at low frequencies of the data, leading to the choice of 

long-horizon estimators for increased statistical power (see Cochrane (1988), Poterba 

& Summers (1988) and Richardson & Smith (1991)). Given the choice of long-horizon 

statistics and the availability of higher frequency data, it is natural to use all the infor

mation available in the estimation. Since much of this literature in finance considers 

testing the null hypothesis of serially uncorrelated stock returns, we consider deriv

ing the small sample bias and standard error of long-horizon autocorrelation based 

estimators under this null hypothesis. 

A. Long-Horizon Autocorrelation-Based Estimators 

Consider a time series {Rtyi^x, such as continuously compounded dividend adjusted 

real returns Rt = \og{Pt + Dt) - log(Pt_i), where Pt is the real price of the underlying 

asset at time t and Dt is the dividend paid in the period {t — l,t]. A number of 

tests have been suggested in the literature to decide whether there is evidence that 

such a series is correlated. Typically, these tests fall into two categories: those which 

regress future returns on past returns and those which compute variance ratios over 

different intervals.^ Although at first glance the regression tests and variance ratio 

^For example, Fama & French (1988), Huizinga (1987) and Jegadeesh (1991) use the regression ap

proach while Campbell k Mankiw (1987), Cochrane (1988), French & Roll (1986) and Lo & MacKinlay 



tests appear to be taking rather different routes, both these approaches essentially 

test for the random walk in a very similar way. Both these approaches propose test 

statistics which are nonlinear combinations of consistent estimators of autocorrelations 

of different order obtained from the observed time series. These approaches differ from 

each other only in terms of the weights they attach to the autocorrelations of different 

order while forming the test statistic. 

nichardson &; Smith (1994) show that these long-horizon statistics employed in 

the current literature can be written as a linear combination of different order auto

covariances of Rt weighted by the sample J-period variance estimator of Rt- That 

is, 
_ i:UDic6y{Rt,Rt-i) 

^^W.J)) - var(S^,i?,_,)/J ^̂ ) 

where c6v(i2t, Rt-i) is the i-th order autocovariance estimator, Di are the weights on 

these autocovariances, and \ax{llj-iRt-j) is the J-period variance estimator. Most of 

the existing long-horizon estimators fall within the class of estimators described by 

equation (1). For example, 

• the J-period autocorrelation estimator used by Fama &; French (1988) implies 

the weights A = min(i, 2J — i)/J where / = 2J — 1 in equation (1), 

• the /-period variance ratio estimator used by Cochrane (1988), Lo & MacKinlay 

(1988) and Faust (1992) implies the weights A = 2(7 - i)/I where J = 1 in 

equation (1), and 

• the One-period on J-period regression estimator used by Jegadeesh (1991) implies 

the weights A = 1/J where / = J in equation (1). 

Similarly, various other autocorrelation-based estimators in the presence of overlapping 

observations described in Richardson & Smith (1991) also fit in this framework. 

(1988) employ the variance ratio approach. 



Note that equation (1) can be written as a nonlinear function of estimators of the 

i-th order sample autocorrelations of Rt (denoted by Pi). To see this, divide both the 

numerator and the denominator of equation (1) by the sample variance, var(i?t), so 

that^ 

Fn{piI,J)) = 
'i:UDic6y{Rt,Rt-i)\ / v a r ( E ^ i ^ ^ ' 

vax{Rt) ) \ J '>^ var(i2t) 

- 1 

l + 2E'll^p, (2) 

Under the null hypothesis of no correlation FD{P{I,J)) = 0 because Pi = 0, for 

all i. Deviations from the null are represented by values of Fp that differ significantly 

from zero. Therefore, the small sample bias and standard error of FD require calcu

lation. The complication in analytically obtaining these comes from the fact that the 

numerator and denominator in equation (2) are not independent. Consistent with the 

literature in this area, we approximate the bias and standard error using Taylor series 

expansions. The rest of this paper is devoted to deriving, justifying (via simulation) 

and applying these approximations. 

