MONASH COPSIP PWP-oP*

Eleventh Floor
Menzies Building
Monash University Wellington Road CLAYTON Vic 3168 AUSTRALIA

Telephone:
(03) 9905 2398, (03) 99055112

Fax numbers:
(03) 9905 2426, (03) 99055486
e-mail

The Theoretical Structure of MONASH-MRF

by

Matthew W. Peter
Mark Horridge
G. A. Meagher
Fazana NAQVI
and
B.R. Parmenter

Centre of Policy Studies, Monash University

Preliminary Working Paper No. OP-85 April 1996

The Centre of Policy Studies (COPS) is a research centre al Monash University devoted to quantitative analysis of issues relevant to Austratian economic policy. The Impact Project is a cooperative venture between the Australian Federal Government and Monash University, La Trabe University, and the Australian National University. COPS and Impact are operating as a single unit at Monash University with the task of constructing a new economy-wide policy model to be known as MONASH. This initiative is supported by the Industry Commission on behalf of the Commonwealth Government, and by several other sponsors. The views expressed herein do not necessarily represent those of any sponsor or government.

ABSTRACT

This paper presents the theoretical specification of the MONASH-MRF model. MONASH-MRF is a multiregional multisectoral model of the Australian economy. Included is a complete documentation of the model's equations, variables and coefficients. The documentation is designed to allow the reader to cross-reference the equation system presented in this paper in ordinary algebra, with the computer implementation of the model in the TABLO language presented in CoPS/IMPACT Preliminary Working Paper No. OP-82.

Keywords: multiregional, regional modelling, CGE, regional and Federal government finances.
J.E.L. Classification numbers: C68, D58, R10, R13.

CONTENTS

ABSTRACT i

1. ACKNOWLEDGEMENT AND EXPLANATION 1
2.1 INTRODUCTION 1
2.2 THE CGE CORE 5
2.2.1 Production: demand for inputs to the production process 8
2.2.2 Demands for investment goods 13
2.2.3 Household demands 15
2.2.4 Foreign export demands 17
2.2.5 Government consumption demands 18
2.2.6 Demands for margins 18
2.2.7 Prices 18
2.2.8 Market-clearing equations for commodities 19
2.2.9 Indirect taxes 20
2.2.10 Regional incomes and expenditures 21
2.2.11 Regional wages 23
2.2.12 Other regional factor-market definitions 23
2.2.13 Other miscellaneous regional equations 24
2.2.14 National aggregates 24
2.3 GOVERNMENT FINANCES 24
2.3.1 Disaggregation of value added 27
2.3.2 Gross regional domestic product and its components 29
2.3.3 Miscellaneous equations 30
2.3.4 Summary of financial transactions of the regional and Federal govemments: the SOFT accounts 33
2.3.5 Household disposable income 38
2.4 DYNAMICS FOR FORECASTING 40
2.4.1 Industry capital and investment 42
2.4.2 Accumulation of national foreign debt 47
2.5 REGIONAL POPULATION AND REGIONAL LABOUR MARKET SETTINGS 50
REFERENCES 121

LIST OF TABLES

Table 2.1: The MMRF Equations 54
Table 2.2: The MMRF Variables 87
Table 2.3: The MMRF Coefficients and Parameters 104
Table 2.4: Dimensions of MMRF 120

LIST OF FIGURES

Figure 2.1: The CGE core input-output database 6
Figure 2.2: Production technology for a regional sector in MMRF 9
Figure 2.3: Structure of investment demand 14
Figure 2.4: Structure of household demand 16
Figure 2.5: Govemment finance block of equations 26
Figure 2.6: Components of regional value added 28
Figure 2.7: Income-side components of gross regional product 30
Figure 2.8: Expenditure-side components of gross regional product 31
Figure 2.9: Summary of Financial Transaction (SOFT): income side 34
Figure 2.10: Summary of Financial Transaction (SOFT): expenditure side 37
Figure 2.11: Household disposable income 39
Figure 2.12: Comparative-static interpretation of results 41
Figure 2.13: Forecasting interpretation of results 43

The Theoretical Structure of MONASH-MRF

1. Acknowledgement and explanation

This document contains a draft version of chapter 2 from the forthcoming monograph, MONASH-MRF: A Multiregional Multisectoral Model of the Australian Economy. The MONASH-MRF project was initiated in mid 1992 with the sponsorship of the NSW and Victorian State government Treasuries. The authors thank P. B. Dixon, W. J. Harrison and K. R. Pearson for their helpful advice.

2.1. Introduction

MMRF divides the Australia economy into eight regional economies representing the six States and two Territories. There are four types of agent in the model: industries, households, governments and foreigners. In each region, there are thirteen industrial sectors. The sectors each produce a single commodity and create a single type of capital. Capital is sector and region specific. Hence, MMRF recognises 104 industrial sectors, 104 commodities and 104 types of capital. In each region there is a single household and a regional govemment. There is also a Federal govemment. Finally, there are foreigners, whose behaviour is summarised by demand curves for regional international exports and supply curves for regional international imports.

In common with the stylised multiregional model described in Chapter 1, in MMRF, regional demands and supplies of commodities are determined through optimising behaviour of agents in competitive markets. Optimising behaviour also determines demands for labour and capital. National labour supply can be determined in one of two ways. Either by demographic factors or by labour demand. National capital supply can also be determined in two ways. Either it can be specified exogenously or it can respond to rates of retum. Labour and capital can cross regional borders in response to labour-market and capitalmarket conditions.

The specifications of supply and demand behaviour coordinated through market clearing conditions, comprise the CGE core of the model. In addition to the CGE core are blocks of equations describing: (i) regional and Federal government finances; (ii) accumulation relations between capital and investment, population and population growth, foreign debt and the foreign balance of trade, and; (iii) regional labour market settings.

Computing solutions for MMRF

MMRF is in the Johansen/ORANI class of models ${ }^{1}$ in that its structural equations are written in linear (percentage-change) form and results are deviations from an initial solution. Underlying the linear representation of

[^0]MMRF is a system of non-linear equations solved using GEMPACK. GEMPACK (see Harrison and Pearson 1994) is a suite of general purpose programs for implementing and solving general and partial equilibrium models. A percentage-change version of MMRF is specified in the TABLO syntax which is similar to ordinary algebra. ${ }^{2}$ GEMPACK solves the system of nonlinear equations arising from MMRF by converting it to an Initial Value problem and then using one of the standard methods, including Euler and midpoint (see, for example, Press, Flannery, Teukolsky and Vetterling 1986), for solving such problems.

Writing down the equation system of MMRF in a linear (percentage-change) form has advantages from computational and economic standpoints. Linear systems are easy for computers to solve. This allows for the specification of detailed models, consisting of many thousands of equations, without incurring computational constraints. Further, the size of the system can be reduced by using model equations to substitute out those variables which may be of secondary importance for any given experiment. In a linear system, it is easy to rearrange the equations to obtain explicit formulae for those variables, hence the process of substitution is straightforward.

Compared to their levels counterparts, the economic intuition of the percentage-change versions of many of the model's equations is relatively transparent. ${ }^{3}$ In addition, when interpreting the results of the linear system, simple share-weighted relationships between variables can be exploited to perform back-of the-envelope calculations designed to reveal the key causeeffect relationships responsible for the results of a particular experiment.

The potential cost of using a linearised representation is the presence of linearisation error in the model's results when the perturbation from the initial solution is large. As mentioned above, GEMPACK overcomes this problem by a multistep solution procedure such a Euler or midpoint. The accuracy of a solution is a positive function of the number of steps applied. Hence, the degree of desired accuracy can be determined by the model user in the choice of the number of steps in the multistep procedure. ${ }^{4}$

Notational and computational conventions

In this Chapter we present the percentage-change equations of MMRF. Each MMRF equation is linear in the percentage-changes of the model's variables. We distinguish between the percentage change in a variable and its levels value by

[^1]using lower-case script for percentage change and upper-case script for levels. Our definition of the percentage change in variable X is therefore written as
$$
x=100\left(\frac{\Delta X}{X}\right)
$$

In deriving the percentage-change equations from the nonlinear equations, we use three rules:
the product rule, $X=\beta Y Z \Rightarrow x=y+z$, where β is a constant, the power rule, $X=\beta Y^{\alpha} \Rightarrow x=\alpha y$, where α and β are constants, and the sum rule. $X=Y+Z \Rightarrow X x=Y y+Z z$.
As mentioned above, the MMRF results are reported as percentage deviations in the model's variables from an initial solution. With reference to the above equations, the percentage changes x, y and z represent deviations from their levels values X, Y and Z . The levels values (X, Y and Z) are solutions to the models underlying levels equations. Using the product-rule equation as an example, values of 100 for $\mathrm{X}, 10$ for Y and 5 for Z represent an initial solution for a value of 2 for β. Now assume that we perturb our initial solution by increasing the values of X and Y by 3 per cent and 2 per cent respectively, i.e., we set y and z at 3 and 2 . The linear representation of the product-rule equation would give a value of y of 5 , with the interpretation that the initial value of X has increased by 5 per cent for a 3 per cent increase in Y and a 2 per cent increase in Z . Values of 5 for $\mathrm{x}, 3$ for y and 2 for z in the corresponding percentage change equation means that the levels value of X has been perturbed from 100 to 105 , Y from 10 to 10.3 and Z from 5 to 5.1.

In the above example, the reader will notice that while satisfying the percentage-change equations, updating the levels values of X, Y and Z by their percentage changes does not satisfy the levels form of the product-rule equation i.e., $105 \neq 2 \times 10.3 \times 5.1$. Given the percentage changes to Y and Z , the solution to the nonlinear equation is $X=105.06$, giving a linearisation error of 0.06 (i.e., $0.06=105.06-105$). GEMPACK eliminates the linearisation error by the application of a multistep procedure which exploits a positive relationship between the size of the perturbation from the initial solution and the size of the linearisation error. The principle of the Euler version of the muftistep solution method can be illustrated using our above example. Instead of increasing the values of Y and Z by 3 per cent and 2 per cent, let us break the perturbation into two steps, first increasing x and y by half the desired amount, i.e., 1.5 per cent and 1.0 per cent respectively. Solving the linear equation gives a value for x of 2.5 per cent. Updating the value of X by 2.5 per cent gives an intermediate value of X of 102.5 [i.e., $100 \times(1+2.5 / 100)]$. Now apply the remainder of our desired perturbation to Y and Z . The percentage increase in y is 1.4778 per
cent (i.e., $100 \times 0.15 / 10.15^{5}$) and the percentage change in z is 0.9901 per cent (i.e., $100 \times 0.05 / 5.05$), giving a value for x (in our second step) of 2.4679 per cent. Updating our intermediate value of X by 2.4679 per cent, gives a final value of X of 105.045 , which is close to the solution of the nonlinear equation of 105.06. We can further improve the accuracy of our solution by implementing more steps and by applying an extrapolation procedure.

In the percentage-change form of the power-rule equation, a constant α appears as a coefficient. In the percentage-change form of the sum-rule equation, the levels values of the variables appear as coefficients. By dividing by X , this last equation can be rewritten so that x is a share-weighted average of y and z. There are two main types of coefficients in the linear equation system of mmRF: (i) price elasticities and (ii) shares of levels values of variables. Two price elasticity coefficients appear in MMRF: elasticities of substitution and own-price elasticities. ${ }^{6}$ In the MMRF equation system, elasticities of substitution are identified by the Greek symbol, σ, and own-price elasticities are identified by the prefix ELAST. Equations with share coefficients are typically written in the form of the sum-rule equation above. Coefficients associated with shares are levels values and therefore are written in upper-case script.

The percentage-change equation system of MMRF is given in Table 2.1. The equations of Table 2.1 are presented in standard algebraic syntax. Each equation has an identifier beginning with the prefix $\mathrm{E}_{\text {. }}$. Using the equation identifiers, the reader can cross reference the equations in Table 2.1 with the equations of the annotated Tablo file in the Appendix to Chapter 3. In Table 2.1, below the identifier in brackets, the section in which the equation appears in the annotated tablo file is listed. The annotated tablo file of Chapter 3 is a reproduction of the computer implementation of MMRF. The model's variables are listed in Table 2.2. Descriptions of the model's coefficients appear in Table 2.3, and Table 2.4 describes the sets used in the model.

The remainder of this Chapter is devoted to the exposition of the MMRF equation system beginning, in section 2.2 , with the equations of the CGE core.

[^2]
2.2. The CGE core 7

The CGE core is based on ORANI, a single-region model of Australia (Dixon, Parmenter, Sutton and Vincent 1982). Each regional economy in MMRF looks like an ORANI model. However, unlike the single-region ORANI model, MMRF includes interregional linkages. The transformation of ORANI into the CGE core of MMRF, in principle, follows the steps by which the stylised single-region model of Chapter 1 was transformed into the stylised multiregional model.
A schematic representation of the CGE core
Figure 2.1 is a schematic representation of the CGE core's input-output database. It reveats the basic structure of the CGE core. The columns identify the following agents:
(1) domestic producers divided into J industries in Q regions;
(2) investors divided into J industries in Q regions;
(3) a single representative household for each of the Q regions;
(4) an aggregate foreign purchaser of exports;
(5) an other demand category corresponding to Q regional govermments; and
(6) an other demand category corresponding to Federal government demands in the Q regions.

The rows show the structure of the purchases made by each of the agents identified in the columns. Each of the I commodity types identified in the model can be obtained within the region, form other regions or imported from overseas. The source-specific commodities are used by industries as inputs to current production and capital formation, are consumed by households and governments and are exported. Only domestically produced goods appear in the export column. R .of the domestically produced goods are used as margin services (domestic trade and transport \& communication) which are required to transfer commodities from their sources to their users. Commodity taxes are payable on the purchases. As well as intermediate inputs, current production requires inputs of three categories of primary factors: labour (divided into M occupations), fixed capital and agricultural land. The other costs category covers various miscellaneous industry expenses. Each cell in the input-output table contains the name of the corresponding matrix of the values (in some base year) of flows of commodities, indirect taxes or primary factors to a group of users. For example, MAR2 is a S-dimensional array showing the cost of the R margins services on the flows of I goods, both domestically and imported (S), to I investors in Q regions.

Figure 2.1 is suggestive of the theoretical structure required of the CGE core. The theoretical structure includes: demand equations are required for our

[^3]

Figure 2.1. The CGE core input-output database
six users; equations determining commodity and factor prices; market clearing equations; definitions of commodity tax rates. In common with ORANI, the equations of MMRF's CGE core can be grouped according to the following classification:

- producer's demands for produced inputs and primary factors;
- demands for inputs to capital creation;
- household demands;
- export demands;
- government demands;
- demands for margins;
- zero pure profits in production and distribution;
- market-clearing conditions for commodities and primary factors; and
- indirect taxes;
- Regional and national macroeconomic variables and price indices.

Naming system for variables of the CGE core
In addition to the notational conventions described above in section 2.1, the following conventions are followed (as far as possible) in naming variables of the CGE core. Names consist of a prefix, a main user number and a source dimension. The prefixes are:
a \Leftrightarrow technological change/change in preferences;
del \Leftrightarrow ordinary (rather than percentage) change;
$\mathrm{f} \Leftrightarrow$ shift variable;
nat \Leftrightarrow a national aggregate of the corresponding regional variable;
$\mathrm{p} \Leftrightarrow$ prices;
$\mathrm{x} \Leftrightarrow$ quantity demanded;
$\mathrm{xi} \Leftrightarrow$ price deflator;
$y \Leftrightarrow$ investment;
$z \Leftrightarrow$ quantity supplied.
The main user numbers are:
$1 \Leftrightarrow$ firms, current production;
$2 \Leftrightarrow$ firms, capital creation;
$3 \Leftrightarrow$ households;
$4 \Leftrightarrow$ foreign exports:
$5 \Leftrightarrow$ regional government;
$6 \Leftrightarrow$ Federal government
The number 0 is also used to denote basic prices and values. The source dimensions are:
$\mathrm{a} \Leftrightarrow$ all sources, i.e., 8 regional sources and foreign;
$r \Leftrightarrow$ regional sources only;
$t \Leftrightarrow$ two sources, i.e., a domestic composite source and foreign;
$c \Leftrightarrow$ domestic composite source only;
$0 \Leftrightarrow$ domestic/foreign composite source only.
The following are examples of the above notational conventions:
pla \Leftrightarrow price of commodities (p), from all nine sources (a) to be used by firms in current production (1);
$\mathrm{x} 2 \mathrm{c} \Leftrightarrow$ demand for domestic composite (c) commodities (x) to be used by firms for capital creation.
Variable names may also include an (optional) suffix descriptor. These are:
cap \Leftrightarrow capital;
imp \Leftrightarrow impors;
$\mathrm{lab} \Leftrightarrow$ labour;
land \Leftrightarrow agricultural land;
lux \Leftrightarrow linear expenditure system (supernumerary part);
marg \Leftrightarrow margins;
oct \Leftrightarrow other cost tickets;
prim \Leftrightarrow all primary factors (land, labour or capital);
sub \Leftrightarrow linear expenditure system (subsistence part);
Sections 2.2.1 to 2.2.14 outline the structure of the CGE core.

2.2.1. Production: demand for inputs to the production process

MMRF recognises two broad categories of inputs: intermediate inputs and primary factors. Firms in each regional sector are assumed to choose the mix of inputs which minimises the costs of production for their level of output. They are constrained in their choice of inputs by a three-level nested production technology (Figure 2.2). At the first level, the intermediate-input bundles and the primary-factor bundles are used in fixed proportions to output. These bundles are formed at the second level. Intermediate input bundles are constant-elasticity-of-substitution (CES) combinations of international imported goods and domestic goods. The primary-factor bundle is a CES combination of labour, capital and land. At the third level, inputs of domestic goods are formed as CES combinations of goods from each of the eight regions, and the input of labour is formed as a CES combination of inputs of labour from eight different occupational categories. We describe the derivation of the input demand functions working upwards from the bottom of the tree in Figure 2.2. We begin with the intermediate-input branch.
Demands for intermediate inputs
At the bottom of the nest, industry j in region q chooses intermediate input type i from domestic region $s\left(\mathrm{X}_{\mathrm{i} . \mathrm{s}, \mathrm{j}, 4}\right)$ to minimise the costs

$$
\sum_{s=1}^{8} P 1 A_{i, x, j, 4} X 1 A_{i, ., j, 4},
$$

$$
i, j=1, \ldots, 13 \quad q=1, \ldots, 8,(2.1)
$$

of a composite domestic bundle
where the composite domestic bundle $\left(\mathrm{X}_{1 \mathrm{C}_{\mathrm{i}, \mathrm{j}, 4}}\right)$ is exogenous at this level of the nest. The notation CES() represents a CES function defined over the set of variables enclosed in the brackets. The CES specification means that inputs of the same commodity type produced in different regions are not perfect substitutes for one another. This is an application of the so-called Armington

Figure 2.2. Production technology for a regional sector in MMRF
(1969 1970) specification typically imposed on the use of domestically produced commodities and foreign-imported commodities in national CGE models such as ORANI.

