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Abstract

This paper empirically investigates the distribution dynamics of resource alloca-
tion decisions across Diagnosis Related Groups (DRGs), in a continuing Prospective
Payment System (PPS) . The theoretical literature suggests a PPS could lead to
moral hazard effects, where hospitals have an incentive to change the intensity of
services provided to a given set of patients, a selection effect whereby hospitals have
an incentive to change the severity of patients they see, and thirdly hospitals could
change their market share by specialization (practice style effect). The related econo-
metric literature has mainly focussed on the impact of PPS on average Length of Stay
(LOS) concluding that the average LOS has declined post PPS. There is little liter-
ature on distribution of this decline across DRGs, in a PPS. The present paper helps
fill this gap. The paper models the evolution over time of the empirical distribution of
LOS across DRGs. The empirical distributions are estimated using a non parametric
“stochastic kernel approach” based on Markov Chain theory. The results suggest
that relative prices of DRGs are one of the determinants in resource allocation across
DRGs. In addition, a reduction in the high outlier episodes indicates existence of
potential selection effect even in a continuing PPS.



1 Introduction

The empirical analysis of the impact of prospective payment systems (PPS) or case-mix

funding on the resource allocation in hospitals has received widespread attention in recent

years. Under a PPS, hospitals are paid lump sum per admission. The main objective

of introducing PPS is to improve hospital efficiency (For example in Australian State of

Victoria case-mix funding was introduced to reduce health expenditure while maintaining

service outputs). A PPS regime enables payers (health department) and providers (hospi-

tals) to share the financial risk of patient care. Such a sharing mechanism is also termed

as “supply side cost sharing” by Ellis and McGuire (1993).

The theoretical models (see for example, Selden (1990); Newhouse (1996); Ellis and McGuire

(1996); Siciliani (2006)) that underlie these works can be classified into three broad cate-

gories. Firstly, case-mix funding could lead to a moral hazard effect where hospitals have

an incentive to change the intensity of services provided to a given set of patients. Secondly

the reimbursement mechanism could lead to a selection effect whereby hospitals have an

incentive to change the severity of patients they see, and thirdly in a competitive setup

the hospitals could change their market share by specialization (practice style effect).

It has been argued in the literature that a fully prospective payment system leads to

technical efficient production of health care as the hospitals keep the difference between

the payment per episode and cost of treating a patient. Thus unlike a cost reimbursement

system (where hospitals attempt to obtain maximum reimbursement by treating the patient

with maximum intensity) hospitals will not have an incentives to over provide a service due

to rent in factor prices (Newhouse, 1996). Although PPS encourages hospitals to produce

efficiently it also increases the likelihood of patient selection thereby denying some patients

the treatment they desire. Thus there exists a tradeoff between selection and production

efficiency (Ma, 1994). Such a “selection-efficiency” tradeoff has been extensively discussed

in a review by Newhouse (1996). One of the major implications of such a tradeoff could be

under servicing of high cost patients1 (Newhouse, 1983, 1996; Selden, 1990). Under a PPS

the marginal revenue to treat a high cost patient is likely to be less than the marginal cost

1Here high cost patients refer to the patients having relatively higher cost within the distribution of
costs of an individual DRG.
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of the treatment and thus hospitals will have an incentive to under service such patients.

Newhouse (1996) and Newhouse (2002) discuss several theoretical frameworks addressing

the issue of selection from the perspective of the supply side of health care. However,

Newhouse (1996) observes that such theoretical frameworks have limited capabilities in

terms of empirical work. This is mainly because of their requirement for information on

unobservable variables viz. information on a hospital manager’s utility function for effort,

unobserved patient factors affecting cost, the physicians utility function and error variances

in the prices etc. In addition, most of the assumptions in these models are untestable.

Most of the earlier econometric research on PPS has tried to estimate its effects by analysing

the length of stay (LOS) data for different Diagnostic Related Groups (DRGs). For exam-

ple, in making a case for selection effect Newhouse and Byrne (1988) argue that some of the

decline in LOS after PPS is caused by the shift of more severe cases to facilities not paid

by PPS. Most of the empirical evidence is on the effect of a switch to PPS regime on LOS

and the general consensus is that the average LOS per discharge at hospitals has declined

after the introduction of PPS (Freiman et al., 1989; DesHarnais et al., 1990; Manton et al.,

1993; Ellis and McGuire, 1996; Norton et al., 2002).

Although PPS led to a relative reduction in LOS for inpatients, the potential imperfections

in the funding regime could offset to a certain extent the very achievements of PPS. One

such example is per diem payment for a patient with unusually long LOS. In a PPS, the

inpatient hospital discharges are coded into DRGs (which are based on clinical relevance

and resource homogeneity). Further, at the beginning of the financial year, each DRG

is assigned a weight to reflect its relative resource consumption in the penultimate year.

The count of inpatient output is then derived by multiplying each inpatient discharge by

the relevant DRG weight. For each DRG, low and high trim points are set to determine

unusually short stay (low outlier) and unusually long stay (high outlier) patients. The

inpatient episodes with LOS between the trim points are called inliers. Hospitals are paid

extra for high outliers. For example in Australian State of Victoria (a pioneer in DRG

based funding going back to 1993), high outliers receive additional weight for each day

above the high trim point.

It has been argued that such “imperfections” in hospital funding might introduce the incen-
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tives for hospitals to increase expenditure and maximize reimbursement thereby partially

offsetting the anticipated effect of PPS (Norton et al., 2002). Moreover, even a continu-

ing PPS regime might induce such hospital behaviour because of temporal changes in the

relative DRG weights which are used for funding inpatient episodes in the hospitals. For

example, in Victoria, relative DRG weights are highly volatile up to the extent of +10%

to -10% per year. Such volatility in DRG weights might lead to incentives for hospitals to

assign patients to profit making DRGs (“DRG-creep”) or split a patient into several cases

(“patient splitting”) in order to maximise funding for that particular inpatient episode.

Similarly, the hospitals might redistribute their resources to more lucrative patients and

discharge less lucrative patients “quicker and sicker” (which could result in increasing read-

mission rates). It should be noted that the definition of a lucrative DRG might change in

each time period (based on its relative weight) and thus the resources need to be again

redistributed to maximize government reimbursement2. Hence it is imperative to simulta-

neously consider the cross-sectional (across DRGs) and dynamic (over years) behaviour of

resource allocation.