B. Expression for the Bias 

Various estimators of autocorrelations, pi, are considered in the literature. For the 

random walk case, in which pi = 0, there is practically no diflFerence between choosing 

one estimator over another one (see Moran (1948), Mariott & Pope (1954)). In order 

to calculate the bias, we consider a particular estimator, although it should be noted 

that the results carry through (albeit slightly diflferently) to other choices as well. 

Specifically, following Moran (1948), we calculate the i-th. order sample autocorre-

^See Cochrane (1988, Appendix A) for the derivation of denominator in equation (2). The denom

inator is simply the ratio of variance of J-period returns to the variance of One-period return scaled 

by J. Under the null of random walk this ratio equals one; however, to the extent the data generating 

process departs from random walk, this ratio differs from one. 



lation, Pi, as 
. _ T^^t=i{Rt - R){Rt+i - R) . . 
^' - ^i:t,{R,-R)^ ^^^ 

where the sample mean R = ^Tif^^Rt- If we substitute these pj's into equation (2), 

then we can obtain an estimate of the long-horizon autocorrelation based estimator 

Note that the expectation of FD{P{I,J)) can be decomposed into the weighted 

sum of the individual expectations of Pi/{1 + 2Tijll^pj). Thus, for our purposes it 

suffices to derive the expectation for any i. For the purpose of exposition, we denote 

the variance ratio in the denominator of equation (2) as VRj = (1 + 2Tijll^pj). 

Following standard methodology in this area, we consider a Taylor series expansion of 

pi/VRj around E[pi\ and E\yRj]. We carry out the expansion to the second order 

because for pi = 0, the higher order terms are of 0{T~'^) and below. Specifically, we 

have 

Pi E[pi] ^ [pi - E[pi]) E[pi]{VRj-E[VRj]) 

~ — + — VRj E[VRj] E[VRj] E[VRJY 

E[pi]{VRj-E[VRj]Y _ ipi-Em{VRj-E[VRj]) 

E[VRj]^ E[VRJY ^ ̂  

Taking the expectation of equation (4), the second and the third term immediately 

drop out yielding the following expression, up to OlT'"^) terms, for the bias. 

E[pi] , E[pi]va.v{VRj) cov{pi,VRj) 
E 

VRJ 
(5) E[VRj] E[VRjf E[VRj]^ 

The expansion at equation (5) suggests that the bias relies on the moments of the 

sample autocorrelation coefficient, pi, and variance ratio, VRj. Since the variance 

ratio is itself a linear function of sample autocorrelation coefficients, it is possible to 

use results for the moments of pi to calculate the unknown moments in equation (5). 

B.l. Strong Assumptions 



Under the null hypothesis that {Rt}J=i are independent and identically distributed with 

a spherically symmetrical distribution (such as the normal distribution) the following 

moments can be calculated using the results in the appendix. 

T-J 
E[VRj] = 

va.T{VRj) = 

coy{VRj,pi) = 

T - 1 
47-4 

(r + i)(r-i)v%tl(r-j) EfeC -̂M 
2T^max{0, J-i) 

+ O ( T - 2 ) 
j ( T - z ) 2 ( r + i ) ( r - i ) 2 

Substituting these values into equation (5), it is possible to express the bias as 

E Pi 
VRj 

- 1 
T-J 

1 + 
2T''max(0, J-i) 

+ 0 ( T - 2 ) 
J{T-iy{T-J){T + l)\ ' ^ V' ^ ^̂ ^ 

where the second term in equation (5) disappears as it is of OiT'"^). Taking expecta

tions of (2) and substituting in (6), the bias of the long-horizon autocorrelation-based 

estimator FD{P{I, J))) can be written, up to OiT'"^), as 

E[Fn{p{I,J))] = j:DiE 
i=l VRj - E ""' 

t = i T-J 
1 + 

2r^max(0, J-i) 

J{T-i)^T-J){T+l) (7) 

The formula for the bias in (7) holds for all estimators that fall within the class of 

long-horizon estimators described by equation (2). As pointed out in section LA., 

this class contains most of the long-horizon methods currently used in practice. As 

examples, consider substituting the weights Di for the J-period autocorrelation, the 