By solving the above problem, we generate the industries' demand equations for domestically produced intermediate inputs to production. ${ }^{8}$ The percentage-change form of these demand equations is given by equations E_xlal and E_plc. The interpretation of equation E_xlal is as follows: the commodity demand from each regional source is proportional to demand for the composite $\mathrm{XIC}_{\mathrm{i}, \mathrm{j}, \mathrm{y}}$ and to a price term. The percentage-change form of the price term is an elasticity of substitution, $\sigma 1 \mathrm{C}_{\mathrm{i}}$, multiplied by the percentage change in a price ratio representing the price from the regional source relative to the cost of the regional composite, i.e., an average price of the commodity across all regional sources. Lowering of a source-specific price, relative to the average, induces substitution in favour of that source. The percentage change in the average price, plc $_{\mathrm{i}, \mathrm{j},}$, is given by equation E_plc. In E_plc, the coefficient $\mathrm{S}_{1 \mathrm{~A}_{\mathrm{i}, \mathrm{j} . \mathrm{j}}}$ is the cost share in of the ith commodity from the sth regional source in the jth industry from region q 's total cost of the ith commodity from all regional sources. Hence, $\mathrm{plc}_{\mathrm{i}, \mathrm{q}, \mathrm{q}}$ is a cost-weighted Divisia index of individual prices from the regional sources.

At the next level of the production nest, firms decide on their demands for the domestic-composite commodities and the foreign imported commodities following a pattem similar to the previous nest. Here, the firm chooses a costminimising mix of the domestic-composite commodity and the foreign imported commodity
where the subscript 'foreign' refers to the foreign import, subject to the production function

$$
X 1 O_{i, j, 4}=\operatorname{CES}\left(X 1 A_{\left.i, f \text { foreign.j. }, \ldots, \ldots, X 1 C_{i, j, q}\right), \quad i, j=1, \ldots, 13 \quad q=1, \ldots, 8 .(2.4)}\right.
$$

As with the problem of choosing the domestic-composite, the Armington assumption is imposed on the domestic-composite and the foreign import by the CES specification in equation 2.4

The solution to the problem specified by equations 2.3 and 2.4 yields the input demand functions for the domestic-composite and the foreign import represented in their percentage-change form by equations E_xlc, E_x1a2, and E_plo. The first two equations show, respectively, that the demands for the domestic-composite commodity $\left(\mathrm{X}_{1 \mathrm{C}}^{\mathrm{i}, \mathrm{j} .}\right)$andfortheforeignimport

[^4]($\mathrm{X}_{1 \mathrm{~A}_{\mathrm{i} . \text { freign.j. }}}$) are proportional to demand for the domestic-composite/foreignimport aggregate $\left(\mathrm{XlO}_{\mathrm{i}, \mathrm{j}, \mathrm{q}}\right)$ and to a price term. The $\mathrm{XlO}_{\mathrm{i}, \mathrm{j}, \mathrm{q}}$ are exogenous to the producer's problem at this level of the nest. Common with the previous nest, the change form of the price term is an elasticity of substitution, $\sigma 1 \mathrm{O}_{\mathrm{i}}$, multiplied by a price ratio representing the change in the price of the domesticcomposite (the $\mathrm{plc}_{\mathrm{i}, \mathrm{j}, \mathrm{y}}$ in equation E_xlc) or of the foreign import (the pla $_{\mathrm{i} . \text { foreign.j. }}$ in equation E_xla2) relative to price of the domestic-composite/foreign-import aggregate (the $\mathrm{plo}_{\mathrm{i}, \mathrm{j}, 4}$ in equations $\mathrm{E}_{-} \mathrm{xlc}$ and E_x1a2). The percentage change in the price of the domestic-composite/foreign-import aggregate, defined in equation E_plo is again a Divisia index of the individual prices. We now turn our attention to the primary-factor branch of the input-demand tree of Figure 2.2.

Demands for primary factors

At the lowest-level nest in the primary-factor branch of the production tree in Figure 2.2, producers choose a composition of eight occupation-specific labour inputs to minimise the costs of a given composite labour aggregate input. The demand equations for labour of the various occupation types are derived from the following optimisation problem for the jth industry in the qth region.

Choose inputs of occupation-specific labour type m, XILABOI $_{\mathrm{j} . \mathrm{q} . \mathrm{m}}$, to minimise total labour cost

$$
\begin{equation*}
\sum_{m=1}^{8} \mathrm{PILABOI}_{j .4 \cdot m} \mathrm{XlLABOI}_{\mathrm{j} .4 \cdot \mathrm{~m}} \tag{2.5}
\end{equation*}
$$

subject to,

$$
\operatorname{EFFLAB}_{\mathrm{j} . \mathrm{q}}=\operatorname{CES}\left(\mathrm{X}_{1} \mathrm{LABOI}_{\mathrm{j}, \mathrm{~m}, \mathrm{~m}}\right), \quad \mathrm{j}=1, \ldots, 13 \mathrm{q}, \mathrm{~m}=1, \ldots, 8,(2.4)
$$

regarding as exogenous to the problem the price paid by the jth regional industry for the each occupation-specific labour type ($\mathrm{PlLABOI}_{\mathrm{j}, \mathrm{q}, \mathrm{m}}$) and the regional industries' demand for the effective labour input ($\mathrm{EFFLAB}_{j, q}$).

The solution to this problem, in percentage-change form, is given by equations E_xllaboi and E_pllab. Equation E_xllaboi indicates that the demand for labour type m is proportional to the demand for the effective composite labour demand and to a price term. The price term consists of an elasticity of substitution, $\sigma 1 \mathrm{LAB}_{j, q}$, multiplied by the percentage change in a price ratio representing the wage of occupation m (pllaboi $_{j, q, m}$) relative to the average wage for labour in industry j of region $\mathrm{q}\left(\mathrm{pllab}_{\mathrm{j} . \mathrm{q}}\right)$. Changes in the relative wages of the occupations induce substitution in favour of relatively cheapening occupations. The percentage change in the average wage is given by equation $\mathrm{E}_{\mathrm{p}} \mathrm{pllab}$ where the coefficients $\mathrm{SILABOI}_{\mathrm{j} . \mathrm{q}, \mathrm{m}}$ are value shares of occupation m in the total wage bill of industry j in region q . Thus, $\mathrm{pllab} \mathrm{j}_{\mathrm{j}, 4}$ is a Divisia index of the pllaboi $\mathrm{j}_{\mathrm{j}, \mathrm{m} .}$. Summing the percentage changes in
occupation-specific labour demands across occupations, using the S1LABOI ${ }_{j . q, m}$ shares, for each industry gives the percentage change in industry labour demand (labind $_{\mathrm{j}, \mathrm{q}}$) in equation E_labind.

At the next level of the primary-factor branch of the production nest, we determine the composition of demand for primary factors. Their derivation follows the same CES pattern as the previous nests. Here, total primary factor costs

$$
\begin{array}{r}
\text { P1LAB }_{j, 4} \text { EFFLAB }_{j .4}+\text { P1CAP }_{j .4} \text { CURCAP }_{j-9}+\text { PlLAND }_{j, 4} N_{j .4} \\
j=1, \ldots .13, q=1, \ldots 8
\end{array}
$$

where PICAP $_{\mathrm{j} .4}$ and PILAND $_{\mathrm{j} .4}$ are the unit costs of capital and agricultural land and CURCAP $P_{j . q}$ and $\mathrm{N}_{\mathrm{j} \mu}$ are industry's demands for capital and agricultural land, are minimised subject to the production function

$$
\text { XIPRIM }_{j .4}=\operatorname{CES}\left(\frac{\operatorname{EFFLAB}_{j 4}}{\operatorname{AILAB}_{j .4}}, \frac{\operatorname{CURCAP}_{j a}}{\operatorname{AICAP}_{j .4}}, \frac{\mathrm{~N}_{j 4}}{\operatorname{AlLAND}_{j, 4}}\right)
$$

where $\mathrm{XIPRIM}_{\mathrm{j} \cdot \mathrm{q}}$ is the industry's overall demand for primary factors. The above production function allows us to impose factor-specific technological change via the variables $A l L A B_{j, q}, \operatorname{AlCAP}_{j, q}$ and $\operatorname{AlLAND}_{j, 9}$.

The solution to the problem, in percentage-change form is given by equations E_efflab, E_curcap. E_n and E_xi_fac. From these equations, we see that for a given level of technical change, industries' factor demands are proportional to overall factor demand (XIPRIM ${ }_{j . q}$) and a relative price term. In change form, the price term is an elasticity of substitution ($\sigma \perp \mathrm{FAC}_{\mathrm{j}, 4}$) multiplied by the percentage change in a price ratio representing the unit cost of the factor relative to the overall effective cost of primary factor inputs to the jth industry in region q . Changes in the relative prices of the primary factors induce substitution in favour of relatively cheapening factors. The percentage change in the average effective cost ($\mathrm{xi}_{-} \mathrm{fac}_{\mathrm{j}, 4}$), given by equation $\mathrm{E}_{-} \mathrm{xi}$ fac, is again a cost-weighted Divisia index of individual prices and technical changes.

Demands for primary-factor and commodity composites

We have now arrived at the topmost input-demand nest of Figure 2.2. Commodity composites, the primary-factor composite and 'other costs' are combined using a Leontief production function given by

$$
\begin{aligned}
& i, j=1, \ldots, 13, q=i, \ldots, 8 .
\end{aligned}
$$

In the above production function, $\mathrm{Z}_{\mathrm{j} .4}$ is the output of the j th industry in region q , the $\mathrm{A} 1_{\mathrm{j}, \mathrm{q}}$ are Hicks-neutral technical change terms, $\mathrm{XIOCT} \mathrm{j}_{\mathrm{j}, \mathrm{q}}$ are the
industries' demands for 'other cost tickets'9 and $\mathrm{AlOCT}_{\mathrm{j}, \mathrm{q}}$ which are the industry-specific technological change associated with other cost tickets.

As a consequence of the Leontief specification of the production function, each of the three categories of inputs identified at the top level of the nest are demanded in direct proportion to $\mathrm{Z}_{\mathrm{j} .9}$ as indicated in equations $\mathrm{E}_{\mathrm{l}} \mathrm{x} 10$, E_xlprim and E_xloct.

2.2.2. Demands for investment goods

Capital creators for each regional sector combine inputs to form units of capital. In choosing these inputs they cost minimise subject to technologies similar to that in Figure 2.2. Figure 2.3 shows the nesting structure for the production of new units of fixed capital. Capital is assumed to be produced with inputs of domestically produced and imported commodities. No primary factors are used directly as inputs to capital formation. The use of primary factors in capital creation is recognised through inputs of the construction commodity (service).

The model's investment equations are derived from the solutions to the investor's three-part cost-minimisation problem. At the bottom level, the total cost of domestic-commodity composites of good i ($\mathrm{X} 2 \mathrm{C}_{\mathrm{i}, \mathrm{j}, \mathrm{q}}$) is minimised subject to the CES production function

$$
X 2 C_{i, j, q}=\operatorname{CES}\left(X 2 A_{\left.i, 1, j, q, \ldots, X 2 A_{i, 8, j, q}\right)} \quad i, j=1, \ldots, 13 q=1, \ldots, 8\right.
$$

where the $\mathrm{XAC}_{\mathrm{i}, 1 \mathrm{j}, \mathrm{g}}$ are the demands by the jth industry in the qth region for the ith commodity from the sth domestic region for use in the creation of capital.

Similariy, at the second level of the nest, the total cost of the domestic/foreign-import composite $\left(\mathrm{X}_{2} \mathrm{O}_{\mathrm{i}, \mathrm{jq}}\right)$ is minimised subject to the CES production function

$$
\mathrm{X} 2 \mathrm{O}_{\mathrm{i}, \mathrm{j}, \mathrm{q}}=\operatorname{CES}\left(\mathrm{X} 2 \mathrm{~A}_{\mathrm{i}, \mathrm{foreign}, \mathrm{j}, q}, \ldots, \mathrm{X} 2 \mathrm{C}_{\mathrm{i}, \mathrm{j}, \mathrm{q}}\right), \quad \mathrm{i}, \mathrm{j}=1, \ldots ., 13 \mathrm{q}=1, \ldots, 8
$$

where the $\mathrm{X} 2 \mathrm{~A}_{\mathrm{i} . \mathrm{foreignj.9.9}}$ are demands for the foreign imports.
The equations describing the demand for the source-specific inputs ($E_{-} \times 2 \mathrm{a} 1, E_{-} \times 2 \mathrm{a} 2, E_{-} \times 2 \mathrm{c}, \mathrm{E}_{-} \mathrm{p} 2 \mathrm{c}$ and $\mathrm{E}_{-} \mathrm{p} 20$) are similar to the corresponding equations describing the demand for intermediate inputs to current production (i.e., E_xlal, E_xlc, E_plc and E_p2o).

At the top level of the nest, the total cost of commodity composites is minimised subject to the Leontief function

[^5]

Figure 2.3. Structure of investment demand

$$
\begin{equation*}
Y_{j, 4}=\operatorname{MIN}\left(\frac{X 2 O_{i j, 4}}{A 2 I N D_{i, j, 4}}\right) \quad i, j=1, \ldots, 13, q=1, \ldots, 8 \tag{2.5}
\end{equation*}
$$

where the total amount of investment in each industry $\left(Y_{j . q}\right)$ is exogenous to the cost-minimisation problem and the $A 2 I N D_{i, j, 4}$ are technological-change variables in the use of inputs in capital creation. The resulting demand equations for the composite inputs to capital creation ($E_{-} \times 20$) correspond to the demand equations for the composite input to current production (i.e., E_xlo).

Determination of the number of units of capital to be formed for each regional industry (i.e., determination of $\mathrm{Y}_{\mathrm{j}, \mathrm{q}}$) depends on the nature of the experiment being undertaken. For comparative-static experiments, a distinction is drawn between the short run and long run. In short-run experiments (where the year of interest is one or two years after the shock to the economy), capital stocks in regional industries and national aggregate investment are exogenously determined. Aggregate investment is distributed between the regional industries on the basis of relative rates of return.

In long-run comparative-static experiments (where the year of interest is five or more years after the shock), it is assumed that the aggregate capital stock adjusts to preserve an exogenously determined economy-wide rate of return, and that the allocation of capital across regional industries adjusts to satisfy exogenously specified relationships between relative rates of return and relative capital growth. Industries' demands for investment goods is determined by exogenously specified investment/capital ratios.

MMRF can also be used to perform forecasting experiments. Here, regional industry demand for investment is determined by an assumption on the rate of growth of industry capital stock and an accumulation relation linking capital stock and investment between the forecast year and the year immediately following the forecast year.

Details of the determination of investment and capital are provided in section 2.4.1 below.

2.2.3. Household demands

Each regional household determines the optimal composition of its consumption bundle by choosing commodities to maximise a Stone-Geary utility function subject to a household budget constraint. A Keynesian consumption function determines regional household expenditure as a function of household disposable income.

Figure 2.4 reveals that the structure of household demand follows nearly the same nesting pattem as that of investment demand. The only difference is that commodity composites are aggregated by a Stone-Geary, rather than a Leontief function, leading to the linear expenditure system (LES).

The equations for the two lower nests (E_x3a1, E_x3a2, E_x3c, E_p3c and E_p3o) are similar to the corresponding equations for intermediate and investment demands.

The equations determining the commodity composition of household

Figure 2.4. Siructure of household demand
demand, which is determined by the Stone-Geary nest of the structure, differ form the CES pattern established in sections 2.2 .1 and $2.2 .2 .{ }^{10}$ To analyse the Stone-Geary utility function, it is helpful to divide total consumption of each commodity composite ($\mathrm{X} 3 \mathrm{O}_{\mathrm{i} .4}$) into two components: a subsistence (or minimum) part ($\mathrm{X}_{3} \mathrm{SUB}_{\mathrm{i} .4}$) and a luxury (or supernumerary) part (X3LUX ${ }_{\mathrm{i} .4}$)

[^6]\[

$$
\begin{equation*}
\mathrm{X}_{3} \mathrm{O}_{\mathrm{i} . \mathrm{q}}=\mathrm{X}_{3} \mathrm{SUB}_{\mathrm{i} . \mathrm{q}}+\mathrm{X}_{3} \mathrm{LUX}_{\mathrm{i} . \mathrm{q}}, \quad \mathrm{i}=1, \ldots, 13, \mathrm{q}=1, \ldots, 8 . \tag{2.6}
\end{equation*}
$$

\]

A feature of the Stone-Geary function is that only the luxury components effect per-household utility (UTILITY), which has the CobbDouglas form

$$
\begin{equation*}
\text { UTILITY }_{\mathrm{q}}=\frac{1}{\mathrm{QHOUS}_{\mathrm{q}}} \sum_{i=1}^{13} \mathrm{X}_{\mathrm{L}} \mathrm{LUX}_{\mathrm{i} \cdot \mathrm{q}}{ }^{\text {A3LUX }_{\mathrm{i} .9}} \quad \mathrm{q}=1, \ldots, 8 \tag{2.7}
\end{equation*}
$$

where

$$
\sum_{i=1}^{13} A_{3} \text { LUX }_{i \cdot q}=1 \quad q=1, \ldots, 8
$$

Because the Cobb-Douglas form gives rise to exogenous budget shares for spending on luxuries

A3LUX ${ }_{i, q}$ may be interpreted as the marginal budget share of total spending on luxuries (LUXEXP ${ }_{q}$). Rearranging equation (2.8), substituting into equation (2.6) and linearising gives equation $\mathrm{E}_{-} \times 30$, where the subsistence component is proportional to the number of households and to a taste-change variabie (a3sub ${ }_{\mathrm{i}, 4}$), and ALPHA_ $\mathrm{I}_{\mathrm{i}, \mathrm{q}}$ is the share of supernumerary expenditure on commodity i in total expenditure on commodity i . Equation E_utility is the percentage-change form of the utility function (2.7).

Equations E_a3sub and E_a3lux provide default settings for the tastechange variables ($\mathrm{a} 3 \mathrm{sub}_{\mathrm{i} .4}$ and a3lux $\mathrm{i}_{\mathrm{i} q}$), which allow for the average budget shares to be shocked, via the $\mathrm{a} 3 \mathrm{com}_{\mathrm{i}, \mathrm{q}}$, in a way that preserves the pattern of expenditure elasticities.

The equations just described determine the composition of regional household demands, but do not determine total regional consumption. As mentioned, total household consumption is determined by regional household disposable income. The determination of regional household disposable income and regional total household consumption is described in section 2.xx.