Thus an empirical framework to test the distribution dynamics of resource allocation de-

cisions across DRGs in a PPS is critical from a policy point of view. Such an analysis

reflects on the efficacy of case-mix policy and will be of interest to policy makers. For

example, the conclusions from such an analysis might shed light on the perception that

high cost patients are underserviced or changes in relative price of DRGs is one of the

factors responsible for resource allocation decisions across DRGs.

The main objective of this paper is to empirically investigate the distribution dynamics

of resource allocation decisions across DRGs, in a continuing PPS regime. As discussed

earlier, the extant literature has mainly focussed on the impact of introduction of PPS

on average LOS by comparing the pre/post PPS scenarios and concluded that the average

LOS has declined post PPS. However, there is little literature on distribution of this decline

in LOS across DRGs, in a continuing PPS regime. The present paper intends to help fill

this gap. In a continuing PPS regime, the hospitals might be less inclined to reduce

2This argument is particularly valid for elective non-urgent episodes of patient care which are funded
under PPS. Thus only such episodes are considered for empirical analysis in this paper.
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LOS in “lucrative” DRGs and hence the overall reduction in LOS might be a result of

disproportionately higher reduction in less “lucrative” DRGs3. This paper proposes an

empirical framework to test for such a behaviour by explicitly analysing the temporal

changes in the re-distribution of resources, in a continuing PPS regime.

The empirical methodology models the evolution over time of the empirical distribution

of length of stay across DRGs. The main purpose of this is to record not only the mean

and variance of the distribution but also the mobility of each DRG within the distribution.

Thus such an approach helps identify certain inter-DRG allocative patterns which might

be induced by the continuing PPS regime. The empirical distributions are estimated using

the “stochastic kernel approach” based on Markov Chain theory. A stochastic kernel can

be defined as a complete description of transitions from state ‘i’ to state ‘j’ in an empirical

distribution. For example, the stochastic kernel related to an empirical distribution of

average LOS in each DRG will help answer the following question: What is the probability

that proportion of LOS in a particular group of DRGs will increase, decrease or remain

same in the next two years? The paper uses monthly Victorian patient data (around one

million patient episodes each year) with a time span of eight years (1998-99 to 2005-06).

The empirical analysis is done separately for inlier and outlier episodes. The main con-

clusions are : For inlier episodes, over a 2 year transition, the DRGs with high quantile

shares of LOS are likely to have their shares reduced (transition of LOS shares from high to

low), DRGs with middle quantile shares of LOS will likely to have their shares unchanged

(persistence of shares), DRGs with low shares of LOS will likely to have their shares further

reduced (transition of shares from low to lower). Thus the distribution of LOS shares for

inlier episodes shows emergence of three peaks, most prominent being in the middle of dis-

tribution comprising of maximum number of DRGs. The empirical analysis further tests

the hypothesis that change in relative prices of DRGs explain the stratification of inlier

shares. This is done by using a conditional approach where stochastic kernels are reesti-

mated using share of inliers weighted by relative price of DRGs. The results reveal that

DRG prices are one of the factors explaining resource allocation decisions across DRGs. For

3It should be noted that ex-ante hospitals would like to specialize in the “lucrative” DRG treatment
(Rauner et al., 2003) but ex-post in a continuing PPS regime, even a specialist hospital will have an
incentive to redistribute its resources in response to temporal changes in relative DRG weights.
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high outlier episodes, over a 2 year transition, the cross section LOS distribution of DRGs

converges to zero. This indicates that in the current case-mix funding regime, hospitals

are less likely to have high outlier episodes.

The empirical evidence for both inlier and outlier episodes is consistent with the behaviour

of hospitals suggested by the theoretical models in extant literature. For example, transi-

tion of LOS shares from low to lower values could be mainly because of reduction in the

number of patients in these DRGs. Given almost constant patient profile in last 8 years,

this reduction in inpatient numbers could be result of change in the intensity of treatment

for patients with low average LOS or a potential selection for patients with high average

LOS. Similarly, the likelihood of reduction in the high outlier episodes indicates existence of

potential selection effect even in a continuing case-mix regime. Thus the empirical method-

ology used in this paper sheds further insight into the resource allocation across DRGs,

which was not possible by using traditional econometric methods. The rest of the paper is

organized as follows: Section 2 gives a background on the case-based payment system in

Victoria. Section 3 proposes an analytic framework to motivate empirical analysis. Section

4 discusses the data and methodology. The results are discussed in Section 5. Section 6

concludes.

2 Case-based payment system for inpatients in Vic-

toria

The case-based payment system also known as case-mix funding was introduced in Victo-

rian public hospitals in 1993. Prior to this public hospitals were funded on a global budget

basis or “historical plus” system. Under a global budget basis each hospital annually negoti-

ated its budget with the Health Department. The budget was adjusted upwards to account

for inflation and new programs in the hospital and then slightly adjusted downwards in

anticipation of productivity savings. The output was measured in bed-days (number of in-

patient hospital days) and number of separations (number of inpatient discharges). Under

such a funding regime, distinction between hospitals on the basis of complexity of patients

treated was limited. After the introduction of case-mix funding the hospitals were funded
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on the basis of volume adjusted for complexity.

The main objective of introducing the case-mix funding in Victoria was to achieve sig-

nificant reductions in health expenditures while maintaining service outputs. This was

implemented by the policy of paying on the basis of products and not capacity of hos-

pitals. In a case-mix funding regime, the admitted patients output is counted by coding

hospital separations into DRGs. The DRGs are determined on the basis of the diagnosis

codes for patient episodes. These codes are based on ICD 10 classification and hospitals

can enter up to 24 diagnosis codes for each patient episode. Each DRG is assigned a weight

based on its relative resource consumption. Each patient separation is multiplied by the

corresponding DRG weight and this weighted throughput is used for counting the output

for funding purposes. In addition this formula is further adjusted for unusually long stay

and short stay patients. Such patients are determined by setting low and high trim points

for each DRG.

