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Lee-Carter mortality forecasting:

a multi-country comparison of

variants and extensions

Abstract: We compare the short- to medium- term accuracy of five variants or extensions of the Lee-

Carter method for mortality forecasting. These include the original Lee-Carter, the Lee-Miller and

Booth-Maindonald-Smith variants, and the more flexible Hyndman-Ullah and De Jong-Tickle exten-

sions. These methods are compared by applying them to sex-specific populations of 10 developed

countries using data for 1986–2000 for evaluation. All variants and extensions are more accurate

than the original Lee-Carter method for forecasting log death rates, by up to 61%. However, accu-

racy in log death rates does not necessarily translate into accuracy in life expectancy. There are no

significant differences among the five methods in forecast accuracy for life expectancy.

Key words: Functional data, Lee-Carter method, mortality forecasting, nonparametric smoothing,

principal components, state space.
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1 Introduction

The future of human survival has attracted renewed interest in recent decades. The historic rise

in life expectancy shows little sign of slowing, and increased survival is a significant contributor

to population ageing. In this context, forecasting mortality has gained prominence. The future of

mortality is of interest not only in its own right, but also in the context of population forecasting,

on which economic, social and health planning is based. The future provision of health and social

security for ageing populations is now a central concern of countries throughout the developed

world.

This renewed interest in mortality forecasting has been accompanied by the development of new and

more sophisticated methods; for a review, see Booth (2006). A significant milestone was the publica-

tion of the Lee-Carter method (Lee and Carter, 1992), which is regarded as among the best currently

available and has been widely applied (e.g., Lee and Tuljapurkar, 1994; Wilmoth, 1996; Tuljapurkar

et al., 2000; Li et al., 2004; Lundström and Qvist, 2004; Buettner and Zlotnik, 2005). The Lee-Carter

method was a significant departure from previous approaches: in particular it involves a two-factor

(age and time) model and uses matrix decomposition to extract a single time-varying index of the

level of mortality, which is then forecast using a time series model. The strengths of the method are

its simplicity and robustness in the context of linear trends in age-specific death rates. While other

methods have subsequently been developed (e.g., Brouhns et al., 2002; Renshaw and Haberman,

2003a,b; Currie et al., 2004; Bongaarts, 2005; Girosi and King, 2006), the Lee-Carter method is

often taken as the point of reference.

The underlying principle of the Lee-Carter method is the extrapolation of past trends. The method

was designed for long-term forecasting based on a lengthy time series of historic data. However,

significant structural changes have occurred in mortality patterns over the twentieth century, reduc-

ing the validity of experience in the more distant past for present forecasts. Thus, judgement is

inevitably involved in determining the appropriate fitting period. If a longer fitting period is not ad-

vantageous, the heavy data demands of the Lee-Carter method can be somewhat relaxed. Whether

length of fitting period significantly affects forecast accuracy has not been systematically evaluated.
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Indeed, evaluation is limited by the lengthy forecast horizon. However, the forecast can be evaluated

in the shorter term using historical data to evaluate out-of-sample forecasts. Shorter term evaluation

is relevant to the increasing number of applications that adopt the Lee-Carter method for short- to

medium-term forecasting. Shorter term evaluation also informs the longer term prospects of the

forecast because errors in forecasting trends can be identified.

Two modifications of the original Lee-Carter method have been proposed: the first by Lee and Miller

(2001) and the second by Booth et al. (2002). These three variants of the Lee-Carter method were

first evaluated by Booth et al. (2005). In addition, there have been several extensions of the Lee-

Carter method, retaining some of its flavour but adding additional statistical features such as non-

parametric smoothing, Kalman filtering and multiple principal components. Two such extensions

are by Hyndman and Ullah (2005) and De Jong and Tickle (2006). It is not known how these

extensions perform compared with the Lee-Carter method and its variants.

This paper presents the results of an evaluation of these five mortality forecasting methods: Lee-

Carter, Lee-Miller, Booth-Maindonald-Smith, Hyndman-Ullah and De Jong-Tickle. Each method is

applied to data by sex for ten countries. The evaluation involves fitting the different methods to data

up to 1985, forecasting for the period 1986–2000, and comparing the forecasts with actual mortality

in that period. This paper does not address forecast uncertainty, which has been a recent research

focus particularly in relation to long-term forecasting (see Lutz and Goldstein, 2004; Booth, 2006).

Rather, it focuses on short- to medium-term forecast accuracy.