/-period variance-ratio and the 1-on-J regression into equation (7). It is then possible 

to show that, up to 0{T~'^), the resulting bias of these estimators are then: 

r J 2T'' 
J-period autocorrelation 

/-period variance-ratio 

1-on-J regression 

[T-J 

- ( / - I ) 
{T-1) 
-1 

, i^ ijj - i) 
( r - J ) 2 J 2 ( T + l ) ^ (T-Z)2 

T-J 
1 + 

2J.4 '^ {J - i) 
[T-J){T + l)J^{r[{T-i)^ 



B.2. Weak Assumptions 

If the null hypothesis is weakened, so that {Rt}J-i remain independent and identically 

distributed, but with an arbitrary continuous distribution, then the results in the 

appendix allow the construction of the following bounds. 

T-J 

va.T{VRj) < 

E[VRj] = 

47^5 

r - 1 

OiT-^)<cov{VRj,pi)< 

j2(T _ i )2(r - 2)(r - 3) fr{ (T - j) 

2T^max{0, J - i) 

'i:TF-4-.^o{T-') 

+ o(r-2) J ( T - z ) 2 ( r - l ) 2 ( T - 2 ) ( r - 3 ) 

Substituting these into equation (5) allows the determination of upper and lower 

bounds for the bias, so that 

- 1 
T-J 

1 + 
2r5max(0, J - i) 

+o(r-^) < E VR, 
< 

T-J 
-0{T-^) 

j{T - 2)(T - 3)(r - i)2(r - J) 

Because Di > 0, approximate bounds, up to 0{T~'^), for the bias of the long-horizon 

autocorrelation based estimators are therefore 

2r^max(0, J-i) ^ -Di 

k^-j 
1 + <E[Fuw,j))]<i:^, 

1 = 1 • ' "^ 
J ( T - 2 ) ( r - 3 ) ( T - i ) 2 ( T - J ) 

By substituting in the weights for the three estimators considered in section LA., this 

results in the following approximate bounds on the bias for the J-period autocorrela

tion, /-period variance-ratio and 1-on-J regression estimators, respectively. 

J 
-I-

2T^ 

T-J J 2 ( T - 2 ) ( r - 3 ) ( T - J ) 2 ^ ( r - i ) 2 

- ( / - I ) 

gii^|<^[^]< -^ 
T-J 

E[FD] 

-M 1 + 
2T^ 

T - j y ' J2(T - J){T - 3)(r - 2) ^ (T - z)2 

C. Expression for the Variance 

T-\ 

T-J 
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Using a similar procedure it is possible to develop an approximate expression for the 

finite sample variance of such autocorrelation based estimators. That is, 

Pi h \ 
I I 

var(i^c) = X ^ E A I ? i C o v 
z = l A : = l ynyvRj 

= J:J:D,D, 
i = l i k = l 

E Pipk - E 
VRj 

E Pk 
VR, 

(8) 
.(VRjy 

from previous section 

In a similar manner as in section I.B., taking the expected value of a second order 

Taylor series expansion of A ^ ^ ^ around E[pi], E[pk] and E[VRj] gives, up to 0{T~^), 

PiPk 
iVRjy\ 

E[pi]E[pk] _^ 3va.TiVRj)E[pi]E[pk] _^ coy{pi,pk) 
E[VRj]^ ' E[VRj]^ 

2COV(A-, VRj)E[pk] 2cov{pk, VRj)E[pi 

E[VRj] 

E[VRj]^ E[VRj]^ 

Again, it is possible to use the results on sample autocorrelations found in section LB. 

and the appendix to calculate approximations for the variance. 