In Victoria, the trim points are set at one-third and three times the average LOS for that

DRG. Patients with LOS between the trim points are called inliers and patients with LOS

above and below the trim points are called high and low outliers respectively. Low outlier

cases receive a fraction of inlier case weight. On the other hand, hospitals receive some

additional weight for high outliers for each day above the high trim point. It should be

noted that the daily additional weight is related to the inlier weight and the average length

of stay but the relationship varies for different DRGs and is subject to the ceiling and

flooring restrictions. Such an adjustment enables each adjusted outlier separation to be

expressed in terms of equivalent inlier weights and is termed a Weighted Inlier Equivalent

Separation (WIES). Thus WIES is the unit of counting admitted patient throughput under

the case-mix formula.

In each funding round the health department sets up a price per unit of WIES using a “top

down” approach in which prices are determined on the basis of amount allocated to the

health budget rather than on the basis of a benchmark cost. Thus the case-mix formula

is not a price setting mechanism and does not reflect actual costs of treatment. The DRG

cost weights are determined from a series of specific cost weight studies commissioned by

the health department. These studies are undertaken mostly by the large/metropolitan
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hospitals which have resources to undertake such sophisticated costing exercise4. Though

the quality of cost weight studies is increasing, the systems ability to fine tune the weights

has been questioned because of high volatility of DRG cost weights. The volatility in

DRG cost weights between the funding rounds combined with temporal changes in the

price per unit of WIES may transform a specific DRG from profitable (“lucrative”) to loss-

making (“non-lucrative”). This might send price signals to the hospital to reduce number

of procedures in that DRG.

The funding regime of Victorian hospitals is not purely based on case-mix and in addition

to WIES funding, hospitals also get additional funding in the form of fixed overhead costs,

specified grants for teaching and research, performance and quality incentives and bonus

funding for hospital demand management strategies. The health department encourages

efficiency by setting WIES targets for each hospital and a public throughput above 2% of

this target is penalised by reductions in the bonuses payable to the hospital. In addition

to WIES targets hospitals also face targets under the Hospital Access Program (HAP)

relating to waiting times for emergency services, critical care and elective surgery. In

the short term, under the pressure of meeting multiple targets hospitals face a real risk

of bearing an operating deficit. Thus, in order to minimize such deficits, hospitals may

try to maximise their revenue by reallocating resources within DRGs (particularly related

to elective patients). Thus in the Victorian ‘fixed and variable’ case-mix funding regime

hospitals’ behaviour reflects responses to fixed costs (infrastructure, salaries etc.), variable

costs (WIES) and marginal cost (per diem expenses for high outliers) components. The

payment system is not fully prospective and can be at best called a mixed payment system

with most of the payment being prospective.

3 Analytic Framework

As discussed in the previous section, in a continuing PPS regime, funding is at a DRG

level and all hospitals or hospital groups get the same amount for treating patients from a

4Therefore only large/metropolitan hospitals are effectively capable of reallocating the resources across
DRGs, in response to changes in cost weights. Thus only such hospitals are used for empirical analysis in
the present paper. These hospitals account for 85-90% percent of hospital separations in Victoria.
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particular DRG. The main objective of this paper is to analyse the distribution dynamics

of resource allocation decisions across DRGs in a PPS. Thus the analysis is done at DRG

level for the hospital sector as a whole. This is mainly because, specifically in our case,

where we focus on elective surgeries, a hospital level study may give misleading results

regarding potential patient selection. For example, unobserved patient choice for elective

treatment may be responsible for changes in DRGs share of LOS across hospitals which

could be picked up as selection effect in a hospital level analysis. On the other hand,

if a particular DRGs’ share of resource use changes significantly at the hospital sector

level, it indicates a potential selection effect or change in treatment intensity in response

to a relative price change of that DRG5. A funding body will also be interested in the

patterns of resource allocation within DRGs at the hospital sector level rather than at the

individual hospital level. A potential selection effect at hospital sector level indicates that

some patients might miss out on hospital treatment altogether, which is a critical policy

issue in terms of adverse health outcomes of the population. The analysis of hospital level

selection is certainly an avenue for research but more appropriate for studies with goals

other than those here.

This section formally quantifies the effect of the reimbursement system on the average

resource use at a hospital sectoral level. This is done by extending the hospital level

framework suggested by Ellis and McGuire (1996) to DRG level. The framework decom-

poses the impact of relative price changes of DRGs on average resource use for the hospital

sector. Let us assume that a patient seeks elective treatment for DRG i. In a PPS the

patient might be subjected to an admittance criteria based on the relative price of DRG

i: Ai(pi) where Ai is the admittance criteria and (p) is the relative price vector p. For

example, such an admittance criteria might be based on a decision rule where patients who

are perceived to be high outliers will be avoided. Similarly, a patient might be subjected to

different treatment intensity (Ti(pi)) based on the reimbursement system. For example, if

relative price of DRG i is perceived to be low then the patient might be discharged “quicker

and sicker” from the hospital. Thus the admittance criteria (A), treatment intensity (T )

and the severity of patients (V ) jointly determine the number of patients treated in DRG

5It should be noted that effect of change in patient profile on resource use will be negligible as patient
profile for elective DRGs is almost constant in Victoria during the 8 year period considered for our analysis.
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i and their corresponding LOS. Formally:

Ni = Ni(Ai(pi), Ti(pi)) (1)

Vi = Vi(Ai(pi), Ti(pi)) (2)

LOSi = Li(Vi(pi), Ti(pi)) (3)

where

Ni = Number of patients treated in DRG i

Vi = Severity of patients treated in DRG i

LOSi = Length of Stay for DRG i

Denoting DRG i’s share of discharges as Si the LOS across all DRGs is:

LOS =
∑

i

Si LOSi (4)

Given Eqns (1), (2) and (3) total effect of reimbursement system on resource use can be

decomposed into three components:

dLOS

dp
=

[∑
i

Si
∂LOS

∂Ti

∂Ti

∂pi

]
+

[∑
i

Si
∂LOS

∂Vi

∂Vi

∂pi

]
+

[∑
i

LOSi
∂Si

∂pi

]
(5)

The first term is the moral hazard effect, the second term is the selection effect and the

third term is what we define as the redistribution effect. This paper focusses on quantifying

the redistribution effect by using the non-parametric approach of stochastic kernels. In

particular we focus on the impact of relative price changes on the share of resource use (Si)

for a particular DRG. As evident from first two terms of Eq. (5), moral hazard effect and

selection effect are also functions of Si and thus an evidence of change in shares in response

to change in relative prices could also indicate potential selection effect at hospital sector

level.
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4 Empirical Methodology

In order to test for the behavioural response of hospital sector towards temporal changes in

relative weights of DRGs, the empirical framework focusses on the cross-DRG distribution

dynamics of DRG’s share of inlier and outlier LOS relative to total LOS. As an illustration,

consider Figure 1 where the vertical axis indexes share of inliers in each DRG and horizontal

axis, time. Figure 1 records the densities corresponding to cross-DRG inlier distributions,

over two time periods. Figure 1 represents a hypothetical scenario where in period t most

DRGs have medium levels of inlier shares and there are very few DRGs with very high or

very low inlier shares.