2 The five methods

2.1 The Lee-Carter method

The Lee-Carter method of mortality forecasting combines a demographic model of mortality with

time-series methods of forecasting. The method is generally interpreted as making the use of the
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longest available time series of data. The Lee-Carter model of mortality is

ln mx ,t = ax + bx kt + εx ,t (1)

where mx ,t is the central death rate at age x in year t, kt is an index of the level of mortality at

time t, ax is the average pattern of mortality by age across years, bx is the relative speed of change

at each age, and εx ,t is the residual at age x and time t. The ax are calculated as the average of

ln mx ,t over time, and the bx and kt are estimated by singular value decomposition (Trefethen and

Bau, 1997). Constraints are imposed to obtain a unique solution: the ax are set equal to the means

over time of ln mx ,t and the bx sum to 1; the kt sum to zero.

The Lee-Carter method adjusts kt by refitting to total observed deaths. This adjustment gives greater

weight to ages at which deaths are high, thereby partly counterbalancing the effect of using the

logarithm of rates in the Lee-Carter model. The adjusted kt is extrapolated using ARIMA time series

models (e.g., Makridakis et al., 1998). Lee and Carter used a random walk with drift model. The

model is

kt = kt−1+ d + et (2)

where d is the average annual change in kt , and et are uncorrelated errors. Lee and Carter used a

dummy variable to take account of the outlier resulting from the 1918 influenza epidemic. Forecast

age-specific death rates are obtained using extrapolated kt and fixed ax and bx . In this case, the

jump-off rates (i.e., the rates in the last year of the fitting period or jump-off year) are fitted rates.

It should be noted that the Lee-Carter method does not prescribe the linear time series model of a

random walk with drift for all situations. However, this model has been judged to be appropriate in

almost all cases; even where a different model was indicated, the more complex model was found

to give results which were only marginally different to the random walk with drift (Lee and Miller,

2001). Further, Tuljapurkar et al. (2000) found that the decline in mortality was constant (i.e., kt

was linear) for the G7 countries, reinforcing the use of a random walk with drift as an integral part

of the Lee-Carter method.

Booth, Hyndman, Tickle & De Jong: 31 May 2006 4
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2.2 The Lee-Miller variant

The Lee-Miller variant differs from this basic Lee-Carter method in three ways:

1 the fitting period is reduced to commence in 1950;

2 the adjustment of kt involves fitting to e(0) in year t;

3 the jump-off rates are taken to be the actual rates in the jump-off year.

In their evaluation of the Lee-Carter method, Lee and Miller (2001) noted that for US data the

forecast was biased when using the fitting period 1900–1989 to forecast the period 1990–1997.

The main source of error was the mismatch between fitted rates for the last year of the fitting

period (1989) and actual rates in that year; this jump-off error or bias amounted to 0.6 years in

life expectancy for males and females combined (Lee and Miller, 2001, p.539). Jump-off bias was

avoided by constraining the model such that kt passes through zero in the jump-off year.

It was also noted that the pattern of change in mortality was not fixed over time, as the Lee-Carter

model assumes. Based on different age patterns of change (or bx patterns) for 1900–1950 and

1950–1995, Lee and Miller (2001) adopted 1950 as the first year of the fitting period. This solution

to evolving age patterns of change had been adopted by Tuljapurkar et al. (2000).

The adjustment of kt by fitting to e(0) was adopted to avoid the use of population data as required

for fitting to Dt (Lee and Miller, 2001).

2.3 The Booth-Maindonald-Smith variant

The Booth-Maindonald-Smith variant also differs from the Lee-Carter method in three ways:

1 the fitting period is chosen based on statistical goodness-of-fit criteria under the assumption

of linear kt ;

2 the adjustment of kt involves fitting to the age distribution of deaths;

3 the jump-off rates are taken to be the fitted rates based on this fitting methodology.

Booth, Hyndman, Tickle & De Jong: 31 May 2006 5
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Booth et al. (2002) fitted the Lee-Carter model to Australian data for 1907–1999 and found that the

‘universal pattern’ (Tuljapurkar et al., 2000) of constant mortality decline as represented by linear

kt did not hold over that fitting period. In addition, problems were encountered in meeting the

assumption of constant bx in the underlying Lee-Carter model. Taking assumption of linearity in

kt as a starting point, the Booth-Maindonald-Smith variant seeks to maximize the fit of the overall

model by restricting the fitting period to maximize fit to the linearity assumption, which also results

in the assumption of constant bx being better met. The choice of fitting period is based on the ratio

of the mean deviances of the fit of the underlying Lee-Carter model to the overall linear fit: this ratio

is computed for all possible fitting periods (i.e., varying the starting year but holding the jump-off

year fixed) and the chosen fitting period is that for which this ratio is substantially smaller than for

periods starting in previous years.

The procedure for the adjustment of kt was modified. Rather than fit to total deaths, Dt , the Booth-

Maindonald-Smith variant fits to the age distribution of deaths, Dx ,t , using the Poisson distribution

to model the death process and the deviance statistic to measure goodness of fit (Booth et al., 2002).