2.2.4. Foreign export demands

To model export demands, commodities in MMRF are divided into two groups: the traditional exports, agriculture and mining, which comprise the bulk of exports; and the remaining, non-traditional exports. Exports account for relatively large shares in total sales of agriculture and mining, but for relatively small shares in total sales for non-traditional-export commodities.

The traditional-export commodities ($\mathrm{X}_{4} \mathrm{R}_{\mathrm{i} .,}$, $\mathrm{i} \in$ agricult,mining) are modelled as facing downwardly-sloping foreign-export demand functions

$$
\begin{equation*}
\mathrm{X} 4 \mathrm{R}_{\mathrm{i}, \mathrm{~s}}=\operatorname{FEQ}\left(\frac{\mathrm{P}_{\mathrm{L}} \mathrm{R}_{\mathrm{i},}}{\mathrm{FEP}_{\mathrm{i}} \mathrm{NATFEP}}\right)^{\text {EXP_ELAST }_{1}} \quad \mathrm{i}=1,2, \mathrm{~s}=1, \ldots, 13 \tag{2.9}
\end{equation*}
$$

where EXP_ELAST E_{i} is the (constant) own-price elasticity of foreign-export demand. As EXP_ELAST ${ }_{j}$ is negative, equation (2.9) says that traditional exports are a negative function of their prices on world markets ($\mathrm{P}_{4} \mathrm{R}_{\mathrm{i}, \mathrm{s}}$). The variables $\mathrm{FEQ}_{\mathrm{i}}$ and $\mathrm{FEP}_{\mathrm{i}}$ allow for horizontal (quantity) and vertical (price) shifts in the demand schedules. The variable NATFEP allows for an economywide vertical shift in the demand schedules. The percentage-change form of (2.9) is given by $\mathrm{E}_{-} \times 4 \mathrm{r}$.

In MMRF the commodity composition of aggregate non-traditional exports is exogenised by treating non-traditional exports as a Leontief aggregate (equation E_nt_x4r). Total demand is related to the average price via a constant-elasticity demand curve, similar to those for traditional exports (see equations E_aggnt_x4r and E_aggnt_p4r).

2.2.5. Government consumption demands

Equations E_x5a and E_x6a determine State govemment and Federal govemment demands (respectively) for commodities for current consumption. State government consumption can be modelled to preserve a constant ratio with State private consumption expenditure by exogenising the 'f5' variables in equation E_x5a. Likewise, Federal govemment consumption expenditure can be set to preserve a constant ratio with national private consumption expenditure by exogenising the 'f6' variables in equation E_x6a.

2.2.6. Demands for margins

Equations E_x1marg, E_x2marg, E_x3marg, E_x4marg, E_x5marg and E_x6marg give the demands, of our six users, for margins. Two margin commodities are recognised in MMRF: transport \& communication and finance. These commodities, in addition to being consumed directly by the users (e.g., consumption of transport when taking holidays or commuting to work), are also consumed to facilitate trade (e.g., the use of transport to ship commodities from point of production to point of consumption). The latter type of demand for transport \& communication and finance are the so-called demands for margins. The margin demand equations in MMRF indicate that the demands for margins are proportional to with the commodity flows with which the margins are associated.

2.2.7. Prices

As is typical of ORANI-style models, the price system underlying MMRF is based on two assumptions: (i) that there are no pure profits in the production or distribution of commodities, and (ii) that the price received by the producer is uniform across all customers.

Also in the tradition of ORANI is presence of two types of price equations: (i) zero pure profits in current production, capital creation and importing and (ii) zero pure profits in the distribution of commodities to users. Zero pure profits in current production, capital creation and importing is imposed by setting unit prices received by producers of commodities (i.e., the commodities' basic values) equal to unit costs. Zero pure profits in the distribution of commodities is imposed by setting the prices paid by users equal to the commodities' basic value plus commodity taxes and the cost of margins.
Zero pure profits in production, capital creation and importing
Equations E_pOa and E_a impose the zero pure profits condition in current production. Given the constant returns to scale which characterise the model's production technology, equation E_p0a defines the percentage change in the price received per unit of output by industry j of region $q\left(p 0 a_{j . \varphi}\right.$) as a cost-weighted average of the percentage changes in effective input prices. The percentage changes in the effective input prices represent (i) the percentage change in the cost per unit of input and (ii) the percentage change in the use of the input per unit of output (i.e., the percentage change in the technology vanable). These cost-share-weighted averages define percentage changes in average costs. Setting output prices equal to average costs imposes the competicive zero pure profits condition.

Equation E_pi imposes zero pure profits in capital creation. E_pi determines the percentage change in the price of new units of capital ($\mathrm{pi}_{\mathrm{j} .4}$) as the percentage change in the effective average cost of producing the unit.

Zero pure profits in imports of foreign-produced commodities is imposed by Equation E_p0ab. The price received by the importer for the ith commodity $\left(\mathrm{POA}_{i, \text { foreign }}\right)$ is given as product of the foreign price of the import $\left(\mathrm{PM}_{\mathrm{j}}\right)$, the exchange rate (NATPHI) and one plus the rate of tariff (the so-called power of the tariff: POWTAXM ${ }_{\mathrm{i}}{ }^{11}$.
Zero pure profits in distribution
The remaining zero-pure-profits equations relate the price paid by purchasers to the producer's price, the cost of margins and commodity taxes. Six users are recognised in MMRF and zero pure profits in the distribution of commodities to the users is imposed by the equations E_pla, E_p2a, E_p3a, E_p4r, E_p5a and E_p6a.

2.2.8. Market-clearing equations for commodities

Equations E_mkt_clear_margins, E_mkt_clear_nonmarg and E_x0impa impose the condition that demand equals supply for domesticallyproduced margin and nonmargin commodities and imported commodities

[^7]respectively. The output of regional industries producing margin commodities, must equal the direct demands by the model's six users and their demands for the commodity as a margin. Note that the specification of equation E_mkt_clear_margins imposes the assumption that margins are produced in the destination region, with the exception that margins on exports and commodities sold to the Federal government are produced in the source region.

The outputs of the nonmargin regional industries are equal to the direct demands of the model's six users. Import supplies are equal to the demands of the users excluding foreigners, i.e., all exports involve some domestic value added.

2.2.9. Indirect taxes

Equations E_deltax 1 to E_deltax6 contain the default rules for setting sales-tax rates for producers (E_deltax1), investors (E_deltax2), households (E_deltax3), exports (E_deltax4), and government (E_deltax5 and E_deltax6). Sales taxes are treated as ad valorem on the price received by the producer, with the sales-tax variables (deltax (i), $i=1, \ldots, 6$) being the ordinary change in the percentage tax rate, i.e., the percentage-point change in the tax rate. Thus a value of deltaxl of 20 means the percentage tax rate on commodities used as inputs to current production increased from, say, 20 percent to 40 percent, or from, say, 24 to 44 percent.

For each user, the sales-tax equations allow for variations in tax rates across commodities, their sources and their destinations.

Equations E_taxrevl to E_taxrev6 compute the percentage changes in regional aggregate revenue raised from indirect taxes. The bases for the regional sales taxes are the regional basic values of the corresponding commodity flows. Hence, for any component of sales tax, we can express revenue (TAXREV), in levels, as the product of the base (BAS) and the tax rate (T), i.e.,

TAXREV $=\mathrm{BAS} \times T$.
Hence,

$$
\begin{equation*}
\Delta T A X R E V=T \Delta B A S+B A S \Delta T \tag{2.10}
\end{equation*}
$$

The basic value of the commodity can be written as the product the producer's price (P 0) and the output (XA)

$$
\begin{equation*}
\mathrm{BAS}=\mathrm{P} 0 \times \mathrm{XA} \tag{2.11}
\end{equation*}
$$

Using equation (2.11), we can derive the form of equations E_taxrevl to E_taxrev6 by taking the percentage change of the first two terms in (2.10) and the ordinary change in the last term of (2.10) multiplied by 100

TAXREV \times taxrev $=T A X \times(p 0+x a)+B A S \times d e l t a x$
where

$$
\operatorname{taxrev}=100\left(\frac{\Delta \mathrm{TAXREV}}{\text { TAXREV}}\right)
$$

$T A X=B A S \times T$

$$
\begin{aligned}
& \mathrm{p} 0=100\left(\frac{\Delta \mathrm{P} 0}{\mathrm{P} 0}\right) \\
& \mathrm{xa}=100\left(\frac{\Delta \mathrm{XA}}{\mathrm{XA}}\right)
\end{aligned}
$$

and

$$
\text { deltax }=100 \times \Delta T
$$

2.2.10. Regional incomes and expenditures

In this section, we outline the derivation of the income and expenditure components of regional gross product. We begin with the nominal income components.
Income-side aggregates of regional gross product
The income-side components of regional gross product include regional totals of factor payments, other costs and the total yield from commodity taxes. Nominal regional factor income payments are given in equations E_caprev, E_labrev and E_Indrev for payments to capital, labour and agricultural land, respectively. The regional nominal payments to other costs are given in equation E_octrev.

The derivation of the factor income and other cost regional aggregates are straightforward. Equation E_caprev, for example is derived as follows. The total value of payments to capital in region $q\left(\mathrm{AGGCAP}_{q}\right)$ is the sum of the payments of the j industries in region q (CAPITAL j_{jq}), where the industry payments are a product of the unit rental value of capital $\left(\mathrm{PICAP}_{\mathrm{j}, 4}\right)$ and the number of units of capital employed (CURCAP ${ }_{j-4}$)

$$
\begin{equation*}
\operatorname{AGGCAP}_{4}=\sum_{j=1}^{13} \operatorname{P1CAP}_{\mathrm{j}, 9} \text { CURCAP }_{\mathrm{j}, \mathrm{q}}, \quad \mathrm{q}=1, \ldots, 8 \tag{2.12}
\end{equation*}
$$

Equation (2.12) can be written in percentage changes as

$$
\begin{array}{r}
\text { caprev }_{4}=\left(1.0 / \text { AGGCAP }_{q}\right) \sum_{\mathrm{j}=1}^{13} \text { CAPITAL }_{\mathrm{j} .4}\left(\text { plcap }_{j . q}+\text { curcap }_{\mathrm{j} .4}\right), \\
q=1, \ldots, 8,
\end{array}
$$

giving equation E_caprev, where the variable caprev ${ }_{q}$ is the percentage change in rentais to capital in region q and has the definition,

$$
\operatorname{caprev}_{\mathrm{q}}=100\left(\frac{\Delta \mathrm{AGGCAP}_{4}}{\mathrm{AGGCAP}_{4}}\right) \quad \mathrm{q}=1, \ldots 8
$$

The regional tax-revenue aggregates are given by equations E_taxind, E_taxrev6 and E_taxtevm. E_taxrev6 has been discussed in section 2.2.9. E_taxind determines the variable taxind ${ }_{4}$, which is the weighted average of the percentage change in the commodity-tax revenue raised from the purchases of producers, investors, households, foreign exports and the regional government. Equation E_taxrevm determines tariff revenue on imports absorbed in region q (taxrem $_{q}$). Equation E_taxrevm is similar in form to equations E_taxrevl to E_taxrev6 discussed in section 2.2.9. However, the tax-rate term in equation E_taxrevm, powtaxm ${ }_{q}$, refers to the percentage change in the power of the tariff (see footnote 2) rather than the percentage-point change in the tax rate (as is the tax-rate term in the commodity-tax equations of section 2.2.9).

Expenditure-side aggregates of regional gross product

For each region, MMRF contains equations determining aggregate expenditure by households, investors, regional govemment, the Federal government and the interregional and foreign trade balances. For each expenditure component (with the exception of the interregional trade flows), we define a quantity index and a price index and a nominal value of the aggregate. For interregional exports and imports, we define an aggregate price index and quantity index only.

As with the income-side components, each expenditure-side component is a definition. As with all definitions within the model, the defined variable and its associated equation could be deleted without affecting the rest of the model. The exception is regional household consumption expenditure (see equations $E_{-} c_{-} a, E_{-} c r$ and $E_{-} x i 3$). It may seem that the variable c_{4} is determined by the equation $E_{\mathbf{c}} \mathrm{c}$ a. This is not the case. Nominal household consumption is determined either by a consumption function (see equation E_c_b in section $x x x$) or, say, by a constraint on the regional trade balance. Equation E_c_a therefore plays the role of a budget constraint on houschold expenditure.

The equations defining the remaining aggregate regional real expenditures, nominal expenditures and related price indices are listed below
in the order: investment, regional government, Federal government, interregional exports, interregional imports, international exports and international imports. The equations defining quantities are E_ir, E_othrealS, E_othreal6, E_int_exp, E_int_imp, E_expvol and E_impvol. The equations describing price indices are E_xi2, E_xi5, E_xi6, E_psexp, E_psimp, E_xi4 and $\mathrm{E}_{\text {- }}$ im. The definitions of nominal values are given by equations E _in, E_othnom5, E_othnom6, E_export and E_imp (remembering that the model does not include explicit equations or variables defining aggregate nominal interregional trade flows).

The derivation of the quantity and price aggregates for the interregional trade flows involves an intermediate step represented by equations E_trd and E_psflo. These equations determine inter- and intra- regional nominal trade flows in basic values. ${ }^{12}$ To determine the interregional trade flows, say for interregional exports in E_int_exp, the intraregional trade flow (the second term on the RHS of E_int_exp) is deducted from the total of interand intra- regional trade flows (the first term on the RHS of E_{-}int_exp).

2.2.11. Regional wages

The equations in this section have been designed to provide flexibility in the setting of regional wages. Equation E_pllaboi separates the percentage change in the wage paid by industry ($\mathrm{pllaboi}_{\mathrm{j}, \mathrm{q} \cdot \mathrm{m}}$) into the percentage change in the wage received by the worker (pwagei $_{j_{\mathrm{q}}}$) and the percentage change in the power of the payroll tax $\left(\mathrm{arpi}_{\mathrm{j} .9}\right)$. Equation $\mathrm{E}_{\mathbf{\prime}}$ pwagei allows for the indexing of the workers' wages to the national consumer price index (natxi3, see section $x x x$). The 'fwage' variables in E_pwagei allow for deviations in the growth of wages relative to the growth of the national consumer price index.

Equation E_wage_diff allows flexibility in setting movements in regional wage differentials. The percentage change in the wage differential in region q (wag_diff) is defined as the difference the aggregate regional real wage received by workers (pwage ${ }_{q}$ - natxi3) and the aggregate real wage received by workers across all regions (natrealwage). Equation E_pwage defines the percentage change in the aggregate regional nominal wage (pwage ${ }_{q}$) as the average (weighted across industries) of the pwagei $i_{j . q}$ and equation E_natrealw defines the percentage change in the variable natrealwage.

2.2.12. Other regional factor-market definitions

The equations in this section define aggregate regional quantities and prices in the labour and capital markets.

Equations E_l, E_kt and E_z_tot define aggregate regional employment, capital use and value added respectively. E_lambda defines regional employment of each of the eight occupational skill groups.

[^8]The remaining equations of this section define aggregate regional prices of labour and capital.

2.2.13. Other miscellaneous regional equations

Equation E_ploct allows for the indexation of the unit price of other costs to be indexed to the national consumer price index. The variable $\mathrm{floct}_{\mathrm{j} .4}$ can be interpreted as the percentage change in the real price of other costs to industry j in region q .

Equation E_cr_shr allows for the indexing of regional real household consumption with national real household consumption in the case where the percentage change in the regional-to-national consumption variable, $\mathrm{cr}_{-} \mathrm{shr}_{\mathbf{q}}$ is exogenous and set to zero. Otherwise, $\mathrm{cr}_{-} \mathrm{shr}_{4}$ is endogenous and regional consumption is determined elsewhere in the model (say, by the regional consumption function).

Equation E_ximp0 defines the regional duty-paid imports price index. Equation E_totdom and E_totfor define, for each region, the interregional and international terms of trade respectively.

2.2.14. National aggregates

The final set of equations in the CGE core of MMRF define economywide variables as aggregates of regional variables. As MMRF is a bottoms-up regional model, all behavioural relationships are specified at the regional level. Hence, national variables are simply add-ups of their regional counterparts.

2.3. Government finances

In this block of equations, we determine the budget deficit of regional and federal governments, aggregate regional household consumption and Gross State Products (GSP). To compute the govemment deficits, we prepare a summary of financial transactions (SOFT) which contain government income from various sources and expenditure on different accounts. To determine each region's aggregate household consumption, we compute regional household disposable income and define a regional consumption function. The value added in each region is determined within the CGE core of the model. Within the govemment finance block, are equations which split the regions' value added between private and public income. In this disaggregation process, the GSPs are also computed from the income and expenditure sides. The govemment finance equations are presented in five groups:
(i) value added disaggregation;
(ii) gross regional product;
(iii) miscellaneous equations.
(iv) summary of financial transactions;
(v) household income.

Figure 2.5 illustrates the interlinkages between the five government finance equation blocks and their links with the CGE core and regional population and labour market equation block of MMRF. The activity variables and commodity taxes are determined in the CGE core.

From Figure 2.5, we see that all the equation blocks of government finances have backward links to the CGE core. The disaggregation-of-valueadded block takes expenditures by firms on factors of production from the CGE core and disaggregates them into gross returns to factors and production taxes. Regional value added is used in the determination of the income side of gross regional product. hence the link from the value-added block to the gross-regional-product block in Figure 2.5. Production tax revenue also appears as a source of govemment income in the SOFT accounts block, which explains the link between value-added and SOFT in Figure 2.5. Factor incomes help explain household disposable income and this is recognised by the link between the value-added block and the household-disposable-income block in Figure 2.5.

The miscellaneous block in Figure 2.5 contains intermediary equations between the gross-regional-product block and the SOFT accounts, and between the household-disposable-income block and the CGE core. There are two types of equations in the miscellaneous block: (i) aggregating equations that form national macroeconomic aggregates of the expenditure and income sides of GDP by summing the corresponding regional macroeconomic variables determined in the gross-regional-product block and; (ii) mapping equations that rename variables computed in the gross-regional-product block and the CGE core for use in the SOFT accounts.

The sOFT accounts compute the regional and Federal govemments' budgets. On the income side are government tax revenues, grants from the Federal government to the regional governments, interest payments and other miscellaneous revenues. Direct taxes and commodity taxes come from the gross-regional-product block via the miscellaneous block as described above. Production taxes come from the value-added block. On the expenditure side of the govemment budgets are purchases of goods and services, transfer payments, interest payments on debt, and for the Federal government, payments of grants to the regional governments. The purchases of goods and services come from the CGE core via the miscellaneous block. Transfer payments come from the household-disposable-income block.