For example, under the strong assumptions (specified by the null hypothesis found 

in section I.B.I.), the results on the moments of sample autocorrelations can be used 

to deduce that 

E PiPk 
{VRj)' 

1 47^4 max(0, J — i) max(0, J — k) 

+ 

( T - J ) 2 ' J ( T + 1 ) ( T - J ) 3 [ {T-iY (T - ky 

( r - i ) 2 ( r + i ) ( r - j ) 2 ' 

Here, I(i=k) is an indicator variable equal to one when i = k and zero otherwise. There

fore, substituting this and the expansion for E ^ ^ 1 found at equation (6) into equa

tion (8), the variance of the long-horizon autocorrelation-based estimator FD{P{I, J)) 

under the strong assumptions can be expressed, up to 0{T~^), as 

max(0, J — i) max(0, J — k) I I ( 2J'4 

4r^ max(0, J - i) max(0, J -k) 

(T - iy 

+ E 

(T - ky 

J2 ( r - JY{T - ifiT - kY{T + 1)2 j fr{ (T - i)2(T + 1)(T - J) 
r(9) 



Substituting in the weights for the popular J-period autocorrelation estimator, the 

resulting estimate of the variance, up to 0{T~^), is 

2 

var(FD) 
XkiT-iyj (T- jy{T+1)v^ xhiT-iy J(T + 1)(T-J)3 (^(r-OM {T-jy{T + 

T' i^if e , {J-if ^ 
J2(T + 1){T - jy tA\(T -if (T - J -i)\ 

Other estimators can be evaluated by substituting their respective weights into 

equation (9). In addition, approximate bounds for the variance (and hence standard 

errors) of these estimators can also be calculated under the weak assumptions discussed 

in section LB.2. It is also important to stress that, unlike the asymptotic variance 

used in much of the literature, (see Richardson & Smith, 1994) this is a finite sample 

approximate expression for the variance. 

II. Simulated and Real Data Examples 

A. Example 1: The Random Walk 

The analytic approximations developed in section I for the bias of autocorrelation-based 

estimators are only exact up to 0(r~^) terms. The accuracy of these approximations, 

for a given underlying distribution and values of T and J, can be verified using tight 

Monte Carlo estimates for the bias based on many simulated iterations. This section 

does so using returns, {i?t}^i, which were generated as independent A (̂0,1) variates, 

so that the logarithm of the underlying is assumed to follow a random walk without 

drift. As the normal is a spherically symmetrical distribution, the bias and variance 

approximations derived under the strong conditions are applicable. 

figure 1 about here 

A range of values for T and J is taken and the analytic estimates of the bias calcu

lated and plotted in figure 1 for the three common estimators discussed in section LA. 

The panel columns correspond to three typical values of T, namely (from left to right) 

10 



T= 360, 720 and 1440. In each panel, the approximate bias for that particular estima

tor and value of T is plotted as a bold line for 12 < J < 120, while the dotted line gives 

the Monte Carlo estimate of the bias. For the 7-period autocorrelation and J-period 

variance-ratio estimator these are obtained using a Monte Carlo simulation based on 

150,000 iterations. However, this did not prove sufficient to get tight Monte Carlo 

values for the 1-on-J regression estimator, where 1,000,000 iterations were required. 

In line with the theme of the paper the estimators were calculated as sums of sample 

autocorrelations of the form given at equation (3). 

For the J-period variance-ratio estimator the approximations appear to be excel

lent for all values of J and T examined here. The approximation for the J-period 

autocorrelation and 1-on-J regression estimators are more accurate for larger values 

of T and smaller values of J. Finite sample estimates of the variance of each estima

tor, up to 0{T~^), can also be calculated by substituting in the relevant weights into 

equation (9). 

B. Example 2: Stratification by Market Value and Industry 

We applied the popular J-period autocorrelation estimator to monthly returns for com

panies on the NYSE from January 1926 to December 1991 (so that T = 792), where 

the data have been sorted into deciles according to their market value. Table I details 

the calculated statistic, along with the finite sample bias and standard error approx

imations calculated under the strong assumptions. As the underlying distribution of 

real returns are not known, the finite sample approximate upper and lower bounds 

for the bias under the weak assumptions are also given. None of the statistics have a 

bias-adjusted value greater that two standard errors away from zero using the approxi

mations derived under the strong assumptions. However, it should be noted that while 

these statistics are asymptotically normally distributed (Richardson & Smith, 1994), 

they may not be in small samples, so that treating such tests as simple t-tests can be 