The jump-off rates are taken to be the fitted rates under this adjustment.

2.4 The Hyndman-Ullah functional data method

The approach of Hyndman and Ullah (2005) uses the functional data paradigm (Ramsay and Sil-

verman, 2005) for modelling log death rates. It extends the Lee-Carter method in the following

ways:

1 mortality is assumed to be a smooth function of age that is observed with error; smooth death

rates are estimated using nonparametric smoothing methods;

2 more than one set of (kt , bx) components is used;

3 more general time series methods than random walk with drift are used for forecasting the

coefficients; state space models for exponential smoothing are used;

4 robust estimation can be used to allow for unusual years due to wars or epidemics;

5 it does not adjust kt .

Booth, Hyndman, Tickle & De Jong: 31 May 2006 6
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The Hyndman-Ullah approach can be expressed using the equation

ln mx ,t = a(x) +
J
∑

j=1

kt, j b j(x) + et(x) +σt(x)εx ,t (3)

where a(x) is the average pattern of mortality by age across years, b j(x) is a “basis function” and

kt, j is a time series coefficient. The use of a(x) rather than ax is intended to show that a(x) is a

smooth function of age where age is a continuous quantity. It is estimated by applying penalized

regression splines (Wood 2000) to each year of data and averaging the results. The pairs (kt, j ,b j(x))

for j = 1, . . . , J are estimated using principal component decomposition. The error term σt(x)εx ,t

accounts for observational error that varies with age; i.e., it is the difference between the observed

rates and the spline curves. The error term et(x) is modelling error; i.e., it is the difference between

the spline curves and the fitted curves from the model.

In our implementation of the Hyndman-Ullah method, we do not use robust estimation. Rather, the

fitting period is restricted to 1950 on, thus avoiding outliers. This was found to give slightly more

accurate forecasts than using all the data with robust estimation. We use J = 6 for all data sets. The

results seem relatively insensitive to the choice of J provided J is large enough. We forecast the time

series coefficients kt, j for each j using damped Holt’s method based on the state space formulation

of Hyndman et al. (2002).

2.5 The De Jong-Tickle LC(smooth) model

The approach of De Jong and Tickle (2006) uses the state space framework (Harvey, 1989) for

modelling log death rates. State space models encompass a wide range of flexible multivariate time

series models of which the Lee-Carter model is a special case. The general framework admits a host

of specialisations and generalisations, and includes estimation of unknown parameters, inference,

diagnostic checking and forecasting including forecast error calculations.

Booth, Hyndman, Tickle & De Jong: 31 May 2006 7
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The Lee-Carter model (1) may be written in the form

yt = a+ bkt + εt (4)

where yt is the vector of the log-central death rates at each age in year t, a and b are vectors of the

corresponding Lee-Carter parameters for each age, kt is an index of the level of mortality in year t

as in the Lee-Carter model, and εt is a vector of error terms at each age in year t.

De Jong and Tickle (2006) developed the more general specification

yt = Xa+ Xbkt + εt (5)

where X is a known “design” matrix with more rows than columns, unless X = I in which case the

model reduces to (4). Model (5) addresses an issue with LC model (4) where there is an a and a b

parameter for each age, which means that the kt time series has an independent impact at each age.

In model (5), X having fewer columns than rows means that there are fewer a and b parameters

than there are age groups. The effects of the kt time series are not independent across age but are

constrained by the structure of X , imposing across-age smoothness. The authors thus termed the

model LC(smooth).

It is possible to include several time series components in which case kt is a vector and b is a matrix

with one column for each component of kt . Various forms of the matrix X and the time series kt

are possible. In the current analysis, the matrix X is based on B-splines (Hastie and Tibshirani,

1990) which impose a quadratic form on log-mortality between knots at various ages. A single

random walk with drift time series has been used. Maximum likelihood estimates of the model are

derived using Kalman filtering and smoothing (Harvey, 1989). The a parameters are derived from

the average of the rates in the jump-off year and the previous year, with the effect that the jump-off

rates are smoothed average actual rates. As for Hyndman-Ullah, the fitting period is restricted to

1950 on to avoid outliers.

Booth, Hyndman, Tickle & De Jong: 31 May 2006 8
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3 Data and accuracy measures

The data for this study are taken from the Human Mortality Database (2006). Ten countries were

selected giving 20 sex-specific populations for analysis. The ten countries selected are those with

reliable data series commencing in 1921 or earlier. It was desirable to use only countries for which

the available time series of data commenced somewhat earlier than 1950 in order to maintain

the full and consistent comparison of the three variants. Lee and Carter (1992) used US data

for the full period available, 1900–1989. Therefore this multi-country analysis uses data for the

period commencing in 1900 where possible. Though for some countries the data extend back to

the nineteenth century, these were truncated at 1900: the use of pre-1900 data would both reduce

comparability of methods across countries and necessitate a time series model with a non-linear

trend which falls outside the scope of both applications to date and the current analysis. The selected

countries are shown in Table 1 along with the dates used to define the fitting periods.