Figure 2.5. Government finance block of equations
Finally, we come to the household-disposable-income block. Within this block, household disposable income is determined as the difference between the sum of factor incomes and transfer payments, and income taxes. Figure 2.5 shows that factor incomes come from the value-added block and that unemployment benefits are determined using information from the regional population and labour market block. Household disposable income feeds back to the miscellaneous block, which contains an equation specifying the level of regional household consumption as a function of regional household disposable income. The value of regional household consumption, in turn, feeds back to the CGE core. Also, the value of transfer payments, determined in the household-disposable-income block, feedback to the SOFT accounts.

A notation for the government finance block

Following the style of the CGE core, all variable names are in lower case. However, the coefficient naming system is different. A variable name in upper case with a prefix of " C_{-}" defines the coefficient associated with the variable. For example, the variable 'hhldy 000 ' represents the percentage change in household disposable income. Its associated coefficient is 'C_HHLDY00' which represents the level of household disposable income.

We have given specific notation to variables of each of the blocks which form the govemment finance set of equations. The following are the major array names for variables and coefficients:
(i) $z_{-}{ }^{* *}{ }^{5}$ (a value-added component in gross regional production).
(ii) dompy*** (domestic regional production, an income component);
(iii) dompq*** (domestic regional production, an expenditure component);
(iv) softy*** (summary of financial transaction, an income component);
(v) softq*** (summary of financial transaction, an expenditure component) and:
(vi) hhldy*** (a household income component).

In each array name '***' represents three or two digits component numbers.
In the following sections we discuss the various blocks which constitute the government finance equations of MMRF beginning with the disaggregation of value added.

2.3.1. Disaggregation of value added

Figure 2.6 shows that the essential purpose of the disaggregation-of-value-added block is to disaggregate the four elements of value added determined in CGE core (i.e., the wage bill, the rental cost of capital and land, and other costs) into ten components in order to separate production taxes from payments to factors. In addition, the block prepares national values as aggregates of regional values. We now turn to the details of the value-added equation block as presented in section 2.3 of Table 2.1.

In equations E_z01_r and E_z02_r, we assume that the wages, salaries and supplements and the imputed wage bill vary in direction proportion to the pre-tax wage bill, which is determined in the CGE core. Equation E_z03_r shows that payroll taxes are determined by the pre-tax wage bill and the payroll tax rate. Equations E_z04_r and E_z05_r show that the return to fixed capital and property taxes are assumed to vary in proportion to the rental cost of capital, which is determined in the CGE core. Returns to agricultural land and land taxes are determined by equations E_z06_r and E_z07_r respectively and vary in proportion to the total rental cost of land. Returns to working capital, other indirect taxes and sales by final buyers are all assumed to vary in proportion to other costs. The relevant equations are $E_{-} z 08_{_} r, E_{_} z 09_{_} r$ and E_z010_r respectively.

The values of the ten national components of value added are the sums of the corresponding regional components. The national values are calculated in the ' $E_{-} z 0^{* *}$ ' equations from which the ' r ' suffix has been omitted.

KEY

- The name in parenthesis indicates the corresponding array name in Figure 2.1.
\checkmark Elements from the CGE Core.Elements in the disaggregation-of-value-added block.

Figure 2.6. Components of regional value added

Equation E_zg_r defines regional gross operating surplus (GOS) as the sum of imputed wages and returns to fixed capital, working capital and agricultural land. Equation E_zt_r calculates total regional production tax revenues.

Equation E_rpr sets the payroll tax rates by industry and region which are determined by the payroll tax rate for all industries in a region and a shift in the industry and region specific payroll tax rate. A change in the payroll tax rate drives a wedge between the wage rate received by the workers and the cost to the producer of employing labour. The change in the cost of employing labour for a given change in the payroll tax rate depends on the share of the payroll taxes in total wages. Equation E_rpri adjusts the payroll tax rate to compute the wedge between the wage rate and labour employment costs. The wedge is used to define the after-tax wage rate in the CGE core.

The last equation in the value-added block, E_xisfb2, defines a regional price index for sales by final buyers.

2.3.2. Gross regional domestic product and its components

This block of equations defines the regional gross products from the income and expenditure sides using variables from the CGE core and the valueadded block.

Figure 2.7 reveals that gross regional product at market prices from the income side is sum of wage income, non-wage income and indirect tax revenues.

In section 2.3 of Table 2.1, equations E_dompy100, E_dompy 200 and E_dompy 330 show, respectively, that wage income, non-wage income and production taxes are mapped from the value-added block. In addition to production taxes, there are two other categories of indirect tax: tariffs and other commodity taxes less subsidies. Equations E_dompy 330 and E_dompy 320 show that these taxes are mapped from the CGE core. Total indirect taxes are defined by E_dompy 300 as the sum of the three categories of indirect taxes.

Summing wage and non-wage income, and indirect taxes gives gross regional product from the income side (equation E_{-}dompy000).

In addition to the defining the income-side of gross regional product, we also disaggregate factor incomes into disposable income and income tax. Disposable income is used in the household-disposable-income block and income taxes are a source of government revenue in the SOFT accounts. In equation E_dompyllo, disposable wage income is defined as wage income net of PAYE taxes. In equation E_dompyl20, PAYE taxes are assumed to be proportional to wage income and the PAYE tax rate. Likewise, equation E_dompy 210 defines disposable non-wage income as the difference between non-wage income and income taxes. Equation E_dompy 220 sets non-wage income tax proportional to non-wage income and the non-wage income tax rate.

Figure 2.7. Income-side components of gross regional product

Figure 2.8 shows that gross regional product from the expenditure side is defined as the sum of domestic absorption and the interregional and international trade balances. This definition is reflected in equation E_dompq000. Domestic absorption is defined in equation E_dompq 100 as the sum of private and public consumption and investment expenditures. Equations E_dompq110 to E_dompq150 reveal that the components of domestic absorption are mapped from the CGE core. Within the components of domestic absorption, the assumption is made, in equations E_dompq 120 and E_dompq150, that the shares of private and govemment investment in total investment are fixed. Equations E_dompq210 and E_dompq220 show that regional exports and imports are also taken from the CGE core. The difference between regional exports and imports forms the regional trade balance and is calculated in equation E_dompq200. Similarly the international trade variables for each region are taken from the CGE core (E_dompq310 and E_dompq320 for international exports and imports respectively) and are used to define the international trade balance for each region in equation E_{-}dompq300.

2.3.3. Miscellaneous equations

The miscellaneous equation block appears in section 2.3.3 of Table 2.1. In equation E_tir, commodity taxes are mapped from the gross-regionalproduct block. The regional values are then summed in equation E_ti to form the national aggregate of commodity taxes. Similarly, gross regional products are mapped from the gross-regional-product block in equation E_yn_r and

Figure 2.8 Expenditure-side components of gross regional product
then summed, in equation E_yn, to form national nominal GDP. In equation E_xiy_r, a gross-regional-product price deflator from the expenditure side, is formed using price indices taken from the CGE core. The resulting price deflator is used to define real gross regional product in equation E_yr_r.

Taking a weighted average of the gross regional product price deflators gives the price deflator for national GDP in equation E_xiy. This deflator is used to define real national GDP in equation E_yr.

National GDP at factor cost is defined in equation E_yf as the sum of the regional wage and non-wage incomes. Equation E_bstar defines the percentage-point change in the national balance of trade surplus to national

GDP ratio. Note that E_bstar defines a percentage-point change in a ratio, rather than a percentage change. The underlying levels equation of E_bstar is

$$
\text { BSTAR }=\frac{\sum_{\mathrm{g}=1}^{8} \mathrm{DOMPQ} 300_{4}}{\mathrm{YN}},
$$

where the upper-case represents the levels values of the corresponding percentage-point change and percentage change variables. Taking the first difference of BSTAR and multiplying by 100 gives the percentage-point change in BSTAR (i.e., the variable bstar on the LHS of E_bstar)

$$
100 \times \Delta \mathrm{BSTAR}=\text { bstar }=\frac{\sum_{q=1}^{8} \mathrm{DOMPQ} 300_{4} \mathrm{dompq} 300_{4}}{\mathrm{YN}} \cdot \frac{\mathrm{NATB}}{\mathrm{YN}} \mathrm{yn},
$$

where

$$
\mathrm{NATB}=\sum_{\mathrm{q}=1}^{8} \mathrm{DOMPQ} 300_{\mathrm{q}} .
$$

Aggregate national income taxes are calculated in equation E_ty. They are the sum of regional PAYE taxes and regional taxes on non-wage income. Pre-tax national wage income is calculated in equation E_yl by summing pretax regional wage incomes. Equation E_wn defines the nominal pre-tax national wage rate as the ratio of the pre-tax wage income to national employment. The nominal post-tax national wage income is calculated in equation E_{-}ylstar by summing the nominal post-tax regional wage incomes. The nominal post-tax national wage rate is defined in equation E_wnstar as the ratio of the nominal post-tax wage income to national employment. The real post-tax national wage rate is defined in E_wrstar by deflating the nominal post-tax national wage rate by the national CPI.

Equations E_g_rA and E_g_rB define the regional government and Federal government consumption expenditures respectively. The vector variable determined in these equations, g_r, drives govemment consumption expenditures in the soft accounts (see section 2.3 .4 below).

Equations E_ip to E_ig_r_fed disaggregate investment expenditure into private investment expenditure and public investment expenditure. The resulting values for public investment expenditure are used to drive government capital expenditures in the SOFT accounts (see section 2.3.4 below). Equation E_ip imposes the assumption that aggregate private investment expenditure moves proportionally with a weighted average of total (private and public) regional investment. Aggregate public investment expenditure is then
determined as a residual in equation E_ig, as the difference between total aggregate total investment and aggregate private investment. Equation E_ig_reg imposes the assumption that investment expenditure of regional governments moves in proportion to total regional investment. Equation E_ig_r_fed determines investment expenditure of the Federal government as the difference between total public investment and the sum of regional governments' investment.

The miscellaneous equation block is completed with equation E_c_b defining the regional household consumption function and equation $E_{-} r l$ relating the PAYE tax rate to the tax rate on non-wage income.

2.3.4. Summary Of Financial Transactions of the regional and Federal governments: the SOFT accounts.

In this block of equations, we prepare a statement of financial transactions containing various sources of govemment income and expenditure. A separate statement is prepared for each regional govemment and the Federal government. Our accounting system is based on the State Finance Statistics (cat. no. 5512.0) of the Australian Bureau of Statistics (ABS).

The sort accounts contain equations explaining movements in the income and expenditure sides of the govemments' budgets. Our exposition of this equation block starts with the income side of the accounts. Figure 2.9 depicts the income side of the SOFT accounts. There are two major categories of government income: (i) revenues and (ii) financing transactions. Government revenues are further divided into direct and indirect cax revenues, interest payments, Commonwealth grants (for regional governments) and other revenues. The categories of direct taxes are income taxes (for the Federal govemment), and other direct taxes. Indirect taxes consist of tariffs (for the Federal govemment), other commodity taxes and production taxes. Commonwealth grants are divided into grants to finance consumption expenditure and grants used to finance capital expenditure. Financing transactions capture the change in the governments' net liabilities and represent the difference between government revenue and govermment expenditure. If government expenditure exceeds/is less than government revenue (i.e., the government budget is in deficit/surplus), then financing transactions increase/decrease as either the govemments' net borrowings increase and/or other financing transactions increase. Variations in the latter item principally consist of changes in cash and bank balances. ${ }^{13}$ We now turn our attention to

[^9]

Figure 2.9. Summary of Financial Transaction (SOFT): income side
the specification of movements in the income-side components of the SOFT accounts as presented in section 2.3.4 of Table 2.1.

Equation E_softylll shows that Federal government income tax collections are mapped from the miscellaneous block based on the corresponding variable in the gross-regional-product block. Equations E_softyl12A and E_softyi12B impose the assumption that regional govemment and Federal government collections of 'other direct taxes' move in proportion to nominal gross regional product and nominal national GDP respectively. The sum of the two above categories of direct taxes for each government is given in equation E_softyllo.

Federal govemment tariff revenue is mapped from the CGE core to equation E_softyl21. Equation E_softy122A shows that regional government collections of 'other commodity taxes' are mapped from the miscellaneous block based on the corresponding variable in the gross-regional-product block. Federal govemment collections of 'other commodity taxes' are calculated in cquation E_softyl22B as the difference between total national collection of 'other commodity taxes' and the sum of the regional governments' collections of 'other commodity taxcs'. The value of the total national collection of 'other commodity taxes' is mapped from the miscellaneous block based on the corresponding variable in the gross-regional-product block.

Equation E_softy123a shows that the regional govemments' collections of payroll taxes are mapped from the value-added block. In equation E_softyl23b, the assumption is imposed that the Federal government's collection of fringe benefits moves in proportion with the value-added-block variable 'other indirect taxes'. Equations E_124, E_125 and E_126A show that regional governments' collections of, respectively, property taxes, land taxes and other indirect taxes, are mapped from their corresponding values in the value-added block. Equation E_softy126B ties movements in Federal government 'other indirect taxcs' to the weighted average of movements in regional governments' 'other indirect taxes'.

Equation E_softy 120 calculates movements in the collection of aggregate indirect taxes in each region as the weighted average of movements in the regional collection of tariffs, other commodity taxes and the production taxes.

Interest received by governments ${ }^{14}$ is determined in equation E_softy130. We assume that interest received and interest paid by the government move in proportion with the size of the economy as measured by

[^10]nominal gross regional product for regional governments, and nominal national GDP for the Federal government. Is

The next item of govemment revenue applies only to regional governments and is Commonwealth grants. Equations E_softy 141 and softy 142 recognise Commonwealth grants for current expenditure purposes and capital expenditure purposes respectively. For each type of grant, our default assumption is that their nominal values are proportional to the nominal value of the region's gross product. Equations E_softy141 and E_softy 142 include shift variables which allow the default option to be overridden.

The final item of government revenue, 'other revenue', is described in equation E_softyl 150 (for regional governments) and equation E_softyl50B (for the Federal govemment). As with Commonwealth grants, the default option is that 'other revenue' of regional govemments is proportional to nominal gross regional product and for the Federal government it is proportional to national nominal GDP. Also in common with the 'grants' equations is the presence of shifters which allow the default option to be overridden.

Equation E_softy 100 sums the various components of government revenue to determine total government revenue.

Equation E_softy 300 identifies the budget deficit or surplus as the difference between govemment expenditure and govemment revenue. As mentioned above, financing transactions consists of three components. Equation E_softy320 allows a default option which sets the 'increase in provisions' component of financing transactions proportional to government expenditure on goods and services. A shift variable in equation E_softy 320 allows the default option to be overridden. The second component of financing transactions, 'other financing transactions', is determined by equation E_softy 300 . The default setting is that 'other financing transactions' move in proportion with 'financing transactions'. The presence of a shift variable allows the default setting to be overridden. Government's net borrowing is determined by equation E_softy300 as the difference between 'financing transactions' and the sum of the two components, 'increase in provisions' and 'other financing transactions'.

Figure 2.10 depicts the expenditure-side of the SOFT accounts. Figure 2.10 shows that regional govemment expenditure consists of five broad categories: goods and services, personal benefits, subsidies, interest payments and other outlays. Figure 2.10 also shows that expenditure by the Federal govemment includes the same five categories, in common with the regional

[^11]

Figure 2.10. Summary of Financial Transaction (SOFT): expenditure side
governments, plus grants to the regional governments. The composition of the expenditure side of the SOFT accounts is reflected in equation E_softq000 which gives the total, for each govemments' expenditures.

Government expenditure on goods and services consists of government consumption expenditure and investment expenditure (equation E_softq100). Government consumption expenditure (equation E_softq1 10) is mapped from the miscellaneous block based on the corresponding nominal government consumption expenditure variable in the CGE core. Likewise, govemment investment expenditure (equation E_softq120) is mapped from the miscellaneous block based on the corresponding nominal government investment expenditure variable in the CGE core.

Governments' expenditures on personal benefits (equation E_softq200) are mapped from the household-disposable-income block (see section 2.3.5 below). Personal benefit payments are divided into 'unemployment benefits' and 'other personal benefit payments'. Unemployment benefits (equation E_softq210) are mapped from the household-disposable-income block. This leaves 'other personal benefit payments' (equation E_softq220) to be determined residually as the difference between personal benefit payments and unemployment benefits.

Equations E_softq300A and E_softq300B determinc payments of subsidies by regional govermments and the Federal government respectively. These equations impose the assumption that the ratio of the government payment of subsidics to commodity tax revenues is constant.

Equations E_softq400A and E_softq400A define nominal interest payments by regional governments and the Federal government respectively. As described above, we assume that interest paid by the government moves in proportion with nominal gross regional product for regional governments, and nominal national GDP for the Federal govemment.

Expenditure by the Federal govemment on grants to the regions (equation E_softg500) consists of grants for the purposes of consumption expenditure (equation E_softq510) and capital expenditure (equation E_softq520).

The final isem in the govemments' expenditure-side of the SOFT accounts is 'other outlays' (equation E_softq600). The default selting is that 'other outlays' is proportional to total government expenditure.

There are four remaining equations in the SOFT accounts block. Three of these define various measures of the budget deficit. The remaining equation is a mapping equation for a variable used in the household-disposable-income block.

Equation E_realdefr defines the percentage change in the real budget deficit of regional govermments. It is defined as the difference in the percentage change in financing transactions (a measure of the percentage change in the nominal budget deficit) and the percentage change in the regional CPI. Equation E_realdeff defines the corresponding variable for the Federal government. This equation is analogous to the regional version, where the regional variables are replaced by Federal and national variables. Equation E_dgstar calculates the percentage-point change in the ratio of government net borrowing to total outlays. The final equation, E_tod_r maps the 'other indirect tax' variable (softy 112) to the variable name 'tod_r'.

2.3.5. Household disposable income

This block of equations computes the various components of regional household disposable income. Figure 2.11 outlines the composition of household disposable income. Regional household disposable income consists of four broad components: primary factor income, personal benefit payments from the governments, 'other income', and direct taxes. Equation E_hhldy 000 defines regional household disposable income based on these four components.

Figure 2.11 also shows the disaggregation and sources of the components of household disposable income. Primary factor income is disaggregated into wage income and non-wage income (equation E_hhldyl00). Movements in wage income and non-wage income are determined in the valueadded block (equation E_hhldyl10 and E_hhldy 120 respectively). Personal

Figure 2.11. Household disposable income
benefit payments are consist of unemployment benefits and other benefit payments (equation E_hhldy200). Equation E_hhldy210 shows that unemployment benefits are indexed to the national CPI and that changes in the numbers unemployed are taken from variables determined in the regional population and labour market equation block. Other personal benefit payments are determined in equation E_hhidy220. They are indexed to the national CPI and proportional to the regional population. Equation E_hhldy 300 imposes the assumption that regional household 'other net income' moves in proportion with the region's nominal gross product.