As discussed earlier, in a PPS the relative weights of DRGs change over each funding

round and thus the distribution of inliers across DRGs is likely to fluctuate. For example

as illustrated in Figure 1, the inlier distribution for the same pool of DRGs changes shape

in period t + s and shows a patterns where share of inliers for some DRGs have increased

(for example as in DRG 1), decreased (for example as in DRG 3) or remained almost the

same (for example as in DRG 2). In addition the period t + s distribution also reveals

a pattern of clustering where DRGs with very high inlier shares have clustered together,

DRGs with medium inlier shares have clustered together and DRGs with very low inlier

shares have clustered together.

Such an emerging pattern of clustering with multiple peaks is in contrast to the distribution

in period t and is termed as stratification. Since the underlying population in our analysis

are DRGs such a behaviour of stratification might result from selection effect, moral hazard,

practice style effect or a combination of all three.

—Insert Figure 1 about here—

The empirical analysis in this paper explores such patterns by analysing the intradistribu-

tion dynamics of the cross-DRG distributions, using actual inpatient data. For example,

Figure 1 indicates towards three types of intradistributional dynamics: i) Persistence:

Some DRGs in period t + s have almost the same inlier ratio as in period t (e.g. DRG 2);

ii) Churning or Mobility: Some DRGs which have a high ratio of inliers in period t + s

had a lower ratio of inliers in period t (e.g. DRG 1) and some DRGs which have a lower
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ratio of inliers in period t + s had a higher ratio of outliers in period t (e.g. DRG; 3) iii)

Clustering or stratification: DRGs have clustered into three distinct categories which has

led to some DRGs which had similar share in period t to separate from each other and be

part of different clusters in period t + s.

Thus Figure 1 represents a evolving pattern of inlier distributions across two time periods

with mobility and stratification of the distribution happening simultaneously. The econo-

metric framework in the present paper intends to capture such distributional dynamics.

In addition, the empirical model will also project such distributional dynamics in future

using the observed data. The econometrics of analysing the distribution dynamics directly

was introduced in the economic growth literature by Quah (1997, 1990). Quah argued that

the extant empirical techniques were incapable of capturing the intradistribution dynam-

ics. For example comparing the mean and variances of the cross sectional distributions of

DRGs over time will not shed any light on the stratification or mobility of the distribution.

Similarly, comparison of time series behaviour of outlier shares in each DRG or sub-groups

of DRG will also be uninformative on distribution dynamics. Even the more sophisticated

techniques of cross section and panel data regressions capture the behaviour at the condi-

tional mean and will not be useful for analysing dynamic behaviour of distributions. The

impact of a continuing PPS regime on the allocation of resources across DRGs can be

best captured by analysing the mobility or churning of DRG distributions. Quah (1997)

suggests the use of stochastic kernels for such a analysis, which are discussed next.

4.1 Stochastic Kernel

A stochastic kernel is a mapping which quantifies how distributions evolve over time. The

distribution dynamics methodology (Quah, 1997) assumes that the density distribution

φt+1 for the shares evolves according to a Markov process:

φt+n = M · φt (6)

where M is an operator mapping the transition between the share distribution existing

in time t to the share distribution in time t + n. Thus stochastic kernel is a continuous

time variant of a discrete transition probability matrix (TPM). A TPM is an alternative
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way of quantifying distribution dynamics where, for example, outlier shares of DRGs are

categorized in distinct discrete cells and then the observed transitions out of and into these

discrete cell are counted. However, Quah (1997) and Chung (1967) argue that such a

discretisation of a continuous variable (share of inliers and outliers in our case) can distort

the distribution dynamics and lead to misleading results. Thus any categorization of outlier

shares into specific ranges will be arbitrary and such an arbitrariness means that setting

out different ranges of share of outliers might give different conclusions about the actual

projection of distribution in the future.

Quah (1997) further argues that instead of discretisation the number of distinct cells in a

TPM should be allowed to tend to infinity and then to the continuum. The corresponding

TPM with a continuum of rows and columns is termed as stochastic kernel. Thus a

stochastic kernel can be formally defined as6:

Definition 1 Stochastic Kernel Let µ and ν be elements of B that are probability mea-

sures on (R, <). A stochastic kernel relating µ and ν is a mapping M(µ,ν): (R, <) → [0,1]

satisfying:

(i) ∀ S in R, the restriction M(µ,ν)(S, .) is a probability measure;

(ii) ∀ A in <, the restriction M(µ,ν)(., A) is < measurable;

(iii) ∀ A in <, we have µ(A) =
∫

M(µ,ν)(S, A)dν(S) M(µ,ν)(., A).

where:

(R, <) is the underlying state space with R being the real line and < collection of its Borel

sets.

B(R,<) denotes the Banach space of bounded finitely-additive set functions on the mea-

surable space (R, <) endowed with total variation norm:

∀µ in B(R,<): |µ| = sup
∑

j |µ(Aj)|

where the supremum in this definition is taken over all Aj: j = 1,2,.....n finite measurable

partitions of R.

6For the technical derivation of stochastic kernel interested readers can refer to Section 4 in Quah
(1997).
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The main concept of stochastic kernel is defined by condition (iii). Taking initial period

as t, for a given LOS share S there is a fraction dν(S) of DRGs with shares close to S. In

period t + n part of DRGs contained in dν(S) will move to a subset A ⊆ R. Normalising

this fraction of DRGs by the total number of DRGs, we have the stochastic kernel given

by M(µ,ν)(S, A)dν(S).