Table 1: Start year for different countries and methods.

Country LC LM BMS [m] BMS [f] HU DJT
Australia 1921 1950 1968 1970 1950 1950
Canada 1921 1950 1974 1976 1950 1950
Denmark 1900 1950 1968 1967 1950 1950
England and Wales 1900 1950 1968 1972 1950 1950
Finland 1900 1950 1971 1971 1950 1950
France 1900 1950 1971 1969 1950 1950
Italy 1900 1950 1968 1968 1950 1950
Norway 1900 1950 1969 1963 1950 1950
Sweden 1900 1950 1976 1969 1950 1950
Switzerland 1900 1950 1962 1962 1950 1950
Note: The fitting period is defined by start year to 1985; the forecasting period is
defined by 1986 to 2000.

The data consist of central death rates and mid-year populations by sex and single years of age

to 110 years. In the evaluation, data at older ages (age 95 and above) were grouped in order

to avoid problems associated with erratic rates at these ages. The evaluation seeks to focus on the

performance of methods in the context of reasonably regular data rather than on their ability to cope

with irregularities. The data for Australia differ from those used in previous work in that overseas

World War II deaths have been excluded.

Booth, Hyndman, Tickle & De Jong: 31 May 2006 9
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The five methods were fitted to periods ending in 1985 and used to forecast death rates from 1986

to 2000. The methods are evaluated by comparing forecast log death rates with actual log death

rates.

Forecasting error in log death rates (forecast− actual) is averaged over forecast years, countries or

ages to give different views of the relative bias of the five methods. The absolute errors are also

averaged to provide measures of forecast accuracy. In addition to these errors in log death rates, the

error in life expectancy (forecast− actual) is examined. Again, these (and the absolute errors) are

averaged over countries or years to give different summary measures.

We investigate forecast bias in the methods using t-tests of zero mean applied to the errors in log

death rates averaged across forecast horizon and age. The sexes are treated separately. Similarly,

we test for zero mean in the errors in life expectancy averaged across forecast horizon.

4 Forecast evaluation of the five methods

We refer to the three Lee-Carter variants as LC, LM and BMS, and the two extensions as HU and

DJT. The overall mean errors for the 20 populations are shown in Table 2. The p-values in the

bottom row are based on t-tests of zero mean applied to the mean errors given in each column.

These results confirm earlier findings (Lee and Miller, 2001; Booth et al., 2005) that the original

Lee-Carter method consistently and substantially under-estimates mortality especially for females, as

indicated by the relatively large negative average errors. Results for the remaining four methods are

fairly similar, but only BMS and HU show no evidence of bias in either female or male mortality. Sex

differences in this measure are related to the cancellation of positive and negative errors (compare

Table 3).

Table 3 provides a summary of forecast accuracy based on mean absolute error. Again, LC performs

least well and there are only minor differences among the other four methods. It is notable that

the simple variations on the LC method used in LM and BMS provide substantial improvements

in forecast accuracy which are only marginally improved by the more sophisticated HU and DJT

Booth, Hyndman, Tickle & De Jong: 31 May 2006 10
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Table 2: Overall mean error by sex, method and country. Mean taken over age and year of the error in
log death rates. The p-value is a test of bias (a t-test for the average mean error to be zero).

Male Female
LC LM BMS HU DJT LC LM BMS HU DJT

Australia −0.23 0.10 0.04 0.00 0.08 −0.16 0.05 0.01 0.06 0.02
Canada −0.13 0.04 −0.06 −0.07 0.04 −0.24 −0.03 −0.07 −0.08 −0.05
Denmark 0.04 0.12 0.11 0.13 0.10 −0.36 0.04 0.03 0.03 0.02
England −0.28 0.03 0.03 0.02 0.03 −0.20 0.00 0.02 0.00 −0.02
Finland −0.24 0.01 −0.05 −0.02 −0.02 −0.68 −0.16 −0.17 −0.13 −0.17
France −0.19 0.08 0.07 0.06 0.08 −0.27 0.02 0.03 0.02 0.02
Italy −0.06 0.00 −0.03 0.02 0.01 −0.24 −0.06 −0.08 −0.05 −0.06
Norway 0.17 0.10 0.11 0.07 0.09 −0.57 0.00 −0.04 −0.01 −0.05
Sweden −0.09 0.06 −0.01 0.04 0.07 −0.61 −0.01 −0.04 −0.05 −0.03
Switzerland −0.12 0.02 0.02 0.06 0.02 −0.44 −0.02 −0.03 0.02 −0.03
Average −0.11 0.06 0.02 0.03 0.05 −0.38 −0.02 −0.03 −0.02 −0.03
p-value 0.03 0.00 0.27 0.09 0.00 0.00 0.43 0.12 0.34 0.08

Table 3: Overall mean absolute error by sex, method and country. Mean taken over age and year of the
absolute error in log death rates.

