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Validation of Kinetic Models of the Butanol Isomers at High Pressure using a Rapid Compression Machine
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Introduction and Objectives:

Rapid Compression Machine:

• Single, retractable, piston

• Piston is pneumatically driven and hydraulically stopped

• Piston is machined with crevices to control the roll-up vortex effect

• Pressure and temperature from TDC reported as compressed conditions

• The RCM has the ability to vary compressed temperature and compressed 

pressure independently

• Compressed Temperature Range: 680-860 K

• Compressed Pressure Range: 15 and 30 bar

• Equivalence Ratio: 𝜙 = 1.0, 𝑂2: 𝑁2 = 1 ∶ 3.76

Experimental Conditions:

Experimental Analysis:

• Ignition is defined by the local maximum of  the time derivative of the 

post-compression pressure

• Compressed temperature is computed using a non-reactive run, where 

oxygen in the mixture is replaced by nitrogen to eliminate reactions while 

maintaining a similar specific heat ratio

Modeling Results:

References:

[1] Hansen, N., Harper, M.R., and Green, W.H., 7th US 

National Combustion Meeting, Georgia Institute of 

Technology, Atlanta, GA, March 20-23, 2011, paper 

1B09

[2] Weber, B.W., Kumar, K., Zhang, Y., and Sung, C.J., 

Combustion and Flame, Volume 158, Issue 5, Pages 809-

819 doi:10.1016/j.combustflame.2011.02.005

[3] Weber, B.W. and Sung, C.J., 7th US National 

Combustion Meeting, Georgia Institute of Technology, 

Atlanta, GA, March 20-23, 2011, paper RK13

*  bryan.weber@uconn.edu

• Energy security and climate change are driving development of fuels from 

many new sources, particularly renewable bio-sources

• Accurate kinetic models are required to enable design of new engine 

technologies to optimize operation towards emerging non-petroleum 

derived fuels

• The butanol system is the smallest system with primary, secondary, and 

tertiary alcohols groups

• Goal is to provide validation data using a heated rapid compression  

machine (RCM) at high pressures and low to intermediate temperatures
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Experimental Results:
• Arrhenius plots of the ignition delay show a clear dependence on 

compressed pressure

• The order of reactivity of the isomers changes at higher pressure, from 

𝑛−BuOH > 𝑠−BuOH ≈ 𝑖−BuOH > 𝑡−BuOH at 15 bar to 𝑛−BuOH >
𝑡−BuOH > 𝑠−BuOH > 𝑖−BuOH at 30 bar

• There does not appear to be a negative temperature dependence region in 

these data

• Pressure traces from the RCM do not show two-stage ignition for any of 

the isomers, in either pressure range

• However, there is significant pre-ignition heat release for 𝑡−butanol and 

𝑛−butanol, but not as much for the other isomers

• Constant volume, adiabatic simulations were performed using one recent 

mechanism from Hansen et al.1

• Simulations do not capture the pressure dependence of 𝑛−butanol ignition 

delays, under predicting at lower pressure and over predicting at higher pressure

• The deviations from experiments for 𝑖− and 𝑠−butanol are similar in both 

pressure ranges 

• The discrepancy for t-butanol becomes worse at higher pressure – this may have 

to do with the effect of pre-ignition heat release
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Simulation does not deviate

from the non-reactive experiment
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• The mechanism from Hansen et al.1 is unable to reproduce the pre-ignition heat 

release behavior of 𝑡−butanol
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