11 



misleading.^ 

This data was also stratified by industry (minus the observation for January 1926 

which could not be stratified this way) and table II provides the resulting values of 

the J-period autocorrelation estimator. Only the four year bias-adjusted statistic for 

capital goods is more than two standard errors away from zero. Overall, using these 

finite sample bias adjustments and standard error approximations, there appears to be 

little evidence of serial correlation in this returns data, whether the data is stratified 

by market value or industry size. 

tables I and II about here 

C. Example 3: Asymmetrically Distributed Returns 

The returns for the first decile (the smaller companies) appear far from normally dis

tributed. We mimicked the observed distribution of these returns using a 'mixture 

of normals', where Rt ~ A^(0.01,0.047) with probability 0.6, Rt ~ A/'(0.01,0.1) with 

probability 0.37 and Rt ~ A''(0.3,0.3) with probability 0.03. Here, N{^i, a) is the nor

mal distribution with mean // and standard deviation a. Figure 2 plots a histogram 

of the first decile returns, showing that the density of this normal mixture compares 

very closely to the empirical density of the actual data. 

figure 2 about here 

We therefore calculated a tight Monte Carlo estimate of the bias of the three esti

mators using returns, {Rt}J^i, generated from the above mixture of normals. A range 

of values for J (12 < J < 120) were considered, while T = 792 (which corresponded to 

the actual number of monthly observations in example 2) and 150,000 iterations were 

used to obtain a tight estimate of the bias. The A''(0.3,0.3) distribution, which mimics 

the heavy positive tail of the observed distribution of the first decile returns, renders 

^For example, if the true finite sample distribution of the J-period autocorrelation was heavy tailed 

on the left, a deviation of even more than two standard deviations from zero would be required to 

reject the null hypothesis of no serial correlation with 95% certainty. 

12 



the mixture of normals asymmetric. Hence, the strong conditions no longer apply, 

though the finite sample approximations based on the weak conditions still hold. Fig

ure 3 plots the approximate upper and lower bounds for the bias for each of the three 

estimators, along with the corresponding tight Monte Carlo estimate of the bias. They 

reveal that the approximate bounds appear quite accurate for all three estimators for 

this value of T. 

—figure 3 about here 

III. Conclusion 

This paper has provided a set of finite sample approximations of the bias and stan

dard error of a class of statistics often used in the financial literature to determine 

whether, or not, series of returns are correlated. They can be calculated under either 

the assumption that returns are spherically symmetrically distributed, or under the 

weaker condition that returns arise from an arbitrary continuous distribution. The 

bias calculation improves on previous finite sample Monte Carlo derived adjustments 

(such as in Fama h French, 1988) as it is both analytic and does not require specifica

tion of a particular distribution (see example 3). The estimates of the standard error 

improve upon the popular asymptotic standard errors (such as in Richardson h Smith, 

1994), as they are finite sample approximations. Moreover, as the bias and standard 

error approximations are exact up to 0(r~^) and 0{T~^/'^) terms, respectively, they 

improve with larger sample sizes. 

Appendix: Moments of Sample Autocorrelations 

Much work in the statistical literature has gone into calculating the moments of sam

ple autocorrelation coeflScients. Dufour &; Roy (1985) give an excellent summary and 

this appendix is based mainly on their survey. Here, we list moments that arise from 

two different null hypotheses which differ in the assumption that the process {Rt}J-i 

13 



follows a spherically symmetric (eg normal) or an arbitrary continuous distribution. 

We label these 'strong' and 'weak' assumptions, respectively. 

Moments under strong assumptions 

Under the null hypothesis that {Rt}J=i are independent and identically distributed 

with a spherically symmetrical distribution (such as the normal distribution) the fol

lowing hold. 

-1 
E[Pi] = 

var(pi) = 

T-1 
T'^-{i + 3)r^ + 3iT^ + 2i{i + l)T - Af 

( r - z )2 ( r - l - l ) (T - l )2 

-̂ (̂ .•̂ >) = f!^:^^!^Sr^ - ^^'<^-^-^ 

Moments under weak assumptions 

Under the null hypothesis that {Rt}f-i are independent and identically distributed, 

but with an arbitrary continuous distribution, the following results on sample autocor

relation moments hold. 