Male Female
LC LM BMS HU DJT LC LM BMS HU DJT

Australia 0.46 0.18 0.13 0.12 0.15 0.30 0.15 0.12 0.12 0.11
Canada 0.30 0.11 0.12 0.12 0.11 0.26 0.10 0.12 0.11 0.09
Denmark 0.19 0.21 0.18 0.19 0.17 0.42 0.23 0.21 0.20 0.18
England 0.44 0.14 0.12 0.12 0.14 0.26 0.12 0.10 0.11 0.11
Finland 0.44 0.20 0.19 0.18 0.19 0.76 0.27 0.26 0.22 0.25
France 0.35 0.13 0.12 0.12 0.12 0.36 0.11 0.10 0.09 0.09
Italy 0.25 0.18 0.18 0.15 0.17 0.34 0.15 0.15 0.15 0.15
Norway 0.23 0.20 0.18 0.17 0.18 0.65 0.19 0.18 0.18 0.18
Sweden 0.24 0.20 0.16 0.17 0.17 0.67 0.18 0.18 0.16 0.14
Switzerland 0.25 0.18 0.16 0.15 0.15 0.50 0.20 0.18 0.15 0.15
Average 0.31 0.17 0.15 0.15 0.15 0.45 0.17 0.16 0.15 0.15

methods. It is also notable that for this absolute measure, female and male mortality are equally

difficult to forecast. Some countries (notably the Nordic countries) proved more difficult to forecast

than others.

We used a 2-way ANOVA model (with method and country as factors) on the mean absolute errors

to test whether the methods are significantly different. A test for differences between methods was

highly significant (p < 0.001). However, using Tukey’s Honest Significant Differences to see which

pairs of methods were different showed that the original LC method was significantly different from

Booth, Hyndman, Tickle & De Jong: 31 May 2006 11
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all other methods (p < 0.001), but the other four methods were not significantly different from each

other (all p-values greater than 0.86).

Age patterns of error in the log death rates are similar across countries; the average of all countries

is shown in Figure 1. There is a tendency for all methods to underestimate mortality for males aged

30–40 and overestimate mortality for males aged 45+. Similarly, all methods underestimate female

mortality at ages 20–45. The LC method produces large negative mean errors at the younger ages,

particularly for females, and small positive mean errors at the older ages. This is due to the fact that

the longer LC fitting period produces estimates of bx that do not reflect the age pattern of change

in the forecasting period. The dominance of the large negative errors at the younger ages accounts

for the overall underestimation observed for LC in Table 2, and for males the greater cancelation of

errors accounts for their less-biased forecasts.

Averages across age are also shown in Figure 1. All methods show similar trends in mean errors,

though LC starts from a different level (in line with the overall underestimation of this variant). The

cancellation of errors again contributes to the less biased male forecasts (Table 2).

Errors in life expectancy are shown in Table 4. In general an underestimate of overall mortality

(when measuring error in log death rates — Table 2) does not necessarily translate into an overesti-

mate of life expectancy (and vice versa), because of the implicit weights applied to the age pattern

of errors over age (Figure 1). Statistical significance is also affected by this transformation. For

males, all methods underestimate life expectancy, whereas for females no method significantly over-

or underestimates life expectancy despite, in the case of LC, significant underestimation of log death

rates. For this measure, LC does not always produce larger errors than the other methods.

Table 5 shows mean absolute errors in life expectancy. Again, we used a 2-way ANOVA model

(with method and country as factors) on the mean absolute errors in life expectancy to test whether

the methods are significantly different. In fact, there is no significant difference between the five

methods (p = 0.21) in the accuracy of life expectancy forecasts.

Booth, Hyndman, Tickle & De Jong: 31 May 2006 12
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Figure 1: Mean error and mean absolute error in log death rates by sex and method. Top two rows:
averaged over countries and years. Bottom two rows: averaged over countries and ages.
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Table 4: Overall mean error in life expectancy by sex, method and country. Mean taken over age and
year of the error in life expectancy.