In Figure 2.11, three components of direct taxes are identified: Paye taxes, taxes on non-wage income and other direct taxes (equation E_hhldy400). Equations E_hhldy410 and E_hhldy 420 show that PaYE taxes and non-wage taxes are assumed to move in proportion to wage income and non-wage income respectively. Equation E_hhldy 430 shows that other direct taxes move in line with the corresponding variable taken from the SOFT accounts.

There are five remaining equations in this block. The first is a mapping equation, E_ydr, that maps regional household disposable income to a variable to be used in the consumption-function equation described above in the miscellancous-equation block (see section 2.3.3). The next equation, E_upb, aggregates regional unemployment benefits to form total unemployment benefits. This variable drives Federal govemment expenditure on unemployment benefits in the SOFT accounts in section 2.3.4 above. The third equation, E_pbp_r is a mapping equation that renames the regional 'personal benefits payments' for use in the SOFT accounts, where it determines movements in regional govemments' payments of personal benefits. The fourth equation, E_pbpA, calculates aggregate personal benefit payments by summing the regional payments. The final equation. $\mathrm{E}_{\mathbf{\prime}} \mathrm{pbpB}$, uses the value of the aggregate payments of personal benefits determined in E_pbpA and the regional payments determined in E_pbp_r, to determine Federal government payments of personal benefits in the SOFT accounts.

2.4. Dynamics for forecasting

This block of equations facilitates medium-run and long-run forecasting experiments, and the movement between comparative-static and forecasting versions of the model. The equations link key flow variables with their associated stock variables. The dynamics of MMRF are confined to accumulation relations connecting industry capital stock with industry investment, regional population with regional natural growth in population and foreign and interregional migration, and the foreign debt with the trade balance.

Also included in this block are the comparative-static alternatives to the forecasting equations. In some cases, such as investment and capital, the comparative-static and forecasting versions of the model contain different equations. In other cases, such as the trade balance and the foreign debt, we move between comparative-static and forecasting versions by different settings of exogenous variables within a common set of equations.

Comparative statics and forecasting ${ }^{16}$

MMRF can produce either comparative-static or forecasting simulations. In comparative-static simulations, the model's equations and variables all refer implicitly to the economy at some future time period.

This interpretation is illustrated in Figure 2.12, which graphs the values of some variable, say employment, against time. The base period (period 0) level of employment is at A and B is the level which it would attain in T years time if some policy, say a tariff change, were not implemented. With the tariff change, employment would reach C , all other things being equal. In a comparative-static simulation, MMRF might generate the percentage change in employment $100(\mathrm{C}-\mathrm{B}) / \mathrm{B}$, showing how employment in period T would be affected by the tariff change alone.

Employment

Figure 2.12. Comparative-static interpretation of results
Comparative-static simulations are usually interpreted as measuring either the short-run or long-run effects of a policy change. A distinguishing feature of short run versus long run comparative-static simulations is the treatment of industry capital. Short run simulations are characterised by the

[^12]assumption of fixed industry capital stocks. That is, industry capital stocks are held at their pre-shock level. Econometric evidence suggests that a short-run equilibrium will be reached in about two years, i.e., $\mathrm{T}=2$ (see Cooper, McLaren and Powell, 1985). The typical long-run assumption is that industry capital stocks will have adjusted to restore (exogenous) rates of retum. This might take six years, 10 years or 20 years, i.e., $T=6,10$ or 20 . In either case, short run or ling run, only the assumptions about which variables are fixed and the interpretation of the results bear on the timing of changes: the model itself is atemporal.

The comparative-static interpretation of MMRF results lends itself to policy analysis. Business and govemment planners, however, require forecasts of industry output, prices and other variables to inform their investment decisions. The forecasting interpretation of MMRF results is shown in Figure 2.13. As before, the model generates percentage changes in its variables but in this case they are interpreted as $100(\mathrm{D}-\mathrm{A}) / \mathrm{A}$, comparing the values of the variables at two different time periods, period 0 and period T . In contrast to comparative-static simulations, which usually show the effect of one or a few exogenous changes, forecasting simulations normally show the effects of all exogenous changes assumed to occur over the simulation period 0 to T .

In the remainder of this section, we outline the forecasting equations of MMRF and, where applicable, their comparative-static alternatives. We begin with capital and investment.

2.4.I. Industry capital and investment

To derive the investment-capital accumulation equations, we start with the accumulation relation

$$
\begin{equation*}
K_{j, q,+1}=K_{j, q,} D E P_{j}+Y_{j q \alpha}, \quad j=1, \ldots, 13, q=1, \ldots, 8, t=0, \ldots, T \tag{2.13}
\end{equation*}
$$

where $\mathrm{K}_{\mathrm{j}, \mathrm{q}, \mathrm{t}}$ is industry j 's, in the qth region, capital stock in year $\mathrm{t}, \mathrm{Y}_{\mathrm{j}, \mathrm{s}, \mathrm{s}}$ is industry j 's, in the qth region, investment in year t and DEP $_{\mathrm{j}}$ is one minus the rate of depreciation in industry j . Note that we assume that there is no regionspecific rate of depreciation on capital. Equation 2.13 is therefore a standard investment-capital accumulation relation with a one year gestation lag between investment and capital.

On the basis of equation 2.13 , we can write the accumulation equation for our forecast year, year T, as

$$
\begin{equation*}
K_{j, q, T+1}=K_{j, 4, T} D E P_{j}+Y_{j, 4, T}, \quad j=1, \ldots, 13, q=1, \ldots, 8 \tag{2.14}
\end{equation*}
$$

Before we derive the linearised expression of equation 2.14 , we must first address the issue of an initial solution for the equation. In common with other ORANI-style models, MMRF is solved for deviations from an initial solution. In forecasting simulations, we solve the model for perturbations from

Figure 2.13. Forecasting interpretation of results
year 0 in Figure 2.13. That is, we compute the values of variables at year T , given initial values of the model's variables at year 0 . For example, we solve for $\mathrm{K}_{\mathrm{j}, \mathrm{q}, \mathrm{T}+1}, \mathrm{~K}_{\mathrm{j}, \mathrm{q}, \mathrm{T}}$ and $\mathrm{Y}_{\mathrm{j}, \mathrm{T}, \mathrm{T}}$ for initial values, $\mathrm{K}_{\mathrm{j}, \mathrm{q}, 0}$ and $\mathrm{Y}_{\mathrm{j}, \mathrm{a}, 0}$. The initial values of the model's variables must represent a solution to the model's equations. Therefore, to solve MMRF, we require a database which represents an initial solution to the model's equations. For the equations of the CGE core, the inputoutput data, schematically represented in Figure 2.1, provide an initial solution. Similarly, the database for the govemment-finance block provides an initial solution for the equations of section 2.3. A feature of the equations of sections 2.2 and 2.3 is that all their variables relate to a single time period. Hence, the database providing a solution to those equations need only contain data for a single year.

A difficulty with equation 2.14 is that it includes variables in more than one time period. This is a problem because no longer do our basecase values (which are from a single period) guarantee an initial solution. Typically, our initial solution for a variable, say X_{T}, is X_{0}. However, unless by coincidence

$$
\begin{equation*}
K_{j \mu, 00}\left(D E P_{j}-1\right)+Y_{j 4,0}=0, \quad j=1, \ldots, 13, q=1, \ldots, 8 \tag{2.15}
\end{equation*}
$$

$\left\{K_{j, 4,0,} K_{j, q, n}, Y_{j q .0}\right\}$ is not a solution for $\left\{K_{j, 4, T+1}, K_{j, 4, T}, Y_{j, 4, T}\right\}$. We solve this problem by the purely technical device of augmenting equation 2.14 with an additional term as follows:

$$
K_{j \alpha, T+1}=K_{j, 4, T} D E P_{j}+Y_{j, q, T}-F\left(K_{j, 4,0}\left(1-D E P_{j}\right)-Y_{j \neq 1, \ldots, 3}\right], q, q=1, \ldots, 8
$$

where the initial value of F is minus unity so that equation 2.14 is satisfied when $\mathrm{K}_{\mathrm{j}, \mathrm{T}, \mathrm{T}, 1}$ and $\mathrm{K}_{\mathrm{j}, ., \mathrm{T}}$ equal $\mathrm{K}_{\mathrm{j}, 4,0}$ and $\mathrm{Y}_{\mathrm{j}, 4, \mathrm{~T}}$ equals $\mathrm{Y}_{\mathrm{j}, \mathrm{K}, 0}$. In forecasting simulations, we shock F to zero ($\Delta \mathrm{F}=1$). In equation $2.16,\left\{\mathrm{~K}_{\mathrm{j}, 4,4,}, \mathrm{~K}_{\mathrm{j} .4,4,}, \mathrm{Y}_{\mathrm{j} .4,0,}\right.$, $1\}$ is now a true initial solution for $\left(\mathrm{K}_{\mathrm{j} 4, \mathrm{~T}+1}, \mathrm{~K}_{\mathrm{j}, 4, \mathrm{~T}}, \mathrm{Y}_{\mathrm{j}, \mathrm{T}, \mathrm{T}}, \mathrm{F}\right)$, and the forecasting solution for equation 2.16 is $\left\{\mathrm{K}_{\mathrm{j}, \mathrm{T}+1}^{*}, \mathrm{~K}_{\mathrm{j} 4, \mathrm{~T}}^{*}, \mathrm{Y}_{\mathrm{jq,} \mathrm{~T}}^{*}, 0\right\}$, where the 'asterisk' denotes a forecast solution.

Taking ordinary changes in F and percentage changes in $\mathrm{K}_{\mathrm{j}, \mathrm{r}, \mathrm{T}+1}, \mathrm{~K}_{\mathrm{j} .4, \mathrm{~T}}$ and $Y_{j, q, T}$ equation 2.16 becomes

$$
\begin{array}{r}
K_{j, 4, T+1} k_{j, 4, T+1}=K_{j 4, T} D E P P_{j, q, T}+Y_{j 4, T} Y_{j, T, T}-100 \Delta F\left[K_{j, 4,0}\left(I-D E P_{j}\right)-Y_{j, 4,0}\right], \\
j=1, \ldots, 13, q=1, \ldots, 8,(2.17)
\end{array}
$$

where, according to our conventions, the upper case denotes levels values of coefficients, the lower case denotes percentage changes in the model's variables and the Δ signifies an ordinary change in a variable. Notice that the presence of the last term on the RHS of equation 2.17 means that $\mathrm{k}_{\mathrm{j} .4, \mathrm{~T}+\mathrm{l}}$ is the percentage deviation of the capital stock in industry j, region q, from the initial (base-year) value of its capital stock, i.e., all variables, including the $T+1$ variables, are deviations from their values in the same base ycar.

Equation 2.17 is reported in Table 2.1 as equation E_yTA. The coefficient and variable names that map equation 2.17 to equation E_yTA are as follows:

$$
\begin{aligned}
& K_{j, 9 . T+1} \Leftrightarrow \text { VALK_TI }_{j_{\text {jq }}} ;
\end{aligned}
$$

$$
\begin{aligned}
& D E P_{j} \Leftrightarrow \text { DEP }_{j} \text {; } \\
& \mathrm{Y}_{\mathrm{j}, \mathrm{~T}, \mathrm{~T}} \Leftrightarrow \text { INVEST }_{\mathrm{j}, \mathrm{4},} \text {; } \\
& K_{i . q, 0} \Leftrightarrow \text { VALK_ } 0_{j \mu} \text {; } \\
& \mathrm{Y}_{\mathrm{j}, 4,0} \Leftrightarrow \text { INVEST_Oj, } ; \\
& k_{\mathrm{j}, \mathrm{~T}, \mathrm{~T}+1} \Leftrightarrow \text { curcap_1 }^{1} \mathrm{j}_{\mathrm{N},} ; \\
& k_{j_{4, T}} \Leftrightarrow \text { curcap }_{j_{4,},} \text {; } \\
& y_{j, 4, T} \Leftrightarrow y_{j, 4,4} \text { and; } \\
& \Delta \mathrm{F} \Leftrightarrow \text { delkfudge. }
\end{aligned}
$$

The next equation of this section, E_curcapTiA, sets the growth in the capital stock between the forecast year (year T) and the year following (year
$T+1$) equal to the average annual growth rate over the forecast period, i.e., the average between year 0 and year T . Using the notation of equations 2.14 to 2.17.

$$
K_{j, 4, T+} / K_{j 4, T}=\left(K_{j q, T} / K_{j, 4, \psi}\right)^{\frac{1}{T}}, \quad j=1, \ldots, 13, q=1, \ldots, 8 .(2.18)
$$

Remembering that $K_{j,, n}$ is a constant and rearranging, the percentage change form of equation 2.18 is

$$
\begin{equation*}
k_{j, 4, T+1}=\left(\frac{1}{T}-1\right) k_{j, 4, T} \quad j=1, \ldots, 13, q=1 . \tag{2.19}
\end{equation*}
$$

where the mapping given above for equations 2.17 and E_yTA also apply for equations 2.19 and E_{c} curcapT1A, with the addition that $\left(\frac{1}{\tau}-1\right)$ in equation 2.19 is represented by the coefficient K_TERM in equation E_curcapT1A.

The comparative-static alternative to the above forecasting specification is given by swapping equation E_yTA for equation E_ytB and equation E_curcapT1A for E_curcapT1B. We must remember that our interpretation of the model is different in comparative-static simulations compared to forecasting simulations. As Figures 2.11 and 2.12 suggest, in comparative-static simulations, the percentage changes in the variables are interpreted as deviations from their base values at time T. whereas in forecasting, the percentage changes in variables are deviations from their base values at time 0 .

Equation E_yTB says the percentage change in an industry's capital stock in year T. is equal to the percentage change in an industry's investment in year T. Equation E_curcapT1B says the percentage change in an industry's capital stock in year $\mathrm{T}+1$, is equal to the percentage change in an industry's capital stock in year T. In short-run comparative-static simulations, the typical assumption is that the industries' capital stocks are fixed at their base values. Hence, the variable curcap \dot{j}_{q} is exogenous and set at zero change. In short-run comparative-static simulations, the standard closure (or choice of exogenous and endogenous variables) includes curcap ${ }_{j o}$ on the exogenous list and the relationship between industries' rates of return $\left(\mathrm{r}_{\mathrm{j}}{ }_{j \Omega}\right)$ and the world interest rate (natr_tot), that is, the variable f_{-}rate_ $x x_{j q}$ in equation $E_{-} f_{-}$rate_xx, on the endogenous list. ${ }^{17}$ With industries' capital stocks set at zero change, equation E_yTB ensures that the percentage change in industries' investment ($y_{j \rho}$) are also zero, when the default option, of setting the shift variable (delf_rate ${ }_{i s}$) exogenously and at zero, is taken. The assumption is that the shon-mn is a time period over which, not only are capital slocks fixed, but also the industries' investment plans are fixed. The default option can be overridden by swapping

[^13]the industries' investment with the shift variable on the endogenous/exogenous list.

In long-run simulations, we assume that the industrics' capital stocks are determined endogenously and the relationship between the industries rates of retum and the world interest rate is exogenous, i.c., curcap ${ }_{j \mu}$ is endogenous and f_rate_ $x_{j \mu}$ is exogenous. Equation E_curcapT1B ensures that the percentage increase in industries' capital stocks in year $\mathrm{T}+1$ is the same as the percentage increase in capital stocks in year T.

The interpretation of the long-run specification is that sufficient time has elapsed such that the effects of a sustained shock to the economy no longer disturbs the rate of capital accumulation in our year of interest, year T. Note that the assumption is that the rate of capital accumulation, but not the level of the capital stock is assumed to be undisturbed in year T. Having made the assumption in equation E_curcapTIB that (using the above notation)

$$
\begin{equation*}
k_{j 4, T+1}=k_{j, 4, T} \tag{2.20}
\end{equation*}
$$

$$
j=1, \ldots, 13, q=1,
$$

then the percentage change form of equation 2.14 can be written as

$$
K_{j, 4, T+1} k_{j, q, T}=K_{j, q, T} D E P P_{j} k_{j, T}+Y_{j 4, T} Y_{j \mu, T} \quad j=1, \ldots, 13, q=1, \ldots, 8 .(2.21)
$$

Rearranging equation 2.21 gives

$$
\begin{equation*}
\left(K_{j, 4, T+1}-K_{j, 4} D E P_{j}\right) k_{j, 4}=Y_{j, q T} Y_{j, T, T} \quad j=1, \ldots, 13, q=1, \ldots, \delta \tag{2.21}
\end{equation*}
$$

From equation 2.14, we note that

$$
\begin{equation*}
K_{j 4, T+i}-K_{j, 4, T} D E P_{j}=Y_{j 4, T} \tag{2.22}
\end{equation*}
$$

$$
j=1, \ldots, 13, q=1, \ldots
$$

hence.

$$
\begin{equation*}
k_{j, Q, T}=y_{j, T, T} \tag{2.23}
\end{equation*}
$$

$$
j=1, \ldots, 13, \quad q=1,
$$

or equation E_yTB in Table 2.1, section 2.4.1.
The investment and capital equations of the model are completed with the specification of industry rates of return and an equation defining aggregate economy-wide investment. These equations are common to both the forecasting and comparative-static versions of the model.

Equation E_rO in Table 2.1, section 2.4.1, defines the percentage change in the rate of retum on capital (net of depreciation) in industry j, region q. In levels this is the ratio of the rental price of capital ($\mathrm{PlCAP}_{\mathrm{j} .4}$) to the supply price $\left(\mathrm{PI}_{j 4}\right)$, minus the rate of depreciation. Hence, the coefficient $\mathrm{QCOEF}_{\mathrm{j}, 4}$ is the ratio of the gross to the net rate of return.

Equation E_f_rate_xx makes the change in the net rate of return in an industry relative to the economy-wide rate a positive function of the change in
the industry's capital stock relative to the region-wide stock. It is interpreted as a risk-related relationship with relatively fast-/slow-growing industries requiring premia/accepting discounts on their rates of relurn. The parameter BETA_R $\mathrm{R}_{\mathrm{j}, 4}$ specifies the strength of this relationship. The variable f_rate_ $\mathrm{xx}_{\mathrm{j} .4}$ allows exogenous shifts in the industry's rate of retum and also allows us to move between long-run and short-run comparative-static simulations as described above.

The investment-capital equations conclude with equation E_naty which defines changes in the economy-wide industry investment as the weighted average of the changes in regional industry investment.

2.4.2. Accumulation of national foreign debis ${ }^{18}$

This section contains equations modelling the nation's foreign debt. They relate the debt to accumulated balance-of-trade deficits. Analogous to equation 2.13 above, we have

$$
\begin{equation*}
\mathrm{DEBT}_{1+1}=\mathrm{DEBT}_{1}\left(\mathrm{R}_{-} \text {WORLD }\right)+\mathrm{B}_{1} \tag{2.24}
\end{equation*}
$$

where DEBT, is the debt at year t, B_{1} is the trade deficit in year t, and R_WORLD is the interest rate factor; one plus the world real interest rate, which we treat as a parameter.