E[Pi]= " ^ 

var(pi) < 

r - 1 
TiT"^ -{i + 7)T^ + (7z + 16)r2 + 2{i'^ - 9z - 6)T - 4z(i - 4)} 

( r - i ) 2 ( r - i ) 2 ( T - 2 ) ( r - 3 ) 
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Year (J/12) 

1st Decile 

2nd Decile 

3rd Decile 

4th Decile 

5th Decile 

6th Decile 

7th Decile 

8th Decile 

9th Decile 

10th Decile 

Bias (Strong) 

St. Error (Strong) 

Upper Bias (Weak) 

Lower Bias (WeaJk) 

Unadjusted J-Period Autocorrelation Statistics 

1 

0.008 

-0.015 

-0.059 

-0.068 

-0.082 

-0.098 

-0.106 

-0.077 

-0.068 

-0.059 

2 

-0.144 

-0.147 

-0.190 

-0.184 

-0.244 

-0.254 

-0.312 

-0.280 

-0.270 

-0.231 

3 

-0.328 

-0.301 

-0.341 

-0.337 

-0.365 

-0.416 

-0.438 

-0.395 

-0.399 

-0.329 

4 

-0.503 

-0.482 

-0.478 

-0.497 

-0.468 

-0.519 

-0.477 

-0.421 

-0.407 

-0.319 

5 

-0.493 

-0.527 

-0.487 

-0.522 

-0.498 

-0.506 

-0.461 

-0.377 

-0.310 

-0.205 

6 

-0.316 

-0.443 

-0.394 

-0.423 

-0.401 

-0.352 

-0.320 

-0.202 

-0.092 

-0.014 

7 

-0.166 

-0.364 

-0.325 

-0.356 

-0.314 

-0.250 

-0.230 

-0.096 

-0.020 

0.039 

Bias and Standard Error Estimates (T = 792) 

-0.021 

0.098 

-0.015 

-0.021 

-0.042 

0.150 

-0.031 

-0.042 

-0.065 

0.193 

-0.048 

-0.065 

-0.089 

0.234 

-0.065 

-0.089 

-0.114 

0.273 

-0.082 

-0.114 

-0.140 

0.313 

-0.100 

-0.141 

-0.168 

0.353 

-0.119 

-0.168 

8 

-0.143 

-0.431 

-0.413 

-0.438 

-0.399 

-0.329 

-0.341 

-0.174 

-0.140 

-0.077 

-0.197 

0.394 

-0.138 

-0.198 

Table I: J-Period Autocorrelation Statistics for Returns Stratified by Size. The 

top half of the table provides the unadjusted values of the J-period autocorrelation statistic 

for monthly returns on the NYSE between January 1926 and December 1991. These have 

been provided for ten portfolios, each corresponding to a decile of the companies sorted 

by market value. Here, the 1st decile represents the smallest 10% of companies aad the 

10th decile the largest 10% of companies. The second half of the table provides the finite 

sample bias and standard error approximations, calculated under the strong assiunptions, 

and bounds on the bias calculated under the weak assumptions. No bias-adjusted statistic 

is greater than two standard errors away from zero using the adjustments derived under the 

strong assumptions. 
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Year (J/12) 

Petrolemn 

Finance/Real Estate 

Consumer Diurables 

Basic Industries 

Food/Tobax;co 

Construction 

Capital Goods 

Transportation 

UtiUties 

Textiles/Trade 

Services 

Leisure 

Bias (Strong) 

St. Error (Strong) 

Upper Bias (WeaJc) 

Lower Bias (WeaJc) 