Male Female
LC LM BMS HU DJT LC LM BMS HU DJT

Australia −1.09 −1.56 −0.64 −0.29 −1.35 −0.80 −0.87 −0.22 −0.68 −0.56
Canada −0.76 −0.74 0.17 0.27 −0.76 0.42 0.42 0.40 0.83 0.50
Denmark −0.53 −1.10 −1.18 −1.20 −0.90 1.45 0.48 0.40 0.99 0.66
England −0.57 −1.07 −0.84 −0.80 −1.04 0.03 −0.44 −0.43 −0.30 −0.34
Finland −0.66 −0.60 −0.11 −0.46 −0.40 0.52 0.47 0.81 0.66 0.53
France −0.56 −1.01 −0.85 −0.86 −1.06 −0.35 −0.41 −0.23 −0.29 −0.47
Italy −1.33 −1.13 −0.80 −0.92 −1.24 −0.65 −0.50 −0.23 −0.53 −0.55
Norway −1.59 −1.50 −1.12 −0.91 −1.23 0.73 0.02 0.34 −0.06 0.18
Sweden −0.63 −1.24 −0.59 −1.00 −1.12 0.65 0.10 0.13 0.63 0.26
Switzerland 0.04 −0.39 −0.28 −0.66 −0.45 0.76 0.28 0.51 0.01 0.26
Average −0.77 −1.03 −0.62 −0.68 −0.96 0.28 −0.04 0.15 0.12 0.05
p-value 0.00 0.00 0.00 0.00 0.00 0.25 0.78 0.28 0.53 0.76

Table 5: Overall mean absolute error in life expectancy by sex, method and country. Mean taken over
age and year of the absolute error in life expectancy.

Male Female
LC LM BMS HU DJT LC LM BMS HU DJT

Australia 1.19 1.56 0.64 0.39 1.35 0.80 0.87 0.24 0.69 0.57
Canada 0.80 0.74 0.19 0.28 0.76 0.42 0.42 0.40 0.83 0.50
Denmark 0.53 1.10 1.18 1.20 0.90 1.45 0.49 0.40 0.99 0.66
England 0.70 1.07 0.84 0.80 1.04 0.19 0.44 0.43 0.30 0.34
Finland 0.84 0.62 0.27 0.53 0.53 0.55 0.48 0.81 0.66 0.53
France 0.63 1.01 0.85 0.86 1.06 0.40 0.41 0.23 0.30 0.47
Italy 1.33 1.13 0.80 0.92 1.24 0.66 0.50 0.23 0.53 0.55
Norway 1.59 1.51 1.15 1.10 1.32 0.73 0.21 0.34 0.32 0.22
Sweden 0.79 1.24 0.61 1.00 1.12 0.65 0.16 0.17 0.63 0.26
Switzerland 0.49 0.49 0.40 0.66 0.52 0.76 0.29 0.51 0.14 0.27
Average 0.89 1.05 0.69 0.78 0.98 0.66 0.43 0.38 0.54 0.44

The results are further summarized in Figure 2 showing the mean error and mean absolute error in

life expectancy by year, averaged across countries. The rate of improvement in male life expectancy

is underestimated by all five methods: the shorter fitting period for BMS gives the best results except

in the very early years. For females, the rate of improvement is underestimated by LC, and slightly

overestimated by BMS.
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Figure 2: Mean error and mean absolute error in life expectancy by sex and method, averaged over
countries.
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5 Decomposition of differences among the three LC variants

The LC variants evaluated in the previous section are just three of many possible combinations of the

different adjustment methods, fitting periods and jump-off choices. In this section, we investigate

the effect of each of these factors by comparing all combinations.

The three fitting periods are denoted “long”, “1950” and “short”, corresponding to the periods used

in the LC, LM and BMS variants respectively. Similarly, the adjustment methods used are denoted

Dt , e(0) and Dx ,t . We also include no adjustment. The two jump-off choices are fitted rates (as in LC

and BMS) or actual rates (as in LM) for jump-off. Thus we have 3×4×2= 24 Lee-Carter variations.

The three factors (fitting period, method of adjustment and jump-off rates) are independent for LC

and LM. For BMS, choice of fitting period is dependent on the shape of the fitted kt , which in turn is

influenced to some extent by the method of adjustment, particularly where deviations from linearity

occur (see Figure 3).
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Figure 3: kt and adjusted kt for Australia, both sexes combined, 1921–2000. The e(0) method of Lee
and Miller (2001) and the Dx ,t method of Booth et al. (2002) give almost identical results.

Australia

Year

k t

1920 1940 1960 1980 2000

−
10

0
−

50
0

50

Unadjusted
Dt adjustment
e(0) adjustment
Dxt adjustment

Table 6: Mean absolute error in log death rates for different Lee-Carter variations, averaged over
country, sex, forecast year and age. The LC, LM and BMS variants are marked in bold.

Jump-off: Fitted Actual
Adjustment: None Dt e(0) Dx ,t None Dt e(0) Dx ,t

Fitting period
long 0.236 0.384 0.309 0.300 0.177 0.184 0.181 0.181

1950 0.175 0.187 0.179 0.178 0.171 0.171 0.171 0.171
short 0.154 0.171 0.157 0.157 0.166 0.172 0.169 0.169

Table 7: Mean absolute error in life expectancy for different Lee-Carter variations, averaged over coun-
try, sex and forecast year. The LC, LM and BMS variants are marked in bold.

