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Introduction

• Cycloalkanes and alkyl-cycloalkanes are 
well known as components of many 
transportation fuels

• Methyl-cyclohexane (MCH) has been 
suggested as a candidate to model the 
cycloalkane and alkyl-cycloalkane 
content of real fuels 

• Low Temperature Combustion (LTC) is 
important to the operation of advanced 
engine concepts

• Therefore, detailed kinetic models may 
be required to predict combustion 
phasing, heat release rates, and especially 
engine-out emissions
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• Previous work* comparing 

MCH ignition delays to a 

model from 2007† showed 

significant over-prediction 

of both first stage and 

overall ignition delay

• Our objective is to update 

and extend the model to 

better predict existing and 

new experimental 

conditions

Motivation

*Mittal & Sung, Combustion and Flame, 2009, 156, 1852-1855
†Pitz et al., Proc. Combust. Inst., 2007, 31, 267–275
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Experimental Methods
• Experiments to measure the ignition delay of methyl-cyclohexane 

(MCH) are performed in a heated Rapid Compression Machine (RCM)

• Homogeneous gas-phase mixtures of fuel and oxidizer are compressed 
and the piston is held in place at Top Dead Center (TDC), creating a 
constant volume reactor

• The compression ratio of the RCM, and the initial pressure and initial 
temperature of the mixture are varied to vary the pressure and 
temperature at TDC

• The pressure and temperature at TDC are referred to by subscript “C” –
i.e. 𝑃𝐶 & 𝑇𝐶 respectively
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Experimental Methods

• The end of compression (when the piston 

reaches TDC) is defined as the maximum 

of the pressure prior to the ignition

• The ignition delays are the times from the 

end of compression to the local maxima 

of the time derivative of the pressure

• During the ignition delay, the reactants are 

losing energy by heat transfer to the 

relatively colder reactor walls

• Because we have a constant volume, 

closed reactor, the heat loss produces 

pressure drop

• We characterize this pressure drop by 

replacing oxygen with nitrogen in the 

mixture to eliminate the explosion but 

retain a similar heat loss profile to the 

reactive experiments

• 𝑇𝐶 is taken as the temperature at TDC of a 

non-reactive simulation
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Experimental Conditions

• Experiments are conducted for 

three mixtures, whose diluent 

compositions contain varying 

amounts of N2 and Ar to 

maintain a similar specific heat 

ratio for all of the mixtures

Mix # 𝜙 MCH O2 N2 Ar

1 1.0 1 10.5 12.25 71.75

2 0.5 1 21.0 0.00 73.50

3 1.5 1 7.0 16.35 71.15

• The equivalence ratio is adjusted by varying the initial oxygen mole 

fraction at constant fuel mole fraction

• MCH ignition delays were previously measured in our RCM at 𝑃𝐶 =
15.1 and 25.5 bar*

• New experimental ignition delays are measured in this work at 𝑃𝐶 =
50 bar

• The temperature range for the three pressure conditions is similar from 

690 − 910 K

*Mittal & Sung, Combustion and Flame, 2009, 156, 1852-1855
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• Ignition delays in 
the NTC region for 
Mix #2 (𝜙 = 0.5) 
are not reported 
because substantial 
reactivity occurred 
during the 
compression stroke 
for 𝑇𝐶 > 740 K

• Mix #2 does not 
have two-stage 
ignition in the 
temperature range 
investigated here

Experimental Results
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• Reactivity during the 

compression stroke 

prevents reporting 

complete resolution 

of the NTC region 

for Mix #1 (𝜙 = 1.0)

• Two-stage ignition is 

reported for one 

experimental 

condition for Mix #1

Experimental Results
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• Mix #2 is the most 
reactive because it has 
the highest initial O2

concentration

• The NTC region for 
Mix #3 (𝜙 = 1.5) 
approximately extends 
from 775 K to 840 K

• Two stage ignition was 
measured for Mix #3 
for temperatures from 
740 K to 800 K

Experimental Results
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• New C1-C4 base chemistry from NUIG

• New aromatics base chemistry from NUIG-LLNL

– Based on work by Metcalfe et al. and Mehl et al.

• Cyclohexane submodel is more recent LLNL version*

• Unsaturated ring intermediate products resolved with much 

more fidelity (previously lumped)

• MCH abstraction reactions:

– MCH + OH rates from ANL experiments†

– Others using latest LLNL reaction rate rules

• RO2 isomerization rate constants

– from Fernandes et al‡ for cases involving cyclohexane ring

– new ab initio rate constant computed for case involving methyl group 

(this work)

Updates to MCH mechanism

*Silke et al., J. Phys. Chem. A., 2007, 111, 3761-3775
†Sivaramakrishnan and Michael, Combust. Flame, 2009, 156, 1126-1134
‡ Fernandes et al., Phys. Chem. Chem. Phys. 2009, 11, 1320–1327 
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Comparison with Modeling – Overall Ignition Delays

• The model has improved significantly since 2007!

• Experimental ignition delays in the high temperature region 
are predicted well

• Low temperature ignition delays are generally under-
predicted, especially for the 𝜙 = 1.5 case
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Comparison with Modeling – 1st Stage Ignition Delays

• First stage ignition delays are under-predicted for all 
equivalence ratios and pressures, but are within factor of 2 of 
the experimental data

• First stage ignition is also predicted for conditions where it was 
not found experimentally at 50 bar and all three equivalence 
ratios
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• Sensitivity analysis of 
the overall ignition delay 
shows that the important 
reactions are the initial 
H-abstractions from the 
fuel, the direct reaction 
of peroxyl radicals to 
form HO2 and 
methylcyclohexene, and 
isomerizations of the 
peroxyl radicals

• Similar analysis for first 
stage ignition shows that 
the same reactions are 
important

Sensitivity Analysis
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• Path analysis shows the model exhibits the expected 
decomposition pathways, including formation of 
methylcyclohexenes, QOOH and ROOH species 

Path Analysis - 𝝓 = 𝟏. 𝟎, 25.5 bar, 700 K
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Conclusions

• New experimental data has been collected for MCH 
in a heated RCM at conditions of 𝑃𝐶 = 50 bar, 𝜙 =
0.5, 1.0, 1.5, and 𝑇𝐶 = 690 − 910K

• The 2007 model for MCH combustion by Pitz et al. 
has been updated with improved rate rules and new 
reaction classes

• The new model is able to predict overall ignition 
delays to within a factor of 2 for most conditions

• First stage ignition delays are under-predicted for all 
conditions, but are nevertheless within a factor of 2 
of the experiments

• First stage ignition is predicted for conditions at 
high pressure that do not have first stage ignition 
experimentally
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This work is licensed under the Creative 

Commons Attribution 4.0 International 

License. To view a copy of this license, visit 

http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
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MCH CONV Simulations