Unadjusted J-Period Autocorrelation Statistics 

1 

-0.058 

-0.033 

-0.077 

-0.050 

-0.015 

-0.064 

-0.014 

-0.191 

0.006 

-0.061 

0.057 

0.012 

2 

-0.306 

-0.208 

-0.254 

-0.275 

-0.069 

-0.189 

-0.241 

-0.305 

-0.151 

-0.209 

0.074 

-0.146 

3 

-0.268 

-0.397 

-0.418 

-0.435 

-0.014 

-0.263 

-0.462* 

-0.315 

-0.240 

-0.263 

0.033 

-0.361 

4 

-0.317 

-0.454 

-0.456 

-0.460 

0.081 

-0.376 

-0.506 

-0.347 

-0.204 

-0.248 

-0.138 

-0.477 

5 

-0.263 

-0.347 

-0.389 

-0.384 

0.135 

-0.364 

-0.423 

-0.338 

-0.122 

-0.219 

-0.247 

-0.402 

6 

-0.164 

-0.116 

-0.273 

-0.227 

0.229 

-0.269 

-0.238 

-0.222 

0.071 

-0.146 

-0.256 

-0.227 

7 

-0.029 

-0.024 

-0.233 

-0.154 

0.193 

-0.167 

-0.124 

-0.187 

0.026 

-0.152 

-0.243 

-0.184 

Bias and Standard Error Estimates (T = 791) 

-0.021 

0.098 

-0.015 

-0.021 

-0.042 

0.150 

-0.031 

-0.042 

-0.065 

0.193 

-0.048 

-0.065 

-0.089 

0.234 

-0.065 

-0.089 

-0.114 

0.273 

-0.082 

-0.114 

-0.140 

0.313 

-0.100 

-0.141 

-0.168 

0.353 

-0.119 

-0.169 

8 

-0.051 

-0.141 

-0.364 

-0.208 

0.106 

-0.188 

-0.189 

-0.308 

-0.126 

-0.266 

-0.265 

-0.261 

-0.198 

0.395 

-0.138 

-0.198 

Table II: J-Period Autocorrelation Statistics for Returns Stratified by Industry. 

The top half of the table provides the imadjusted values of the J-period autocorrelation 

statistic for monthly returns on the NYSE between Febuaxy 1926 and December 1991. These 

have been provided for 12 portfolios corresponding to a stratification by industry. The 

second half of the table provides the finite sample bias and standard error approximations, 

calculated imder the strong assumptions, and bounds on the bias calculated under the weak 

assumptions. Bias-adjusted statistics that aie greater than two standard errors away fi:om 

zero using the adjustments derived under the strong assumptions axe marked with a star (*). 
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7=360 T=720 T=1440 

Figure 1: A Compairison of Tight Monte Carlo and Finite Sample Bias Approx

imations for a Random Walk. Each panel plots the bias on the y-axis against J on 

the X-axis. The bold line gives the analytic approximation for the bias, while the dotted 

line gives the tight Monte Carlo based estimate. The panels on the three rows (from top to 

bottom) correspond to the J-period autocorrelation, J-period variance-ratio and the 1-on-J 

regression estimators. The three columns correspond (from left to right) to T=360, 720 and 

1440. 
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Figure 2: A Mixture of Normals Estimate of the Distribution of Returns from 

Small Market Value Companies. The histogram (normalized to have the area sum to 

one) is of the first decile of monthly returns on the NYSE from Janurary 1926 to December 

1991 stratified by market size. The bold Une is the density arising from the mixture of 

normals introduced in example 3. This mimics the observed behavior of returns quite well, 

including the heavy right hand tail. 
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(a): J-Period Autocorrelation (b):J-Period Variance Ratio (c): 1-on-J Regression 

T3o ilo 

Figure 3: A Comparison of Tight Monte Carlo and Finite Sample Bias Approx

imations for Assymetric Returns. Eax;h pajiel plots the analytic bias approximations 

(bold lines) from the asymmetric simulated returns in example 3 for one of the three estima

tors. In panels (a) and (c) the analytic approximations are of the upper and lower bounds 

only, so these are plotted as bold lines with the region between being shaded. The tight 

Monte Carlo based estimate of the bias is given as a dotted line. The i-axis provides a 

variety of values for J , while T is fixed to 792 throughout. 
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