4.2 Estimating Stochastic Kernels

Stochastic kernels are generated by applying explicit laws of motion to the cross section

distributions. For estimation purposes, stochastic kernel can be written as (Arbia et al.,

2005):

φt+n(S) =

∫ ∞

0

fn(S|S ′)φt(S)dS (7)

where S is the share in period t + n and S ′ is the share in period t. fn(S|S ′) is the

conditional density which describes the probability that a DRG moves to a specific state

of share, given the share in period t. Thus a stochastic kernel can be expressed as a

conditional density and its estimator can be derived from the estimation of conditional

density. A nonparametric estimator for the conditional density as proposed by Rosenblatt

(1956) is given by:

f̂n(S|S ′) =
ĝn(S ′, S)

ĥn(S ′)
(8)

where the estimator for the joint density ĝn(S ′, S) is given by:

ĝn(S ′, S) =
1

Jab

J∑
j=1

K

( ||S ′ − S ′
j||

a

) (
||S − Sj||

b

)
(9)

and the estimator for the marginal density ĥn(S ′) is given by:

ĥn(S ′) =
1

Ja

J∑
j=1

K

( ||S ′ − S ′
j||

a

)
(10)

where a and b are bandwidth parameters controlling the smoothness of fit, K is the chosen

kernel function and ||S ′ − S ′
j|| and ||S − Sj|| are the Euclidian metrics. Substituting Eqs
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(9) and (10) in (8) the conditional density estimator can be rewritten as:

f̂n(S|S ′) =
1

b

J∑
j=1

wi(S
′)K

(
||S − Sj||

b

)

where

wi(S
′) = K

( ||S ′ − S ′
j||

a

)
/

J∑
j=1

K

( ||S ′ − S ′
j||

a

)
The above kernel estimator is the Nadaraya-Watson kernel regression estimator. It shows

that a conditional density can be obtained by the sum of J kernel functions in S space

weighted by the wi(S
′) in S ′ space. In order to estimate the conditional density the issue

of optimal bandwidth and kernel choice is crucial (Pagan and Ullah, 1999). Quah (2004)

reports a measure of relative efficiency based on the cross validation criteria of minimum

integrated least square error, where the bandwidth is permitted to vary with the kernel K

using the method suggested by Silverman (1986). According to this criterion Epanechnikov

kernel turns out to be optimal but the other kernels also achieve efficiencies close to it

(Quah, 2004). We use Epanechnikov for our empirical analysis. The bandwidth or the

smoothing parameter is calculated using the methodology suggested by (Silverman, 1986).

The choice of bandwidth is not arbitrary and is data dependent and thus the stochastic

kernel estimation is robust to bandwidth selection.

The assumptions of Markov process underlying the stochastic kernel estimation used in

our analysis are noteworthy. We assume that the transition probability of DRG share

from value i to j, say in response to a unit change in relative price of DRG, is constant

over time. In other words, the behavioral response of hospital sector to a continuing PPS

remains consistent over time. This is a plausible assumption as there is no significant

structural shift in PPS in Victoria in last 8 years considered for our analysis. Such an

assumption of time homogeneity is common to Markov models used in economics and

health economics applications even for time spans longer than that used here (For example

see Quah (1997); Norton (1992); Craig and Sendi (2002)). In addition, by definition Markov

property holds which states that given the entire past history, the present state depends

only on the penultimate state. Since the empirical analysis is done at a DRG level the data

is aggregated over all hospitals. Such an aggregation could lead to a bias at hospital sector
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level. Thus the empirical analysis is restricted to major teaching and suburban hospitals

to ensure homogeneity among hospitals. These hospitals account for 85-90% of elective

surgical episodes in Victoria. In fact for some so called tertiary DRGs all the patients are

treated in these hospitals. These hospitals belong to same payment group under the case-

mix funding regime, are research active and have same technological inputs for treating

patients.

The stochastic kernel technique is best suited for our analysis as: i) it allows us to trace

the distribution dynamics of DRGs within a distribution which is not possible to estimate

using a parametric method ii) it can be applied in the settings of patient level analysis

where detailed data is not available due to confidential reasons and iii) it allows for condi-

tioning of covariates on distribution to analyse the impact of variables on the distribution

dynamics which helps answer interesting policy questions. For example, in this paper we

analyse the impact of relative price of DRGs on distribution dynamics and conclude that

for inlier episodes relative prices in DRGs are one of the determinants in resource alloca-

tion across DRGs. The results obtained by applying the stochastic kernel mapping on the

current distribution can be displayed in a three dimensional diagram or a two-dimensional

contour map. The empirical methodology in this paper applies stochastic kernel mapping

to quantify the evolution of distribution of DRG’s shares of outliers and inliers by using

inpatient data in Victorian hospitals.

4.3 Data

The empirical study uses Australian patient level Victorian Admitted Episodes Dataset

(VAED) with a time span of eight years (1998-99 to 2005-06). VAED data is the most

appropriate for the analysis as this dataset is used for health services planning, policy

formulation and case-mix funding purposes. The dataset consists of over one million patient

episodes per year with detailed information on length of stay, diagnosis, patient origin etc.

As discussed earlier only large hospitals have the resources to undertake sophisticated case-

mix costing exercises and thus mostly these hospitals will respond to change in DRG cost

weights. Thus our analysis is restricted to large teaching and suburban hospitals. The

data is further refined by removing emergency cases.
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The patients’ diagnosis in the data is coded by Australian Refined Diagnosis Related

Group (ARDRG) which are slight modification of standard DRG codes based on ICD-10

AM classification. The DRG code definitions reported in VAED are adjusted for DRG

reclassification and are consistent throughout the eight years. The variable “w12 ifs” clas-

sifies each patient episode into a low outlier (coded as “L”), inlier (coded as “I”) or high

outlier (“H”). Outlier patient episodes are determined by setting low and high trim points

for each DRG. In Victoria, the trim points are set at one-third and three times the average

LOS for that DRG and this benchmark of determining outliers is consistent over eight

years of observed data. The empirical analysis is done at DRG level.

4.4 Variables

The allocation of resources across DRGs is captured by two types of DRG specific variables:

i) Share: LOS of outliers/inliers in a particular DRG relative to LOS of outliers/inliers in

all DRGs; ii) Proportion: LOS of outliers/inliers in a particular DRG relative to total LOS

(including both outlier and inlier episodes) in all DRGs. Thus for high outliers, the share

of each DRG is calculated by dividing the total LOS of high outliers in that DRG to total

LOS of high outliers across all DRGs. Thus for DRG i the share of outlier is:

ShHO
i =

LOSHO
i∑N

i=1 LOSHO
i

where LOSHO
i denotes total LOS in high outlier episodes of DRG i.

