

Predictive Toxicology and Computational Biology

Thomas B. Knudsen, PhD
Developmental Systems Biologist
National Center for Computational Toxicology
US EPA, Research Triangle Park NC
knudsen.thomas@epa.gov

'9th International Conference on Neural Tube Defects'
October 27-29, 2015 Austin TX

Can a multiscale computer model of the embryo (virtual embryo) translate cellular dynamics to simulate a developmental phenotype?

and if so ...

How might such models, with highperformance computing, be used
analytically (to understand) and
theoretically (to predict) adverse
developmental outcomes following
different exposure scenarios?

Predictive Toxicology & Human Development

- Evaluating and assessing impacts to development is a national priority — EPA's Children's Environmental Health (CEH) Research Roadmap.
- Too many chemicals (~80K) in production and/or the environment to test each by traditional animal-based methods (cost, time, 3Rs).
- Profile the 'human exposure universe' of chemicals in vitro with high-throughput and high-content screening (HTS/HCS) assays.
- Build computational (in silico) models to integrate in vitro data with biological knowledge representing human development.

HTS Chemical Profiling: under Tox21 federal partnership

- ToxCast: 1060 chems in ~600 assays; 2874 chems in ~50-100 assays; Tox21: 8599 chems in ~50 assays; 293 assay targets annotated to a distinct gene product.
- ToxCastDB: holds >27M data points and ~1.7M concentration response curves in a public database (http://actor.epa.gov/dashboard/).
- Bipartite network: translates chemicalassay bioactivity profiles into predicted mode-of-action (e.g., TDS).

Vascular Development and Disruption:

tiered strategy to predictive toxicology

- (1) Kleinstreuer et al. (2011) Env Hlth Persp
- (2) Knudsen and Kleinstreuer (2011) BDRC
- (3) Kleinstreuer et al. (2013) PLoS Comp Biol
- (4) Tal et al. (2014) Repro Tox
- (5) Tal et al. (in prep)

- (6) McCollum et al. (in prep)
- (7) Belair et al. (in prep)
- (8) Knudsen et al. (in prep)
- (9) Ellis-Hutchings et al. (in prep)
- (10) Franzosa et al. (in prep)

Cellular Response Networks (CRNs): how cellular systems translate spatial information into higher-order function

Cellular Agent-Based Models (ABMs)

- rules are assigned to low-level 'agents' (cells in this case)
- agents then interact in a shared environment (CompuCell3D)
- simulation recapitulates system-level behaviors (emergence)
- models are stochastic (biological variability)

This example uses CompuCell3D.org simulation environment to model macrophage chemotaxis to a microbe in a field of RBCs.

Many ToxCast assays map to the angiogenic cascade

A Computational Model Predicting Disruption of Blood Vessel Development

Nicole Kleinstreuer¹, David Dix¹, Michael Rountree¹, Nancy Baker², Nisha Sipes¹, David Reif¹, Richard Spencer², Thomas Knudsen¹*

1 National Centre for Computational Toxicology, Office of Benearch and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America, 2 Lockheed Martin, Research Triangle Park, North Carolina, United States of America

VEGF165 MMPs VEGF121 sFlit1 TIE2 CXCL10 CCL2

angiogenesis
chemicals

GPCR system (chemokines)
RTK system (growth factors)
uPAR/ITG system (ECM)

Simulation of 5HPP-33 Concentration Response

Programmed Fusion of Opposing Surfaces

- Organizing principle underlying NTDs, coloboma, cleft palate, valvuloseptal defects, hypospadias, gastroschisis, ...
- Emergent property orchestrated by CRNs: EMT, apoptosis, epithelial cell adhesion / migration / intercalation are recurring themes.

Cellular primitives

- growth (proliferation)
- programmed cell death (apoptosis)
- genetic signals and responses
- differentiation
- cell adhesion
- shape (geometry)
- motility (cell migration)
- ECM (remodeling)

Tissue movements

- folding
- epiboly
- convergent extension
- branching morphogenesis
- cell condensation
- cell sorting
- trans-differentiation (EMT)
- cavitation

- tractional forces
- ...

Palatal Closure: ABM can probe quantitative relationships during Medial Edge Epithelium (MEE) fusion and seam breakdown.

Prefusion Signaling Domains (at the time of contact)

Hacking the Control Network

- in silico knockouts of elements in the prefusion signaling network
- impacts on prefusion, MEE contact and seam breakdown (critical event)

$$k_{EGF} = 15 + \text{Random}[0,1] - 12 \frac{[Tgfb3]^4}{[Tgfb3]^4 + AC_{50}^4} + k_{EGF-AhR}$$

TGFß3	EGFR	СР
1.0	1.0	0
0	1.0	1
1.0	1.2	0
1.0	1.4	1
1.0	1.5	1

Validate model in fusion-competent human iPSCminiorganoids (B Abbott) **Genital Tubercle (GT) development:** how does a chemical-bioactivity <u>bipartite network</u> interact with a <u>control network</u> to induce hypospadias, a urethral closure defect?

Cell ABM for Urethral Closure

 Androgen production by fetal testis triggers sexual dimorphism of the GT into male or female phenotypes.

16

- Epithelial apoptosis & mesenchymal (preputial) proliferation drives closure and centralization of the urethral plate.
- Disruption of SHH, FGF10, or AR signaling leads to closure defect (hypospadias).

Multi-disturbance surface from an ABM of the developing GT can be used assess individual risks for complex interactions:

- genetics (e.g., FGF10 polymorphisms)
- metabolism (e.g., cholesterol deficiency)
- environmental exposure (e.g., androgen disrupters).

Virtual Tissues Laboratory System

Can a multiscale computer model of the embryo (virtual embryo) translate cellular dynamics to simulate a developmental phenotype?

How might such models, with highperformance computing, be used
analytically (to understand) and
theoretically (to predict) adverse
developmental outcomes following
different exposure scenarios?

[chemicals, doses, non-chemical stressors, mixtures, stages, sensitive subpopulations, ...]

Special Thanks

- Richard Judson NCCT
- Imran Shah NCCT
- Barbara Abbott NHEERL / TAD
- Sid Hunter NHEERL / ISTD
- Dustin Kapraun NCCT (ORISE)
- Eric Watt NCCT (ORISE)
- Max Leung NCCT (ORISE)
- Jill Franzosa NCCT (ORISE)
- Nicole Kleinstreuer NCCT (now ILS/NTP)
- Nisha Sipes NCCT (now NTP)
- Richard Spencer Lockheed Martin / EMVL
- Nancy Baker Lockheed Martin / NCCT
- Rob DeWoskin EPA / NCEA
- Tamara Tal NHEERL / ISTD
- Monica Linnenbrink NCCT / CSS
- Christina Baghdikian NCCT / CSS
- Ed Carney Dow Chemical Company
- T Heinonen U Tampere / FICAM
- E Berg DiscoverX BioSeek
- A Seifert U Kentucky
- L Egnash Stemina Biomarker Discovery
- M Bondesson U Houston / STAR
- J Glazier Indiana U / STAR
- Shane Hutson Vanderbilt U / STAR
- William Murphy U Wisconsin / STAR
- Randy Ashton U Wisconsin / STAR
- John Wikswo Vanderbilt U / STAR

Virtual Tissue Models: Predicting How Chemicals Impact Human Development

http://www2.epa.gov/sites/production/files/2015-08/documents/virtual_tissue_models_fact_sheet_final.pdf

National Center for Computational Toxicology