In the forecast simulations, we arrive at the value of the debt in year T by accumulating, on the basis of equation 2.24 starting at year 0 , leading to

$$
\begin{equation*}
D E B T_{T}=\text { DEBT }_{0}\left(R_{-} \text {WORLD }\right)^{T}+\sum_{t=0}^{T-1} B_{1}\left(R_{2} W O R L D\right)^{T \cdot t-1} . \tag{2.25}
\end{equation*}
$$

We also assume that the trade deficit in the time span 0-T follows a straight line path

$$
\begin{equation*}
B_{t}=B_{0}+\frac{1}{T}\left(B_{T}-B_{0}\right), \quad t=0, \ldots, T \tag{2.26}
\end{equation*}
$$

Thus

$$
\begin{equation*}
D E B T_{T}=D E B T_{0}\left(R_{-} W O R L D\right)^{T}+\sum_{t=0}^{T-1}\left[B_{0}+\frac{1}{T}\left(B_{T}-B_{0}\right)\right]\left(R_{-} \text {WORLD }\right)^{T \cdot t \cdot]} \tag{2.27}
\end{equation*}
$$

Equation 2.27 can be written as

[^14]$\mathrm{DEBT}_{\mathrm{T}}-$ DEBT $_{0}=$ DEBT $_{0}\left(\right.$ R_WORLD $\left.^{\top}-1\right)+\mathrm{B}_{0} \mathrm{~N}_{-}$DEBT $+\left(\mathrm{B}_{\mathrm{T}}-\mathrm{B}_{0}\right) \mathrm{M}_{-} \mathrm{DEBT}$
where
\[

$$
\begin{equation*}
M_{-} D E B T=\sum_{t=0}^{T-1} \frac{1}{T}\left(R_{-} \text {WORLD }\right)^{T \cdot-1} \tag{2.29}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\text { N_DEBT }=\sum_{t=1}^{T}\left(R_{-} \text {WORLD }\right)^{T \cdot t} . \tag{2.30}
\end{equation*}
$$

Notice that DEBT $_{T}$ is linearly related to B_{T}, and to predetermined values of DEBT_{0} and B_{0}. We treat DEBT_{T} and B_{T} as variables, and $\mathrm{DEBT}_{0}, \mathrm{~B}_{0}$ and R_WORLD as parameters. As explained above, our initial solution for ($\mathrm{DEBT}_{\mathrm{T}}, \mathrm{B}_{\mathrm{T}}$) is $\left\{\mathrm{DEBT}_{0}, \mathrm{~B}_{0}\right\}$. Analogous to the capital accumulation relation in section 2.4.1, unless

$$
\mathrm{DEBT}_{0}\left(\mathrm{R}_{-} \text {WORLD }{ }^{\top}-1\right)+\mathrm{B}_{0} \mathrm{~N}_{-} D E B T=0
$$

these values for DEBT T_{T} and B_{T} will not satisfy equation 3.28. The resolution of the problem is to augment equation 2.28 with an additional variable DFUDGE as follows:

$$
\begin{align*}
\mathrm{DEBT}_{T}-\mathrm{DEBT}_{0} & =\left[\mathrm{DEBT}_{0}\left(\mathrm{R}_{-} \text {WORLD }^{\top}-1\right)+\mathrm{B}_{0} \mathrm{~N}_{-} D E B T\right] D F U D G E \\
& +\left(\mathrm{B}_{\mathrm{T}}-\mathrm{B}_{0}\right) \mathrm{M}_{-} \mathrm{DEBT} . \tag{2.31}
\end{align*}
$$

We choose the initial value of DFUDGE to be 0 so that equation 2.31 is satisfied when $\mathrm{DEBT}_{\mathrm{T}}=\mathrm{DEBT}_{0}$ and $\mathrm{B}_{\mathrm{T}}=\mathrm{B}_{0}$. In forecasting simulations, we shock DFUDGE to 1 ($\triangle D F U D G E=1$). Then equation 2.31 is equivalent to equation 2.28, and our percentage-change results are consistent with equations 2.25 to 2.28 as desired.

Taking the ordinary change in equation 2.31 , and writing the ordinary change in the variables in lower case with the prefix del, gives

$$
\begin{equation*}
\text { deldebt }_{T}=\left[\text { DEBT }_{0}\left(R_{_} \text {WORLD }^{T}-1\right)+B_{0} N_{_} D E B T\right] \text { deldfudge }+M_{-} \text {DEBTdelbt } T_{T} . \tag{2.32}
\end{equation*}
$$

Equation 2.32 appears in Table 2.1, section 2.4 . 2 as equation E_deldebt.
Since R_WORLD is a (fixed) real foreign interest rate, DEBT, and B_{1} are denominated in base-year foreign-currency units. However, they must be related to other variables, such as the values of exports and imports, which are
measured in year-t Australian dollars (\$A). We define a coefficient, P_GLOBAL, to convert \$A values into base-year foreign dollars. It is given in percentage change form as natxim (see Table 2.1, section 2.2.14, equation E_natxim). This means that our 'best guess' at movements in world prices and the nominal exchange rate is given by the movements in the index of national foreign imports, which is the sum of the movements of a weighted average of the foreign prices of national imports plus the movement in the nominal exchange rate.

Equation E_delbt defines the ordinary change in the real trade deficit. The levels form of this equation is

$$
\begin{equation*}
\mathrm{BT}=\frac{\text { NATXIM } \times \text { NATIMPVOL }- \text { NATXI4×NATEXPVOL }}{\text { P_GLOBAL }} \tag{2.33}
\end{equation*}
$$

where BT is the national real foreign trade balance (B_{T} in equations 2.27 to 2.31 above), NATXIM is the price index of national imports, NATIMPVOL is the volume of national foreign imports, NATXI4 is the price index of national exports. NATEXPVOL is the volume of national foreign exports. Taking the ordinary change in BT (deibt) in equation 2.33 and the percentage changes in the remaining variables (remembering the percentage change in P_GLOBAL is natxim) in equation 2.33 gives equation E_delbt.

The last equation of this section defines the ordinary change in the national debUGDP ratio. In the levels, the deb/GDP ratio (DEBT_RATIO) is given as
DEBT_RATIO = DEBT/(NATGDPEXP/P_GLOBAL),
where NATGDPEXP is national nominal GDP. Taking the ordinary change in DEBT_RATIO (deldebt_ratio) and the percentage changes in the remaining variables gives equation E_deldebt_ratio.

The above national debt accumulation equations produce comparativestatic results when the variable deldfudge in equation E_deldebt is set exogenously at zero change.

The final accumulation equation is one which relates regional population to various elements of regional population growth. We hold over the discussion of the accumulation of regional population to the next section.

2.5. Regional population and regional labour market settings

This block of equations computes regional population from natural growth, foreign migration and interregional migration. The block also includes various règional labour market relationships. For each region, the system is designed : to allow for either: (i) an exogenous determination of regional population, with an endogenous determination of at least one variable of the regional labour market, chosen from regional unemployment, regional participation rates or regional wage relativities, or; (ii) an exogenous determination of all the previously mentioned variables of the regional labour market and an endogenous determination of regional migration, and hence, of regional population.

In case (i), the user can take on board the forecasts of the three population flows (natural growth, regional migration and foreign migration) from a demographic model thereby exogenously determining regional populations. For example, the ABS (cat. no. 3222.0) makes forecasts of these flows and of regional population. The labour market \& migration block of equations can then be configured to determine regional labour supply from the exogenously specified regional population and given settings of regional participation rates and movements in the ratios of population to population of working äge. With labour supply determined, the labour market and regional migration block will determine either interregional wage differentials, (given regional unemployment rates) or regional unemployment rates (given regional wage differentials). With given regional unemployment rates and regional labour supply, regional employment is determined as a residual and wage differentials adjust to accommodate the labour market outcome. Fixing wage differentials determines the dernand for labour so that with regional labour supply given, the model will determine regional unemployment rates as a residual.

In alternative (ii), interregional wage differentials and regional unemployment rates are exogenously specified. The labour market and regional migration block then determines regional labour supply and regional population for given settings of regional participation rates and ratios of population to population of working age.

The equations of this block have been designed with sufficient flexibility to allow variations on the two general methods described above. Importantly, the block allows for some regions to be subject to method (i) and other regions to be subject to method (ii) in the same simulation.

We begin our exposition of the equations of this section with the accumulation of regional population. In the levels, we start. with the accumulation relation

$$
\begin{equation*}
P O P_{4, t+1}=P O P_{4,1}+F M_{q, i}+R M_{q, i}+G_{4,1,} \quad q=1, \ldots, 8, t=1, \ldots, T, \tag{2.45}
\end{equation*}
$$

where POP $_{4.1}$ is regional population in year $t . \mathrm{FM}_{4,1}$ is the net migration of overseas residents to region q in year t, RM $_{\phi \downarrow}$ net migration of residents from other regions to region q in year t and $G_{4.1}$ is region q's natural growth in population in year t.

Accumulating on the basis of equation 2.45 over the period $0-\mathrm{T}$, we can derive a value for regional population in year $T\left(\mathrm{POP}_{\mathrm{q} . \mathrm{T}}\right)$

$$
\begin{equation*}
\mathrm{POP}_{\mathrm{q}, \mathrm{~T}}=\mathrm{POP}_{4,0}+\sum_{t=1}^{\mathrm{T}}\left(\mathrm{FM}_{4,5}+\mathrm{RM}_{\mathrm{q}, 1}+\mathrm{G}_{\mathrm{q}, \mathrm{t}}\right), \quad \mathrm{q}=1, \ldots, 8 \tag{2.46}
\end{equation*}
$$

As with the accumulation of national foreign debt, in section 2.4 .2 above, we make the simplifying assumption that the flow variables in equation 2.46 grow smoothly over the period 0-T, giving

$$
\begin{array}{ll}
\mathrm{FM}_{4,1}=\mathrm{FM}_{4,0}+\frac{1}{T}\left(\mathrm{FM}_{4, T}-\mathrm{FM}_{4,0}\right), & \mathrm{q}=1, \ldots, 8, \mathrm{t}=0 \ldots ., \mathrm{T} . \\
\mathrm{RM}_{4,1}=\mathrm{RM}_{4,0}+\frac{1}{\gamma}\left(\mathrm{RM}_{q, T}-\mathrm{RM}_{4,0}\right), & q=1, \ldots, 8, t=0 \ldots . \mathrm{T}^{.} \tag{2.48}
\end{array}
$$

and

$$
\begin{equation*}
G_{4,1}=G_{4,0}+\frac{1}{T}\left(G_{4 . T}-G_{4.0}\right) . \quad q=1, \ldots, 8, t=0, \ldots, T \tag{2.49}
\end{equation*}
$$

Substituting equations 2.47 to 2.49 into equation 2.46 and rearranging gives

$$
\begin{align*}
\mathrm{POP}_{4 . T}-\mathrm{POP}_{4.0} & =T\left(\mathrm{FM}_{4.0}+\mathrm{RM}_{q .0}+\mathrm{G}_{q .0}\right)+\frac{T+1}{2}\left[\left(\mathrm{FM}_{4 . T}-\mathrm{FM}_{q .0}\right)\right. \\
& \left.+\left(\mathrm{RM}_{4 . T}-R M_{4.0}\right)+\left(\mathrm{G}_{4 . T}-\mathrm{G}_{4.0}\right)\right], \quad \mathrm{q}=1, \ldots .8 . \tag{2.50}
\end{align*}
$$

As with our earlier accumulation equations, we have the problem of an initial solution to equation 2.50 in that unless by chance

$$
T\left(\mathrm{FM}_{4.0}+\mathrm{RM}_{4.0}+\mathrm{G}_{\mathrm{q}, \mathrm{t}}\right)=0
$$

our base-year values of POP, FM, RM and G do not constitute an initial solution. To resolve the problem, we adopt the technique applied to the national-debt-accumulation equation; we multiply the first term on the RHS of equation 2.50 by the variable RPFUDGE

$$
\begin{align*}
& \mathrm{POP}_{4.7}-\mathrm{POP}_{4.0}=\mathrm{T}\left(\mathrm{FM}_{4.00}+\mathrm{RM}_{4.0}+\mathrm{G}_{4.0}\right) \text { RPFUDGE } \\
& +\frac{T+1}{2}\left[\left(\mathrm{FM}_{4 . T}-\mathrm{FM}_{4.0}\right)+\left(\mathrm{RM}_{4 . T}-\mathrm{RM}_{4.0}\right)+\left(\mathrm{G}_{4 . T}-\mathrm{G}_{4.0}\right)\right] . \\
& q=1, \ldots .8 \text {. } \tag{2.50}
\end{align*}
$$

Giving RPFUDGE an initial value of 0 , and the remaining elements their baseyear values, now provides an initial solution satisfying equation 2.50. For forecasting simulations, RPFUDGE is shocked to 1, (\triangle RPFUDGE $=1$).

Treating the zero subscripted elements and T in equation 2.50 as constants, and taking the percentage change in $\mathrm{POP}_{4 . T}\left(\mathrm{pO}_{4}\right)$ and ordinary
 delrpfudge, respectively), gives equation E_del_rm in Table 2.1, section 2.5.1. The following list maps the coefficients from equation 2.50 to equation E_del_rm:

$$
\begin{aligned}
& \mathrm{POP}_{4 . T} \Leftrightarrow \text { C_POP }_{4} ; \\
& 100 \mathrm{~T}\left(\mathrm{FM}_{4.0}+\mathrm{RM}_{4.0}+\mathrm{G}_{4.0}\right) \Leftrightarrow \mathrm{C}_{-} \mathrm{PRI}_{4} ; \\
& 50(\mathrm{~T}+1) \Leftrightarrow \mathrm{C}_{-} \mathrm{PA}^{2} .
\end{aligned}
$$

As with the accumulation of national debt, equation E_del_rm can be implemented in comparative-static mode by assigning a value of zero to delipfudge.

The remaining equations of this section can be grouped into the following categories: definitions; equations imposing arbitrary assumptions; equations imposing adding-up constraints and; national aggregates based on summing regional variables.

The definitional equations are E_del_labsup and E_wpop. The former equation defines the percentage-point change in the regional unemployment (del_unr,) in terms of the percentage changes in regional labour supply (labsup $_{4}$) and persons employed (employ ${ }_{4}$). The latter equation defines the percentage change in regional labour supply in terms of the percentage changes in the regional participation rate (pr_{4}) and the regional population of working age (wpopy).

In equation E_pop, the assumption that the regional population of working age is proportional to the regional (total) population is imposed. The default setting can be overridden by endogenising the shift variable (f_wpop ${ }_{4}$).

Equation E_rm_0, allows for the imposition of either the assumption that the change in net regional migration (del_rm4) is equal to a forecast change in regional migration (del_rm_ O_{4}), or that del_rm m_{4} is equal to del_rm_ O_{4} plus a common (to all q) constant. We can interpret equation E_rm_0 as imposing the former assumption when del_rm_ 0_{G} are set exogenously (equal to, say, an ABS forecast) and when the shift variable, delf_rm_0, is set exogenously at zero change. The latter assumption is imposed when all but one of the del_ $\mathrm{m}_{-} \mathrm{O}_{4}$ are set exogenously and delf_rm_0 is set endogenously. The purpose of the second assumption is as follows. We may wish to believe some, but not all, of the ABS forecasts of net regional migration. We may wish to determine one of the region's net regional migration from economic factors within MMRF: However, we may still wish that the remaining net regional migration flows to be approximately equal to the ABS forecasts. To the extent that the region's net regional migration determined by MMRF deviates from that forecast by the ABS
means that the sum of the regional net migration will not equal zero if the remaining regional net migration flows are set equal to their ABS forecasts. To overcome this problem, we distribute the positive/negative amount of net migration evenly across the regions. If it is desired that all regional net migration flows are determined by economic factors, rather than exogenously, then all elements of del_rm_ O_{4} are set endogenously and swapped with a relevant labour market variable such as regional relative wage rates (wage_diff ${ }_{\text {}}$, see equation E_wage_diff, section 2.2.11 above and in Table 2.1).

Equation E_remploy_interf imposes the assumption that regional employment in wage-bill weights is proportional to regional employment in person weights by setting the percentage change in regional wage-bill weighted employment (l_{4}) equal to the percentage change in regional person-weighted employment (employq) when the shift variable $f_{-} I_{q}$ is exogenous and set to zero change. The default option can be overridden by setting $f_{-} l_{q}$ to non-zero values.

Equation E_pop_interf imposes the assumption that regional houschold formation is proportional to regional population by setting the percentage change in regional household formation (ghous ${ }_{q}$) equal to the percentage change in regional population ($\rho_{0} \rho_{q}$) when the shift variable $\mathrm{f}_{\text {_q }} \mathrm{qhous}_{4}$ is exogenous and set to zero change. The default option can be overridden by setting f_qhous to non-zero values.

An adding-up constraint is imposed in equation E_rm_addup. If the variable delf_rm is exogenous (and set to zero), then at least one of the del_ mm_{q} must be endogenous. If all the del_mq are endogenous, then delf_rm must endogenously equal zero for the simulation to be valid.

The remaining equations of this section, E_delnatim, E_delnatg, E_natlabsup, E_natemploy, and E_natunr determine national aggregate variables by summing the corresponding regional variables.