Jump-off: Fitted Actual
Adjustment: None Dt e(0) Dx ,t None Dt e(0) Dx ,t

Fitting period
long 1.809 0.775 0.802 0.983 0.826 0.718 0.744 0.764

1950 0.956 0.850 0.758 0.878 0.749 0.756 0.735 0.757
short 0.492 0.535 0.498 0.534 0.484 0.498 0.494 0.502
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The mean absolute error in log death rates from each of the combinations is given in Table 6,

averaged over country, sex, forecast year and age. The mean absolute error in life expectancy is

similarly given in Table 7. In both tables, the LC, LM and BMS variants are marked in bold. Tables 6

and 7 show that amongst the three variants, BMS is best for both accuracy measures (log death rates

and life expectancy). However, the tables suggest that a better method would use the short fitting

period of BMS, but with no adjustment. In fact, for log death rates, the use of no adjustment is most

accurate in all cases.

The largest improvement in forecast accuracy of log death rates compared with the LC method is

from 0.384 to 0.154 or 60%. The maximum improvement in forecast accuracy of life expectancy

rates is from 0.775 to 0.484 or 38%, but poorer accuracy also occurs (despite not occurring for log

death rates).

By way of comparison, the mean absolute error in log death rates for HU is 0.149 and for DJT is

0.150 (an improvement of 61% over LC in both cases). The mean absolute error in life expectancy

for HU is 0.657 and for DJT it is 0.711. This is consistent with the earlier findings, that HU and DJT

are more accurate than the other methods in forecasting log death rates, but this doesn’t translate

into greater accuracy for life expectancy forecasts. An indication of the gain in accuracy attributable

to the greater statistical sophistication of HU and DJT can be obtained by comparing them with the

four results for 1950/fitted rates. The maximum gain in accuracy for HU is 20% for log death rates

and 31% for life expectancy. DJT achieves gains of up to 20% and 26% respectively.

The effect of different fitting periods is essentially measuring the effect of different trends in kt . It is

seen that mean absolute error in log death rates is consistently greatest for the long fitting period,

while mean error in life expectancy is consistently smallest for the short fitting period. The use of

1950 to define the fitting period produces less consistent results: for log death rates some errors are

smallest while for life expectancy some errors are largest. These results refer, of course, to the 15-

year forecasting period under consideration; a different pattern may emerge for longer forecasting

periods.
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The effect of adjustment is small compared with the effect of fitting period and jump-off bias, and in

some cases is extremely marginal. When fitted jump-off rates are used, any adjustment worsens the

forecasts of log death rates; this is partly because the fit to the base model is no longer statistically

optimal. Adjustment to Dt consistently produces the largest errors in log death rates. For life

expectancy, any adjustment tends to improve the forecast, except with a short fitting period, but the

optimal adjustment varies. The effect of the different adjustments on life expectancy is complex and

depends on the cancellation of errors.

Comparison of fitted and actual jump-off rates gives an indication of the contribution of jump-off

error to forecast error. Using actual jump-off rates is generally advantageous. The gain in accuracy

is largest when the fitting period is long and when adjustment to Dt is used. This explains why

jump-off error is particularly large for LC (as indicated by Figures 1 and 2). When forecast error is

small, jump-off error is marginal. When actual rates are used there are only marginal differences

in errors in log death rates between fitting periods or adjustment methods. Given the potentially

significant error associated with the use of fitted jump-off rates, actual jump-off rates would seem

preferable.

6 Discussion and conclusions

The results of this comparative evaluation show that while each of the four variants and extensions

is more accurate in forecasting log death rates than the original Lee-Carter method, none is consis-

tently more accurate than the others. It was found that on average HU and DJT provided the most

accurate forecasts of log death rates; however, the differences among the four methods are small

and are not significant. BMS provided marginally more accurate forecasts of life expectancy but

there were no significant differences between the five methods for this measure.

The changed ranking of methods depending on the measure of interest highlights the conceptual

problem in defining forecast accuracy. Demographers have traditionally focussed on life expectancy

but, as has been seen, there is little relation between the relative accuracy of this measure and that

of the underlying log death rates which are actually modelled. The two transformations, namely
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exponentiation and the life table (involving the cancellation of errors and implicit weights), are

highly complex in combination such that the finer degree of accuracy in forecasting life expectancy is

largely a matter of luck. Even if forecast life expectancy is accurate, compensating age-specific errors

can be relatively substantial (see Figure 1) and in the long-term lead to unrealistic forecasts of the

age pattern of mortality, with flow-on effects on forecasts of population structure. While accuracy

in forecasting life expectancy may be important, it is not sufficient. To gain an understanding of

forecast error, the evaluation of error in log death rates is essential.