Thus this share represents the LOS distribution of high outlier episodes in a particular

DRG relative to LOS distribution of high outlier episodes in all DRGs. Similarly the share

of inliers (ShI
i ) can be defined as:

ShI
i =

LOSI
i∑N

i=1 LOSI
i

where LOSI
i denotes total LOS in inlier episodes of DRG i. The proportions for high

outlier episodes PrHO
i and inlier episodes PrI

i for a particular DRG are defined as:

PrHO
i =

LOSHO
i∑N

i=1 LOSi
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where LOSHO
i denotes total LOS in high outlier episodes of DRG i and LOSi total LOS

(including inliers and outliers) of DRG i.

PrI
i =

LOSI
i∑N

i=1 LOSi

LOSI
i denotes total LOS in inlier episodes of DRG i and LOSi total LOS (including inliers

and outliers) of DRG i.

The main advantage of using proportions and shares is that they neutralize the effect of

overall reduction in LOS after the introduction of case-mix funding regime. It is to be

noted that the LOS has on an average decreased by 10 percent after the introduction of

case-mix funding (AIHW, 2005). The use of proportions and shares in empirical analysis

ensures that the patterns of resource allocation across DRGs capture only the redistribution

of reduction in LOS. In addition, as evident from Eq (5) theoretically, shares are crucial

in determining impact of reimbursement system on resource use.

The extant studies on effect of PPS have mainly focussed on its impact on average LOS.

The empirical analysis in the present paper takes a step further and sheds light on the

distribution of LOS changes across DRGs. The advantage of using shares and proportions

is that it will shade more light on how these changes in average LOS have been distributed

across DRGs. The empirical analysis uses a balanced panel of 177 DRGs over 96 months.

The summary statistics of the panel data are presented in Table 1.

—Insert Table 1 about here—

The empirical methodology involves stochastic kernel mapping of above defined shares and

proportions. Such a mapping will reveal the direct distribution dynamics of outlier and

inlier episodes in a continuing PPS. In addition, based on the actual observed data, a

projection of distribution is made for a horizon of 24 months.

5 Results

The stochastic kernel mapping is done separately for inlier patient episodes and high out-

lier patient episodes. In addition, the stochastic kernel for inlier shares is restimated by
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conditioning it on the relative price of DRGs. This is done in order to test if relative prices

explain the changes in the distribution dynamics of resource allocation across DRGs.

5.1 Inliers

The upper half of Figure 2 shows the stochastic kernel and corresponding contour plots7

for 24-month transitions in the share of inliers data. The choice of a 24 month transition is

only for convenience and clarity as transitions probabilities across different states of inlier

shares are independent of time (time homogeneity assumption of the Markov Process).

The stochastic kernel could be traced by picking any point on the axis marked ‘Period t’

and extending it parallel to the axis marked ‘Period t+24’. Thus the stochastic kernel is a

probability density function and the projection traced out 24 months ahead is nonnegative

and integrates to unity. The projection is analogous to the row of a discrete transition

probability matrix where probabilities in different states sum up to 1. Thus stochastic

kernel mapping can be used to trace the share of inliers over a 24 month period.

Figure 2 shows how the cross sectional distribution at time t evolves into that at t + 24.

The distribution will show the behaviour of persistence if most of the graph in Figure

2 was concentrated along the 45-degree diagonal. This would mean that inlier shares in

the distribution remain where they began. However, if say share of inliers in the DRGs

change drastically i.e. DRGs with a high share of inliers in period t become DRGs with a

low share of inliers in period t + 24 (high to low transition) and DRGs with low share of

inliers become those with a high share of inliers in period t + 24 (low to high transition ),

the stochastic kernel mapping will rotate 90 degrees counter-clockwise from that 45-degree

diagonal.

Figure 2 shows a multiple peaks feature in the distribution of inlier shares. The shares

of inliers have stratified and the stochastic kernel rises towards three local maxima. This

is reflected by an emergence of three peaks which is clear from the corresponding contour

plot of the kernel.

—Insert Figure 2 about here—

7The econometric analysis is done using the tsrf shell provided by Danny Quah.
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The lines on the contour plot connect points at the same height on the three-dimensional

kernel. The contour plot further reveals the peak at the lower quantile of shares (peak

1) shifts left of the 45 degree line whereas the peaks on the middle quantile (peak 2)

and higher quantile (peak 3) remain on the 45 degree line. The emergence of peak 2 is

a significant finding. Its main interpretation is that over a 24 month horizon the DRGs

with middle quantile inlier shares will increase. Most of the portion of probability mass

remains clustered around the main diagonal. However, the two dips on the principal ridge

of the distribution (across the 45 degree line) in Figure 2 indicate that portions of the cross

section do transit from low to middle level, and high to middle level, thereby contributing to

formation of peak 2. In addition the middle portion of the cross section shows a behaviour

of persistence over a 24 month time horizon. Peak 1 has a lower number of DRGs compared

to peak 2 and is located slightly to the left of the 45 degree line. This indicates that DRGs

with lower shares of inliers in period ‘t’ will have their shares decreased in period ‘t+24’.

Peak 3 has the least number of DRGs which means that over a 24 month horizon numbers

of DRGs with inlier shares in the higher quantile range in period ‘t’ will decrease. The

intensity of the graph (marked by darker shades) reveals that variation of shares in DRGs

around peak 1 is lowest and around peak 3 is highest.

As discussed earlier, in a case-mix funding regime, the hospitals get a lumpsum payment

(based on DRG weights) for inlier episodes in each DRG. Thus the marginal benefit to

hospitals for keeping the inlier patient for an extra day is zero whereas the marginal cost

is positive. Hence the hospitals have an incentive to keep the LOS of inlier episode to a

minimum by choosing less severe patients (selection effect) or changing the intensity of

treatment provided to patients (moral hazard effect) or by specializing. The empirical ev-

idence derived from the evolving distribution of share of inliers discussed above (especially

the transition of DRGs from high shares to low shares) indicates that either one or com-

bination of these effects might be contributing towards hospital behaviour. For example,

there is tendency that over a 24 month horizon the DRGs with a higher quantile of inlier

LOS shares (in period ‘t’) (peak 3) will decrease. The transition from low shares to high

shares (occurring for some DRGs between peak 1 and 2, and peak 2 and 3) indicates that

some DRGs will increase their share of LOS in inlier episodes. This means that hospitals

will redistribute resources for elective surgeries in a way that the share of LOS increases
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for some DRGs. Such a behaviour of Victorian hospitals could be the result of: i) the gov-

ernment’s policy of targetting select DRGs to reduce waiting times for elective surgery by

providing additional targetted funding; ii) Hospital’s policies of maximizing revenue from

government funding (these DRGs might be profit making or “lucrative” for hospitals).