Table 2.1. The MMRF Equations

Identifier Equation | Subscript Number Description |
| :--- |
| Range |

2.2. The CGE Core

2.2.1. Production: demand for inputs to the production process
$\mathrm{E}_{-x}|a| \quad x\left|\mathrm{a}_{\mathrm{i}, \mathrm{s}, \mathrm{q}}=\mathrm{x}\right| \mathrm{c}_{\mathrm{i}, \mathrm{q}, q}-\sigma 1 \mathrm{C}_{\mathrm{i}}\left(\mathrm{p} \mathfrak{i}_{\mathrm{i}, \mathrm{s}, \mathrm{j}, q}-\mathrm{p} \mid \mathrm{c}_{\mathrm{i}, \mathrm{j}, q}\right)$
(2.8.1)

(2.8.1)
$x \mathrm{I}_{\mathrm{i}, \mathrm{s}, \mathrm{j}, q}=x \mid \mathrm{o}_{\mathrm{i}, \mathrm{j}, q}-\sigma 1 \mathrm{o}_{\mathrm{i}}\left(\mathrm{p} \mid \mathrm{s}_{\mathrm{i}, \mathrm{s}, \mathrm{j}, q}-\mathrm{plo} \mathrm{o}_{\mathrm{i}, \mathrm{j}, q}\right)$
Exla2
(2.8.1)

isCOM se RSOU je IND qu RDES	$13 \times 8 \times 13 \times 8$	Demand for goods by regional source, User 1
is COM jeIND gardes	$13 \times 13 \times 8$	Price of domestic composite, User I
if COM jaIND 4GRDES	$13 \times 13 \times 8$	Demand for domestic composite, User!
is COM $s=$ forcign ja IND ye RDES	$13 \times 1 \times 13 \times 8$	Demand for foreign imports, User I
is COM jelND ge RDES	13x13x8	Price of domestic/foreign compositc. User 1
$\mathrm{ms} O C \mathrm{C}$ jelnd gerdes	$8 \times 13 \times 8$	Demand for labour by industry and skill group

Identifier	Equation	Subscripl Range	Number	Description
$\begin{aligned} & \text { E_pllab }_{\text {(2.8.2) }} \end{aligned}$	$\text { LABOUR }_{\mathrm{j}, \mathrm{q}} \mathrm{pllab}_{\mathrm{j}, q}=\sum_{m \in O C C} \text { LAB_OCC_I }\left[N D_{\mathrm{m}, \mathrm{j}, \mathrm{q}^{\mathrm{r}}} \mathrm{llabo}_{\mathrm{j}, \mathrm{q}, \mathrm{n}}\right.$	$j \in \operatorname{IND}$ $4 \in$ RDES	$11 \times \times$	Price to each industry of tabour in gerteral
$\begin{aligned} & \text { E_labind } \\ & (2.8 .2) \end{aligned}$		$j \in \ln D$ $q \in$ RDES	13×8	Employment by industry
$\begin{aligned} & \text { E_efflab }_{(2.8 .2)} \end{aligned}$		jeIND $q \in$ RDES	13×8	Indusiry demands for effective labour
$\begin{aligned} & \text { E_curcap }_{(2.8 .2)} \end{aligned}$		$\mathrm{j} \in$ IND $q \in$ RDES	13×8	Industry demands for crapital
$\begin{aligned} & \mathrm{E}_{\sim} \mathrm{n} \\ & \text { (2.8.2) } \end{aligned}$		$j \in I N D$ $q \in$ RDES	13×8	Industry demands for land
$\begin{aligned} & \text { E_xi_fac }_{(2.8 .2)} \end{aligned}$		$j \in \operatorname{IND}$ $\mathbf{q} \in$ RDES	13x*	Effective price term for factor demand equations
$\begin{aligned} & E_{-} \times 10 \\ & (2.8 .1) \end{aligned}$	$x\left\|o_{i, j, q}=z_{j, q}+\mathrm{a}\right\|_{j, q}$	$i \in C O M$ $j \in I N D$ $q \in$ RDES	$13 \times 13 \times 8$	Demands for domestic/foreign compositc inputs, User I
$\begin{aligned} & E_{-} \times 1 \text { prim } \\ & (2.8 .2) \end{aligned}$	$x \mid$ prim $\left.\left._{\text {j.q }}=\mathrm{z}_{\mathrm{j}, q}+2\right)_{\mathrm{j}, q}+9\right)_{\text {prim }}^{\text {j,q }}$	$j \in I N D$ $q \in \operatorname{RDES}$	13×8	Industry demands for the primaryfactor composite
$\begin{aligned} & \mathrm{E}_{-} \times \text {loct } \\ & (2.8 .1) \end{aligned}$	$x \operatorname{loct}_{j, q}=z_{j, q}+a l_{j, q}+\operatorname{aloct}_{j, q}$	$\mathrm{j} \in \mathbb{I N D}$ $q \in$ RDES	13×8	industry demands for other cost tickets
2.2.2. Demands for im'estment goods				
$\begin{aligned} & \text { E×2al } \\ & (2.8 .3) \end{aligned}$	$\times 2 a_{i, 5, j, q}=x 2 c_{i, j, q}-\sigma 2 C_{i}\left(p 2 a_{i, 5, j, 4}-p 2 c_{i, j, 4}\right)$	i \in COM $s \in$ RSOU $\mathrm{j} \in \ln \mathrm{D}$ $\mathbf{q} \in$ RDES	$13 \times 1 \times 13 \times 8$	Demand for goods by regional source. User 2

Identificr	Equation	Subscript Range	Number	Description
$\begin{aligned} & \text { E-x202 } \\ & \{2.8 .3) \end{aligned}$		$i \in C O M$ $\mathrm{s}=$ forcign $\mathrm{j} \in \operatorname{IND}$ $\mathrm{q} \in$ RDES	$13 \times 1 \times 13 \times 8$	Demand for forcign impors, User 2
$\begin{aligned} & \mathrm{E}_{\mathrm{E} \times 2 \mathrm{c}} \\ & (2.8 .3) \end{aligned}$	$x 2 \mathrm{c}_{\mathrm{i}, \mathrm{j}, q}=x 2 \mathrm{o}_{\mathrm{i}, \mathrm{j}, q}-\sigma 2 \mathrm{O}_{\mathrm{j}}\left(\mathrm{p} 2 \mathrm{c}_{\mathrm{i}, \mathrm{j}, q} \cdot \mathrm{p} 2 \mathrm{o}_{\mathrm{i}, \mathrm{j}, q}\right)$	$i \in \operatorname{COM}$ $\mathrm{j} \in \mathrm{IND}$ $\mathrm{q} \in$ RDES	$13 \times 13 \times 8$	Demand for domestic composite. User 2
$\begin{aligned} & \text { E_p } 2 c^{(2.8 .3)} \end{aligned}$		$i \in \operatorname{COM}$ ss=donesii c $j \in$ IND $q \in \operatorname{RDES}$	$13 \times 1 \times 13 \times 8$	Price of domestic composite. User 2
$\begin{aligned} & \text { E_p2o } \\ & (2.8 .3 \end{aligned}$	$\text { PVAL2O }_{i, j, 4}{ }^{2 o_{i, j, 4}}=\sum_{s \in A S O U} \text { PVAL2A }_{i, 5, j, 9}{ }^{\rho 2 a_{i, s, j . q}}$	$i \in \operatorname{COM}$ $j \in \ln D$ $\mathrm{g} \in$ RDES	$13 \times 13 \times 8$	Price of domestic/foreign composite, User 2
$\begin{aligned} & E_{x} \times 20 \\ & (2.8 .3) \end{aligned}$	$x 20_{i, j, q}=y_{j, q}+2$ ind $^{\text {j,q }}$	$i \in C O M$ $\mathrm{j} \in \mathbb{N} \mathrm{N}$ $\mathrm{g} \in$ RDES	$13 \times 13 \times 8$	Demands for domestic/foreign composite inputs. User 2 1
2.2.3. Household demands				
$\begin{aligned} & E_{-} \times 3 a 1 \\ & (2.8 .4) \end{aligned}$	$x 33_{i, 5, q}=x 3 c_{i, q}-\sigma 3 C_{i}\left(p 33_{i, 5, q}-p 3 c_{i, q}\right)$	$i \in \mathrm{COM}$ $s \in$ RSOU qeRDES	$13 \times 8 \times 8$	Demand for goods by regional source. User 3
$\begin{aligned} & \text { E.x } \times 302 \\ & (2.8 .4) \end{aligned}$	$\times 3 \mathrm{i}_{i, 5, q}=x 3 \mathrm{o}_{i, q} \cdot \sigma 3 \mathrm{O}_{\mathrm{i}}\left(p 33_{i, 5, q} \cdot p 3 \mathrm{o}_{i, q}\right)$	$\begin{aligned} & i \in \operatorname{COM} \\ & s=\text { forcign } \\ & q \in \text { RDES } \end{aligned}$	$13 \times 1 \times 1$	Demand for foreign impors. User 3
$\begin{aligned} & E_{-} \times 3 \mathrm{c} \\ & (2.8 .4) \end{aligned}$	$x 3 c_{i, q}=x 30_{i, q}-03 O_{i}\left(p 3 c_{i, q}-p 30_{i, q}\right)$	$i \in C O M$ $4 \in$ RDES	1.18x	Demand for domestic composite. User 3

Identifier	Equation	Subscript Kange	Number	Description
$\begin{aligned} & \text { E_p } \mathrm{p} \mathrm{c} \\ & (2.8 .4) \end{aligned}$		$\mathrm{i} \in \mathrm{COM}$ $q \in$ RDES	13×8	Price of domestic compositc. User 3
$\begin{aligned} & \text { E_p }{ }^{30} \\ & (2.8 .4) \end{aligned}$	$\text { PVAL }^{2} O_{i, q} \rho 3 o_{i, q}=\sum_{s \in A S O U} \text { PVAL }^{2} A_{i, s, q} p 33_{i, s, q}$	i \in COM $\mathrm{q} \in$ RDES	13×8	Price of Jomestic/forcign composite. User 3
$\begin{aligned} & \text { E_x30 } \\ & (2.8 .4) \end{aligned}$		$i \in$ COM $q \in$ RDES	13*8	Household demand for domestic/foreign composite commodities
$\begin{aligned} & \text { E_utility } \\ & \text { (2.8.4) } \end{aligned}$	$\text { utility }_{q}=\text { luxexp }_{q}-\text { qhous }_{q} \cdot \sum_{i \in \operatorname{COM}} \text { DELTA }_{i, q}{ }^{p 3 o_{i, q}}$	$q \in$ RDES	8	Change in utility disregarding taste change terms
$\begin{aligned} & \text { E_a3sub } \\ & \text { (2.8.4) } \end{aligned}$	$a 3 s_{i, q}=\text { a3com }_{i, q}-\sum_{k \in C O M} \operatorname{sicom}_{k, q} q^{3 \operatorname{com}_{k, q}}$	$i \in \operatorname{COM}$ $\mathbf{q} \in$ RDES	13*8	Default setting for subsistence tasic shifter
$\begin{aligned} & \text { E_a31ux } \\ & (2.8 .4) \end{aligned}$		$i \in C O M$ $q \in$ RUES	13×8	Defautt setting for luxury taste shifter
2.2.4. Foreign export demands				
$\begin{aligned} & \text { E_x4r } \\ & (2.8 .8) \end{aligned}$		$i \in$ TEXP $s \in$ RSOU	2×13	Traditional export demand functions
$\begin{aligned} & \text { E_aggnt_x4r } \\ & (2.8 .8) \end{aligned}$		$s \in$ RSOU	8	Demand for the non-traditional export aggregate
$\begin{aligned} & \text { Ennt_x4r } \\ & (2.8 .8) \end{aligned}$		$i \in$ NTEXP $s \in$ RSOU	11×13	Non-Iraditional-export demand functions
$\begin{aligned} & \text { E_aggnt_p4r } \\ & (2.8 .8) \end{aligned}$	$\text { AGGEXPNT }_{s} \text { aggnt_p } 4 r_{s}=\sum_{i \in N T E X P} P V A L 4 R_{i s}{ }^{p 4} r_{\text {is }}+\text { faggnt_p4 }_{s}$	$i \in$ NTEXP $s \in$ RSOU	11×13	Average price of non-traditional exports
2.2.5.	Govermment consumption demands			

Identifier	Equation	Subscript Range	Number	Description
$\begin{aligned} & \text { E_x }^{2} S a \\ & (2.8 .9) \end{aligned}$		i $\in \mathrm{COM}$. $s \in$ ASOU $q \in$ RDES	$13 \times 9 \times 8$	Regional other demands
$\begin{aligned} & \text { E_x6a } \\ & (2.8 .10) \end{aligned}$	$x 6 \mathrm{a}_{\mathrm{i}, \mathrm{s}, \mathrm{q}}=$ nater $+\mathrm{f6} \mathrm{a}_{\mathrm{i}, \mathrm{s}, \mathrm{q}}+66 \mathrm{gen} \mathrm{n}_{\mathrm{q}}+$ natf6gen	$\begin{aligned} & i \in \operatorname{COM} \\ & s \in \mathrm{ASOU} \end{aligned}$ $\mathbf{q} \in \text { RDES }$	$13 \times 9 \times 8$	Federal other demands
2.2.6. Demands for margins				
$\begin{aligned} & \text { E_x imarg } \\ & (2.8 .11) \end{aligned}$		$i \in \operatorname{COM}$ $\mathrm{j} \in \operatorname{IND}$ $q \in$ RDES $s \in$ ASOU $r \in$ MARG	$13 \times 13 \times 8 \times 9 \times 2$	Margins on sales to producers
$\begin{aligned} & \text { Exx2marg } \\ & \text { (2.8.11) } \end{aligned}$	$\times 2 \mathrm{marg}_{\mathrm{i}, \mathrm{sj}, \mathrm{q}, \mathrm{r}}=\times 2 \mathrm{o}_{\mathrm{i}, 5, \mathrm{j}, q}$	$i \in C O M$ $\mathrm{j} \in \mathrm{IND}$ $q \in$ RDES $s \in$ ASOU $r \in M A R G$	$13 \times 13 \times 8 \times 9 \times 2$	Margins on sales to capital creators
$\begin{aligned} & \text { Exx3marg } \\ & \text { (2.8.11) } \end{aligned}$	$x 3 \operatorname{marg}_{i, s, q, r}=x 3 \mathrm{si}_{\mathrm{i}, \mathrm{s}, \mathrm{q}}$	$i \in \operatorname{COM}$ $s \in A S O U$ $q \in$ RDES reMARG	$13 \times 9 \times 8 \times 2$	Margins on sales to houschold consumption
$\begin{aligned} & \text { E_x4marg } \\ & \text { (2.8.11) } \end{aligned}$	$x 4 \operatorname{marg}_{i, 5, \mathrm{r}}=\mathrm{x4} \mathrm{r}_{\mathrm{i}, \mathrm{s}}$	$\begin{aligned} & i \in \operatorname{COM} \\ & r \in \text { MARG } \end{aligned}$ $s \in \operatorname{RSOU}$	$13 \times 2 \times \times$	Margins on exports: factory gate to port

Identificr	Equation	Subscript Range	Number	Description
$\begin{aligned} & \text { E_x5marg } \\ & (2.8 .11) \end{aligned}$	$x 5 \operatorname{marg}_{i, 5, q, r}=x 53_{i, s, q}$	$i \in \operatorname{COM}$ $s \in$ ASOU $\mathrm{q} \in$ RDES $r \in$ MARG	$13 \times 9 \times 8 \times 2$	Margins on sales to segional other demands
$\begin{aligned} & \text { E_x6marg } \\ & (2.8 .11) \end{aligned}$		$i \in C O M$ $r \in$ MARG $s \in A S O U$ $q \in$ RDES	$13 \times 2 \times 9 \times 8$	Margins on sales to federal other demands in each region
2.2.7. Prices				
$\begin{aligned} & \mathrm{E}_{-\mathrm{p}} 0 \mathrm{a} \\ & (2.8 .13) \end{aligned}$		$\mathrm{j} \in \operatorname{IND}$ $\mathbf{q} \in$ RDES	${ }^{3} \times 8$	Zero pure profits in current production
$\begin{aligned} & \mathrm{E}_{1} \mathrm{a} \\ & (2.8 .13) \end{aligned}$		$j \in \operatorname{IND}$ $\mathbf{q} \in$ RDES	13×8	Technical change by industry - current production
$\begin{aligned} & \text { E_pi } \\ & \text { (2.8.13) } \end{aligned}$	$\operatorname{NVEST}_{j, q}\left(p_{j, q}-a_{j} i n d_{j, q}\right)=\sum_{i \in C O M} \sum_{s \in \operatorname{ASOU}} \text { PVAL2A }_{i, s, j, q}{ }^{p 2 a_{i, 5, j, q}}$	$\mathrm{j} \in \mathrm{IND}$ $\mathrm{q} \in$ RDES	13×8	Zero pure profits in capital creation
$\begin{aligned} & \text { E_p0ab } \\ & (2.8 .13) \end{aligned}$		$i \in$ COM	13	Zero pure profits in importing
$\begin{aligned} & \text { E_pla } \\ & (2.8 .6) \end{aligned}$		$i \in \operatorname{COM}$ $\mathrm{j} \in \mathrm{IND}$ $\mathrm{g} \in$ RDES se ASOU	$13 \times 13 \times 8 \times 9$	Purchasers prices - User I

Identificr	Equation	Subscript Range	Number	Description
$\begin{aligned} & E_{-p} 2 \mathrm{a} \\ & (2.8 .6) \end{aligned}$	$\begin{aligned} \text { PVAL2A }_{i, s, j, 4} p 2_{i, s, j, q}= & {\left[B A S 2_{i, s, j, q}+\text { TAX }_{i, s, j, q}\right] p 0 a_{i, s}+B A S 2_{i, s, j, q}{ }^{\text {deltax }} 2_{i, s, j, q} } \\ & +\sum_{r \in M A R G} \text { MAR }_{i, s, j, q, r} p 0 a_{q, r} \end{aligned}$	$i \in C O M$ $j \in \operatorname{IND}$ $\mathrm{q} \in$ RDES $\mathbf{s} \in \mathrm{ASOU}$	$13 \times 13 \times 8 \times 9$	Purchasers prices - User 2
$\begin{aligned} & \text { E_p3a } \\ & (2.8 .6) \end{aligned}$	$\begin{aligned} \text { PVAL3A }_{i, s, q}{ }^{p 3 a_{i, s, q}} & =\left[B A S 3_{i, s, q}+T A X 3_{i, s, q}\right] p 0 a_{i, s}+B A S 3_{i, s, q}{ }^{\text {deltax } 3_{i, s, q}} \\ & +\sum_{r \in M A R G} \sum_{i, p, q, r}{ }^{p a_{q, r}} \end{aligned}$	$i \in C O M$ qERDES $s \in$ ASOU	$13 \times 8 \times 9$	Purchasers prices - User 3
$\begin{aligned} & \text { E_p4r } \\ & (2.8 .6) \end{aligned}$		$\begin{aligned} & i \in C O M \\ & s \in R S O U \end{aligned}$	13×*	Purchasers prices - User 4
$\begin{aligned} & \text { E_p } 50 \\ & (2.8 .6) \end{aligned}$	$\begin{aligned} \text { PVALSA }_{i, s, q} p 5_{\mathrm{i}, s, q} & =\left[B A S S_{i, s, q}+T A X s_{i, s, q}\right] p 0 a_{i, s}+B A S 5_{i, s, q} \text { deltax } 5_{i, s, q} \\ & +\sum_{r \in M A R G} \sum_{\mathrm{MAR}}^{\mathrm{i}, \mathrm{~s}, q, r}{ }^{p 0 \mathrm{a}_{\mathrm{s}, r}} \end{aligned}$	$\mathrm{i} \in \mathrm{COM}$ $q \in \operatorname{RDES}$ $s \in A S O U$	$13 \times 8 \times 9$	Purchasers prices - User 5
$\begin{aligned} & E_{\text {_p6a }} \\ & (2.8 .6) \end{aligned}$	$\begin{aligned} {\text { PVAL } 6 A_{i, s, q}}^{p 6 a_{i, s, q}} & =\left[B A S \sigma_{i, s, q}+\text { TAX }_{i, s, q}\right] p 0 a_{i, s}+B A S 6_{i, s, q} \text { deltax } 6_{i, s, q} \\ & +\sum_{r \in M A R G} \sum_{i, s, q, r} p a_{r, s} \end{aligned}$	$i \in \mathrm{COM}$ se ASOU $q \in$ RDES	$13 \times 9 \times 8$	Purchasers prices - User 6