Among the factors defining the three Lee-Carter variants, it has been possible to identify those that

are generally advantageous. The shorter fitting periods of LM and BMS result in greater accuracy

on average than the longer fitting period. Actual jump-off rates generally do better than fitted

jump-off rates, particularly when the model is not a good fit to the data. However, there is no

compelling evidence in favour of any of the adjustment methods. Further, among the possible

combinations of factors, the combination of short fitting period, no adjustment of kt and fitted

jump-off rates produced the smallest errors in log death rates (0.154) while actual jump-off rates

were more advantageous for life expectancy. Either of these combinations might thus be adopted at

least for the short forecast horizons considered here.

It is noted that Tuljapurkar et al. (2000) did not adjust kt ; they combined this with the 1950 fitting

period and fitted jump-off rates. The results of this evaluation show that, for 1950/fitted rates, the

choice of no adjustment is advantageous for the accuracy of forecast log death rates but disadvan-

tageous for the accuracy of life expectancy. While these effects are moderate for the 1950 fitting

period, they are substantial when the long fitting period is used. It is seen in Figure 3 that adjust-

ment makes a noticeable difference to the trend in kt : specifically, when no adjustment is used the

decline is less rapid leading to a lower fitted life expectancy in the jump-off year. This general pat-

tern is observed for all ten populations included in this evaluation. (When the fitting period begins

in 1950, adjustment makes little difference to the trend.) For life expectancy, the slower rate of

increase from a lower jump-off point produces significant underestimation especially in the longer

term. Thus caution should be exercised in using no adjustment with longer fitting periods, especially

when combined with fitted jump-off rates.
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The results confirm the findings of Lee and Miller (2001) for a smaller group of populations. The LM

use of actual jump-off rates in order to avoid jump-off bias is generally endorsed. This is particularly

important for very short horizons. In the longer term, jump-off bias is less important because it

diminishes in size over time due to entropy of the life table whereas error in the trend accumulates

over time (Figure 2). The indication that actual jump-off rates give greater forecast accuracy than

fitted rates might be regarded as undermining the model. However, in all three Lee-Carter variants

the model is already less than statistically optimal by virtue of the adjustment of kt . BMS and

HU aim to reduce jump-off bias by achieving a better fit to the underlying model; for HU this also

involves the use of several basis functions. It is noted that the drift term of a random walk with drift

is defined by the first and last points of the fitting period. Thus the better the fit of the underlying

model (or its first basis function) to the last point in particular, the smaller the jump-off bias and the

more accurate the drift.

The LM variant is, in fact, widely referred to by Lee and others as the Lee-Carter method and it is this

variant that is now widely applied. However, the original Lee-Carter method (specifically adjustment

of kt to match total deaths) is still used as a point of reference (e.g. Renshaw and Haberman, 2003c;

Brouhns et al., 2002). This analysis suggests that not only is the original LC method a rather poor

point of reference when the evaluation is focused on log death rates, but also that the LM variant is

not the optimal point of reference (at least on the basis of these averaged results). Actual jump-off

rates and no adjustment of kt appears to be a better point of reference for all but the short fitting

period where fitted rates are advantageous. Bongaarts (2005) uses as a reference the Lee-Carter

method without adjustment. Actual rates may be replaced by the average observed rates over the

last two or three years of the fitting period (Renshaw and Haberman, 2003a).

There has been no attempt in this paper to compare the five forecasting methods on any basis other

than forecast accuracy. The HU and DJT methods produce forecast rates that are smooth across age,

which may be an advantage in some applications. These methods also provide a general framework

which is readily adapted to deal with more complex forecasting problems including forecasting

several populations with related dynamics such as a common trend.

While the results are limited to the forecasting period and countries adopted, it is likely that they
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may be more widely generalised to other developed countries. The extent to which they may be

generalised to other forecasting periods is less clear. Other research comparing different forecasting

methods has shown that forecast accuracy is highly dependent on the particular period or popula-

tion (e.g. Keyfitz, 1991; Murphy, 1995). In this comparison, however, the methods do not differ

substantially, and it remains to be examined whether the details of the basic Lee-Carter method

have a different effect in different forecasting periods. It is expected that the more flexible methods

of HU and DJT will be better able to forecast less regular mortality patterns (e.g. where the time

index does not show a linear trend). For the forecasting period adopted and the countries included,

however, these methods do not deliver a marked increase in forecast accuracy.

A final consideration is the ease with which the methods can be implemented. To this end, Hyndman

(2006) is an R package which implements the HU, LC, LM and BMS methods, as well as other

variants of the Lee-Carter method.
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