The slight anti clockwise rotation of peak 1 indicates that DRGs with a lower share of

inliers in period ‘t’ will have their shares further decreased in period ‘t+24’. Transition of

LOS shares from low to lower values could be mainly because of reduction in the number of

patients in these DRGs. Given almost constant patient profile in last 8 years, this reduction

in inpatient numbers could be result of change in the intensity of treatment for patients, i.e.

the patients in DRGs which have low average LOS might be treated as same day patients

and such a behaviour might be contributing towards a consistent annual increase of 5

percent in same day separations in Victorian hospitals. Although the funding for same day

patients is lower than those of inliers, hospitals save on the fixed costs associated with an

inlier multi day admission and hence could find a sameday episode relatively profitable. On

the other hand the reduction in inlier shares from ‘low to lower’ for patients in DRGs with

higher average LOS indicates potential selection effect where these patients are left out of

elective hospital treatment altogether. The intradistribution dynamics of the proportion of

inliers is presented in lower half of Figure 2. The proportion of inliers show similar trends

as the share of inliers.

Thus the results from intradistribution dynamics of LOS share for inliers suggest that

overtaking and persistence is occurring simultaneously in the inlier distribution and most

of the trends in evolution of distribution are consistent with the possible theoretical ex-

planations of impact of case-mix funding on the supply of hospital care discussed in the

extant literature. We next focus on the factors which explain such distribution dynamics

of inlier shares. Ideally, detailed data on costing of each patient episode can shed light on

profitability of treating patients in a particular DRG which can be subsequently used to

check if resources are being transferred from non profitable to profitable DRGs. Unfortu-

nately, such data is not commonly available for research purposes because of confidentiality

issues. Therefore, we use relative prices of DRGs as a proxy to test if these are responsible

for stratification of inlier shares. One main contribution of this study is that the proposed

22



methodology outlined in this paper provides a framework to analyse the impact of covari-

ates on distribution dynamics by conditioning the stochastic kernel. The impact of relative

prices of DRGs on the distribution of inlier shares is discussed next.

5.1.1 Impact of relative prices of DRGs

The evidence of stratification of inlier shares in the above section was obtained by using

unconditional distribution dynamics. The obvious next step would be to do a conditional

analysis which sheds more light on the underlying factors that explain the distributional

dynamics of inliers. In particular we want to condition on the relative prices of DRGs as

these are argued to be a crucial determinant of resource allocation across DRGs. The data

on relative prices of DRGs is taken from various issues of Victoria - Public Hospitals Policy

and Funding Guidelines published by the Department of Health Victoria. These guidelines

report relative cost weights for each DRG which are used to calculate the weighted inlier

equivalent separation (WIES) for each inlier episode. For example an inlier episode in

DRG A with relative cost weight of 0.5 will have WIES of 0.5 and an inlier episode in

DRG B with relative cost weight of 1.5 will have WIES of 1.5. The funding body decides

a dollar value of unit WIES in each funding round. The product of this dollar value to

WIES is the relative price of DRG. Thus if hospital treats exactly same number of patients

with same number of LOS in DRG A and B, it will get more funding for patients in DRG

B as they have higher WIES relative to DRG A. In order to condition for relative prices

of DRGs we weight the DRG shares and proportions used in unconditional analysis by

corresponding WIES. The conditional analysis uses 75 DRGs which are subset of DRGs

used in unconditional analysis. The sample of DRGs was restricted to 75 because of lack

of consistent data on cost weights for other DRGs.

—Insert Figure 3 about here—

The stochastic kernel and corresponding contour maps for weighted shares are reported in

Figure 3. The unconditional plots of stochastic kernels and corresponding contour map for

same 75 DRGs are also reported to enable a direct comparison between conditional and

unconditional distribution dynamics. The unconditional plots again confirm the evidence

of stratification in inlier shares as shown by the emergence of three peaks out of which
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two peaks are prominent. The stochastic kernel on the weighted shares will describe how

relative prices of DRGs will alter the cross sectional distribution of shares. Thus, to test

our hypothesis that change in relative prices of DRGs is resulting in the stratification of

inlier shares, we need to observe if the stochastic kernel transforming the unconditional

distribution to conditional one removes the stratification or polarization of inlier shares.

The conditioned stochastic kernel reported in Figure 3 confirms that the stratification is

removed after the inlier shares are weighted by relative DRG prices. Thus relative prices

are one of the determinants of resource allocation across DRGs. The results for proportions

show similar trend and are skipped here.

5.2 High Outliers

The stochastic kernel mapping and corresponding contour plot for high outlier shares are

presented in upper half of Figure 4. The graph reveals the stochastic kernel is not positive

for all shares and hence there is no one to one correspondence in probabilities for some

share points. The overall trend shows that over a 24 month period, most of the DRGs

with a positive share of high outliers in period ‘t’ will have very low or zero share of

high outliers in period ‘t+24’. Though there are some peaks on the contour plot which

are randomly distributed over the distribution, most of the distribution is concentrated

around the 0-value of the period ‘t+24’ axis– extending parallel to the period ‘t’ axis.

This indicates that over a 24 month horizon the cross sectional distribution of DRGs

will converge to zero. The main conclusion from this result is that the case-mix funding

regime is inducing the hospitals to reduce high outlier episodes in elective surgery patients.

This might be happening in the form of potential selection effect (hospitals choose not

to treat patients which are more likely to have high outlier episodes) or due to a “quicker

and sicker” phenomenon where hospitals discharge patients before their episode becomes a

high outlier. The mapping using proportions of high outlier episodes and the corresponding

contour maps are presented in lower half of Figure 4. The intradistribution dynamics of

proportions is similar to those of shares.

—Insert Figure 4 about here—

As discussed earlier, a high outlier episode is funded on a per diem basis once the patients
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LOS is three times more than the average LOS. However, the per diem payment rate in

Victoria is determined by the fraction of the inlier weight and does not reflect the actual

cost of treating a high outlier patient. Thus, even though the marginal revenue of keeping a

patient is positive in a high outlier case, it might be below the marginal cost and hospitals

might prefer to under service such patients. Unfortunately, it is not possible to do a

conditional analysis on high outlier episodes at this stage because of lack of availability of

data on some variables required to calculate high outlier DRG cost weights.

6 Conclusions

This paper has analysed the patterns of shares and proportions of high outlier and in-

lier episodes across DRGs from the perspective of distribution dynamics. The empirical

analysis has captured a behaviour of stratification in shares of inlier episodes and uni-

polarization in the case of high outliers. For inlier episodes, over a 2 year transition, the

DRGs with high quantile shares of LOS are likely to have their shares reduced (transition

of LOS shares from high to low), DRGs with middle quantile shares of LOS will likely to

have their shares unchanged (persistence of shares), DRGs with low shares of LOS will

likely to have their shares further reduced (transition of shares from low to lower). Thus

the distribution of LOS shares for inlier episodes shows emergence of three peaks, most

prominent being in the middle of the distribution comprising of the maximum number of

DRGs. The conditional analysis concludes that change in relative prices in DRGs is one

of the factors affecting resource allocation across DRGs. For high outlier episodes, over

a 2 year transition, the cross section LOS distribution of DRGs converges to zero. This

indicates that in the current case-mix funding regime, hospitals may have no incentive to

treat high outlier patients.

The empirical evidence for both inlier and outlier episodes is consistent with the behaviour

of hospitals suggested by the theoretical models in the extant literature. For example,

transition of LOS shares from low to lower values indicates either a change in intensity

of treatment for DRGs with low average LOS or potential selection for DRGs with high

average LOS. Specifically, patients in DRGs with a very low share of inlier and low average

LOS might be treated as same day patients and such a behaviour might be contributing
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towards a consistent annual increase of 5 percent in same day separations in Victorian

hospitals and so may indicate cost shifting by hospitals or technological changes. Similarly,

the likelihood of reduction in high outlier episodes and inlier episodes with high average

LOS indicates existence of potential selection effect even in a continuing case-mix regime.

This may be because, even though hospitals get extra per diem payment for the high outlier

episodes, it is determined by the inlier weights and not the actual cost of treatment. Thus

in spite of a positive marginal revenue in treating a high outlier patient, the hospitals might

still be making losses. Thus the empirical methodology used in this paper sheds further

insights into the resource allocation of hospitals across DRGs, which is not possible using

traditional econometric methods.

The main policy implication from the empirical analysis is that allocation of resources

across DRGs is responsive to changes in relative prices of DRGs. The evidence of potential

selection effect especially among high cost patients also raises an interesting policy issue.

Many of the high cost patients in elective surgery may come from a lower socioeconomic

background (Agabiti et al., 2007). These groups will face adverse health outcomes as a

result of selection effects. Selection can also have an adverse impact on waiting times for

elective surgery. Although current government policies such as introduction of per diem

payment for high outlier episodes, putting caps on waiting times and paying extra for

Aboriginal patients might have reduced the incentives to select, our results find strong

evidence of potential selection especially for high cost patients. Thus one policy suggestion

would be to further reduce the extent of prospectivity in payment for high cost patients

and increase monitoring of hospitals.

The results from present study could be useful to understand the trends in hospital effi-

ciency in Victorian hospitals. As Jacobs et al. (2006) argue stand alone efficiency analysis

treats a DMU as a black box and explains little as to why a particular level of efficiency

is observed. The main inferences from our study could be used as additional information

by policy makers to understand the underlying factors that could be causing changes in

efficiency levels.

The methodological contribution of the present paper is that it has outlined an empirical

methodology to identify patterns of inter-DRG resource allocation in a continuing PPS.
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The application of stochastic kernel (a non parametric approach) to capture evolution

of the whole distribution has an advantage over standard regression methods which only

provide a picture of the behaviour of conditional mean. Further, the panel data econometric

methods control for and thus absorb heterogeneity into “individual effects” which would

not allow us to explain differences across DRGs.

The next step could be to explore additional factors which could explain distributional

patterns of inter-DRG resource allocation. For example part of the potential selection

effect could be caused by recent government policies to improve quality of care in hospitals.

Similarly, part of the change in intensity of treatment could be a result of changes in medical

technology. The supply side cost changes could also lead to redistribution of resources in

hospitals. For example, it might be the case that under PPS Victorian hospitals are

managing their patients within the trim points of the LOS i.e. trim points are benchmarks

that help hospitals focus on LOS efficiency. Unfortunately, the lack of data availability

makes it almost impossible to empirically test the impact of such factors on the inter-DRG

resource allocation at the present time.
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Table 1: Summary Statistics: Balanced Panel of DRGs

Variables Mean Std. Dev. Min Max
Proportions (%)

Inliers
overall 0.386 0.494 0.000 4.311
between 0.467 0.026 2.794
within 0.164 -1.577 3.953

High Outliers
overall 0.043 0.119 0.000 3.204
between 0.080 0.000 0.957
within 0.088 -0.914 2.882

Shares (%)
Inliers

overall 0.448 0.573 0.000 4.970
between 0.542 0.030 3.234
within 0.189 -1.757 4.727

High Outliers
overall 0.437 1.152 0.000 21.686
between 0.799 0.000 9.519
within 0.832 -9.082 19.227

N = 16992 (Sample Size)
n = 177 (Number of DRGs)
T = 96 (July 1998 to June 2006)
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Stochastic Kernel Mapping Contour Plot

Stochastic Kernel Mapping Contour Plot

Figure 2: Inliers: Shares and Proportions
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Unconditional Stochastic Kernel Unconditional Contour Plot

Conditional Stochastic Kernel∗∗∗ Conditional Contour Plot∗∗∗

***: The axes rescaled by a factor of 10.

Figure 3: Inliers: Shares conditional on Relative DRG prices
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Stochastic Kernel Mapping Contour Plot

Stochastic Kernel Mapping Contour Plot

Figure 4: Outliers: Shares and Proportions
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