2.2.8. Market-cleáring equations for commodities.

Identifier	Equation	Subscript Range	Number	Description
E_mkt_clear_ margins (2.8.12)		reMARG $s \in$ RSOU	2×8	Demand equals supply for margin commodilies
E_mkt_clear_ nomarg (2.8.12)		re NONMAR G $s \in$ RSOU	2×8	Demand equals supply for nonmargin commodities
E_x0impa (2.8.12) 2.2.9. Indirec		$i \in$ COM $\mathbf{q} \in$ RDES	13×8	Impon volumes of commodities by region
$\begin{aligned} & \text { E_deltax } \\ & \text { (2.8.5) } \end{aligned}$		$i \in \operatorname{COM}$ $s \in$ ASOU $\mathrm{j} \in$ IND $\mathrm{q} \in$ RDES	$13 \times 4 \times 13 \times 8$	Tax rate on sales to User 1

Identifitier	Equation	Subscript Range	Number	Description
$\begin{aligned} & \text { E_deltax2 } \\ & (2.8 .5) \end{aligned}$		$i \in \operatorname{COM}$ $s \in$ ASOU $j \in \operatorname{IND}$ $q \in \operatorname{RDES}$	13x9×13×8	Tax rate on sales to User 2
$\begin{aligned} & \text { E_deltax } 3 \\ & (2.8 .5) \end{aligned}$		$i \in$ COM $s \in$ ASOU $q \in$ RDES	$13 \times 9 \times 8$	Tax rate on sales to User 3
$\begin{aligned} & \text { E_deltax4 } \\ & \hline(2.5 .5) \end{aligned}$ (2.8.5)		$i \in \operatorname{COM}$ $s \in$ RSOU $\mathrm{q}=$ foreign	13×8	Tax rate on sales to User 4
$\begin{aligned} & \text { E_deltax5 } \\ & \text { (2.8.5) } \end{aligned}$		$i \in \operatorname{COM}$ $s \in$ ASOU $q \in$ RDES	13x9×8	Tax rate on sales to User 5
$\begin{aligned} & \text { E_deltax6 } \\ & (2.8 .5) \end{aligned}$		$i \in$ COM $s \in$ ASOU $\mathrm{q} \in$ RDES $\mathrm{k}=$ Eederal	$13 \times 9 \times 8$	Tax rate on sales to User 6
$\begin{aligned} & \text { E_taxrev l } \\ & \text { (2.8.7) } \end{aligned}$		$\mathrm{q} \in$ RDES	8	Aggregate revenue from indirect taxes levied on flows to User I
$\begin{aligned} & \text { E_taxrev2 } \\ & (2.8 .7) \end{aligned}$		$q \in$ RDES	8	Aggregate revenue from indirect taxes levicd on flows to User 2
$\begin{aligned} & \text { E_taxrev3 } \\ & (2.8 .7) \end{aligned}$		$\mathrm{q} \in$ RDES	8	Aggregate revenue from indirect taxes levied on flows to User 3
$\begin{aligned} & \text { E_taxrev4 } \\ & (2.8 .7) \end{aligned}$	$\text { AGGTAX }_{s}{ }^{\operatorname{tax} r e v 4_{s}}=\sum_{i \in C O M} T A X 4_{i, s}\left(p 0 a_{i, s}+x 4 r_{i, s}\right)+B A S 4_{i, s}{ }^{\text {dellax }} 4_{i, s}$	$s \in$ RSOU	8	Aggregate revenue from indirect taxes levied on flows to User 4

Identifier	Equation	Subscripı Range	Number	Description
E_taxrevs (2.8.7)	$\text { AGGTAXS }_{q} \text { taxrevs }_{q}=\sum_{i \in C O M} \sum_{s \in A S O U} T A X S_{i, s, q}\left\|P 00_{i, s}+x 55_{i, s, q}\right\|+B A S s_{i, s, q} \text { deltax }_{i, s, q}$	$\underline{q} \in$ RDES	8	Aggregate revenuc fromindirect taxes levied on flows to User 5
$\begin{aligned} & \text { E_1nxrev6 } \\ & \text { (2.8.7) } \end{aligned}$		$q \in$ RDES	8	geregate revenue from indirect tixes levied on flows to User 6
2.2.10. Regional incomes and expendilures				
$\begin{aligned} & \text { E_caprev } \\ & \text { (2.8.14) } \end{aligned}$	$\text { caprev }_{q}=\left(1.0 / A G G C A P_{q}\right) \sum_{j \in \operatorname{IND}} \text { CAPITAL }_{j, q}\left(p l \operatorname{cap} p_{j, q}+\text { curca }_{p_{j, q}}\right)$	$q \in$ RDES	8	Aggregate payments to capital
$\begin{aligned} & \text { E_labrev } \\ & \text { (2.8.14) } \end{aligned}$	$\left.\operatorname{labrev}_{q}=\left(1.0 / A G G L A B_{q}\right) \sum_{j \in \mathbb{N D D}} \sum_{m \in O C C} L_{O A B_{-} O C C} N N D_{m, j, q}\|P\| l a b o j_{j, q, m)}+x i l a b o j_{j, 4, m}\right\}$	$\mathbf{q} \in$ R ${ }^{\text {deS }}$	8	Aggregate payments to labour
$\begin{aligned} & \text { E_tndrev } \\ & \text { (2.8.14) } \end{aligned}$	$\left.\operatorname{lndrev}_{q}=\left(1.0 / \text { AGGLND }_{q}\right) \sum_{j \in \mathbb{N} D} \text { LAND }_{j, q} \text { qpiland }_{j . q}+n_{j, q}\right)$	q \in RDES	8	Aggregate payments 10 land
$\begin{aligned} & \text { E_octrev } \\ & \text { (2.8.14) } \end{aligned}$	$\operatorname{octrev}_{q}=\left(1.0 / A G G O C T_{q}\right) \sum_{j \in I N D} O T H \operatorname{CoST}_{j, q}\left(\text { Plocl }_{j, q}+\times 10 c l_{j, q}\right)$	$q \in$ RDES	8	Aggregate other cost ticket payments
$\begin{aligned} & \text { E_taxind } \\ & \text { (2.8.14) } \end{aligned}$		q \in RDES	8	Aggregate value of indirect taxes
$\begin{aligned} & \text { E_taxrevin } \\ & \text { (2.8.14) } \end{aligned}$	$\text { AGGTAXM }_{q} \operatorname{taxrevm}_{q}=\sum_{i \in C O M}^{T} \text { TAR!FF }_{i, q}\left(\text { pm }_{i}+\text { nalphi }+x 0 i m p_{i, q}\right)+\text { IMPORTS }_{i, q} \text { ppowlaxm }_{i}$	qG RDES	8	Aggregate tariff revenue
$\begin{aligned} & \text { E_c_a } \\ & (2.8 .14) \end{aligned}$	$\text { AGGCON }_{q} \varepsilon_{q}=\sum_{i \in C O M} \sum_{s \in A S O U} P V A L 3 A_{i, s, q}\left\{\times 3 a_{i, S, q}+p 33_{i, s, q}\right\}$	qG RDES	8	Household budget constrains
$\begin{aligned} & \text { E_cr } \\ & \text { (2.8.14) } \end{aligned}$	$\mathrm{cr}_{\mathrm{q}}=\mathrm{c}_{\mathrm{q}}-\mathrm{xi}^{\text {q }}$	$\mathrm{q} \in$ RDES	8	Real household consumplion

Identifier	Equation	Subscripi Range	Nurnber	Description
$\begin{aligned} & \text { E_xi3 } \\ & \text { (2.8.16) } \end{aligned}$	$x^{x i 3_{q}}=\left(1.0 / A G C C O N_{q}\right) \sum_{i \in C O M} \sum_{s \in A S O U} \text { PVAL }^{2} A_{i, s, q}{ }^{13 a_{i, s, q}}$	$q \in$ RDES	8	Consumer price index
$\begin{aligned} & \text { E_ir } \\ & (2.8 .14) \end{aligned}$	$\mathrm{ir}_{\mathrm{q}}=\left(1.0 / \mathrm{AGGIN}_{\mathrm{q}}\right) \sum_{\mathrm{j} \in \operatorname{IND}} \operatorname{INVEST}_{\mathrm{j}, \mathbf{q}} \mathrm{y}_{\mathrm{j}, \mathrm{q}}$	$q \in$ RDES	8	Real investment
E_othreal5 (2.8.14)	$\text { othreals }_{q}=\left(1.0 / A G G O T H S_{q}\right) \sum_{i \in C O M} \sum_{s \in A S O U} \text { PVALSA }_{i, s, q} \times 5_{a_{i, s, q}}$	$q \in$ RDES	8	Real regional other demands
E_olhreal6 (2.8.14)	$\text { AGGOTH6 }_{q} \text { othreal }_{q}=\sum_{i \in C O M} \sum_{s \in A S O U} \text { PVAL }^{2} A_{i, s, q} \times 6 a_{i, s, q}$	$q \in$ RDES	8	Real federat other demand
$\begin{aligned} & \text { E_int_exp } \\ & (2.8 .14) \end{aligned}$		$s \in$ RSOU	1	Interregional exports
$\begin{aligned} & \text { E_int_imp } \\ & (2.8 .14) \end{aligned}$		$q \in$ RDES	8	Interregional impors
$\begin{aligned} & \text { E_expvol } \\ & (2.8 .14) \end{aligned}$		$q \in$ RDES	8	Export volume index
$\begin{aligned} & \text { E_impvol } \\ & (2.8 .14) \end{aligned}$	$\operatorname{impvol}_{\mathcal{q}}=\mathrm{imp}_{\mathrm{q}}+$ natphi $-\mathrm{xim}_{\mathbf{q}}$	$q \in$ RDES	8	Import volume index
$\begin{aligned} & \text { E_xi2 } \\ & (2.8 .16) \end{aligned}$	$\mathrm{xi}_{\mathrm{q}}=\left(1.0 / A G G I N V_{q}\right) \sum_{\mathrm{j} \in \mathrm{IND}} \mathrm{INVEST}_{\mathrm{j}, \mathrm{q}} \mathrm{p}_{\mathrm{j}, \mathrm{q}}$	$q \in$ RDES	8	Investument price index
$\begin{aligned} & \text { E_xi5 } \\ & \text { (2.8.16) } \end{aligned}$	$\mathrm{xis}_{\mathrm{q}}=\left(1.0 / \mathrm{AGGOTHS}_{\mathrm{q}}\right) \sum_{\mathrm{i} \in \mathrm{COM}} \sum_{s \in A S O U} \mathrm{PVALSA}_{\mathrm{i}, \mathrm{~s}, \mathrm{q}} \mathrm{ps}_{\mathrm{i}, \mathrm{~s}, \mathrm{q}}$	$q \in$ RDES	8	Regional other demands price index
$\begin{aligned} & \text { E_xic } \\ & (2.8 .16) \end{aligned}$	$x_{i 6_{q}}=\left(1.0 / A G G O T H \sigma_{q}\right) \sum_{i \in C O M} \sum_{s \in A S O U} P^{P V A L 6 A_{i, S, q}} q^{p 6 a_{i, S . q}}$	q \in RDES	8	Price index for Federal other demand

Identifier	Equation	Subscript Range	Numbur	Description
$\begin{aligned} & \text { E_psexp } \\ & (2.8 .16) \end{aligned}$		$s \in$ RSOU	*	Price index for interregional exports
$\begin{aligned} & \text { E_psimp } \\ & (2.8 .16) \end{aligned}$		qGRDES	8	Pricc index for inciregional impors
$\begin{aligned} & \text { E_xi4 } \\ & (2.8 .16) \end{aligned}$	$x_{i 4} \cdot-\text { natphi }=\left(1.0 / \text { AGGEXP }_{q}\right) \sum_{i \in C O M} \text { PVAL }^{4} R_{i, 4}{ }^{p 4 r_{i, \varphi}}$	$\mathrm{q} \in$ RDES	8	Foreign expors price index
$\begin{aligned} & E_{-} x i m \\ & (2.8 .16) \end{aligned}$	$\text { xim }_{q}-\text { nappli }=\left(1.0 / A G G I M P_{q}\right)_{i \in C O M} \sum_{i M P C O S T_{i, q}} \text { pm }_{j}$	$\mathrm{q} \in$ RDES	8	Forcign inmorss price index
E_in (2.8.14)	$\mathrm{in}_{\mathrm{q}}=\mathrm{if} \mathrm{f}_{\mathrm{q}}+\mathrm{xi} \mathbf{2}_{q}$	qG RDES	8	Nominal investment
E_othnoms (2.8.14)	othnoms $\mathbf{q}_{\mathbf{q}}=$ othreals ${ }_{q}+\mathrm{xiS}_{\mathbf{q}}$	$\mathrm{q} \in$ RDES	8	Nominal valuc of regional other Jemands
$\begin{aligned} & \text { E_othnom6 } \\ & (2.8 .14) \end{aligned}$		$\mathrm{q} \in$ RDES	8	Nominal Federal other demand
$\begin{aligned} & \text { E_export } \\ & (2.8 .14) \end{aligned}$	$\operatorname{export}_{q}=\left(1.0 / \text { AGGEXP }_{q}\right) \sum_{i \in C O M} \text { PVALAR }_{i, q}\left[p 4 r_{i, q}+x 4 r_{i, q}\right]$	q¢ RDES	1	Forcign currency value of exports
$\begin{aligned} & \text { E_imp } \\ & (2.8 .14) \end{aligned}$	$\operatorname{imp}_{q}=\left(1.0 / A G G I M P_{q}\right) \sum_{i \in C O M} I M P C O S T_{i, q}\left[p m m_{i}+x 0 i n p_{j, q}\right]$	q \in RDES	8	Forcign currency value of imports

Identificr	Equation	Subscript Range	Number	Description
$\begin{aligned} & \text { E_trd } \\ & (2.8 .14) \end{aligned}$		$s \in$ RSOU $\mathrm{q} \in$ RDES	8×8	Interregional trade flows (including diagonal term)
	$+\sum_{i \in C O M} \text { BASS }_{i, s, q}\left(\mathrm{pO}_{i, s}+x 5 \mathrm{a}_{i, s, q}\right)$			
$\begin{aligned} & \text { E_psflo } \\ & \text { (2.8.16) } \end{aligned}$		$s \in$ RSOU $\mathbf{q} \in$ RDES	8×8	Price index for interregional trade nows
	$+\sum_{i \in C O M} B A S 3_{i, s, q} p 0_{i, s}+\sum_{i \in C O M} B A S s_{i, s, q} p 0_{i, s}$			
2.2.11. Regio	al wages			
E_pllaboi (2.8.17)		$j \in \operatorname{IND}$ $q \in$ RDES $m \in O C C$	$13 \times 8 \times 8$	Payroll tax adjustment
E_pwagei (2.8.17)		$\mathrm{j} \in \operatorname{IND}$ $q \in$ RDES	13×8	Flexible setting of money wages
$\begin{aligned} & \text { E_wage_diff }_{(2.8 .17)} \end{aligned}$	wage_diff $_{q}=$ pwage $_{q}$ - natxi3 - natrealwage	$q \in$ RDES	8	Regional real wage differential
E_pwage (2.8.17)	$\text { AGGI.AR }_{q}{ }^{p \text { wage }_{q}}=\sum_{j \in \mathbb{N D}}{L A B O U R_{j, q}}^{\text {pwagci }}{ }_{j, q}$	$q \in$ RDES	*	Regional nominal wage received by workers

idensifier	Equation	Subscript Range	Number	Descriplion
$\begin{aligned} & \text { E_nalrcalw } \\ & (2.8 .17) \end{aligned}$			1	National real wage: consumes
2.2.12. Other regional factor market definitions				
$\begin{aligned} & E_{-}! \\ & (2.8 .14) \end{aligned}$	$\mathrm{I}_{\mathrm{q}}=\left(1.0 / A G G L A B_{q}\right) \sum_{j \in \operatorname{IND}} L A B O U R_{j, q} \text { labind }_{j, q}$	q \in RDES	8	Employment: wage bill weights
$\begin{aligned} & \mathrm{E}, \mathrm{KI}_{(2.8 .14)} \end{aligned}$	$\mathrm{kl}_{\mathrm{q}}=\left(1.0 / \mathrm{AGGCAP}_{\mathrm{q}}\right) \sum_{\mathrm{j} \in \operatorname{IND}} \text { CAPITAL }_{\mathrm{j}, \mathrm{q}} \text { curca }_{\mathrm{j}, \mathrm{q}}$	$\boldsymbol{q} \in$ RDES	*	Usage of capital: rental weights
$\begin{aligned} & \text { E_z_tol } \\ & \text { (2.8.14) } \end{aligned}$	$\operatorname{TOTFAC}_{q^{2}-10 \mathbf{t}_{q}}=\sum_{j \in \operatorname{IND}} \text { TOTFACIND }_{j, q^{\mathbf{z}_{j, ~}}}$	$q \in$ RDES	8	Output: value-added weights
E_lambda (2.8.19)		me OCC و \in RDES	8×8	Demand for labour by occupation
$\begin{aligned} & \text { E_pwage_p } \\ & (2.8 .17) \end{aligned}$	$\text { AGGLAB }_{q}{ }^{p w a g e} e_{q}=\sum_{j \in!N D}{L A B O U R_{j, q}}^{p l l a b_{j, q}}$	$q \in$ RDES	8	Nominal wage paid by producers
$\begin{aligned} & \text { E_reg_plcap } \\ & (2.8 .18) \end{aligned}$	reg_plcop $_{q}=$ caprev $^{-}-\mathrm{kf}_{q}$	q \in RDES	8	Rental price of capital
$\begin{aligned} & \text { E_realwage_w } \\ & \text { (2.8.18) } \end{aligned}$	$\text { rcalwage_wq }=\text { pwage }_{q}-x i 3_{q}$	q \in RDES	8	Real wages for workers: deflated by CPI
$\begin{aligned} & \text { E_realwage_p } \\ & \text { (2.8.18) } \end{aligned}$		q \in RDES	8	Real wages for producers: deflated by GDP denator
$\begin{aligned} & \text { E_r0_10t } \\ & (2.8 .18) \end{aligned}$	$\mathrm{r}_{-} \text {tot }_{q}=\left(1.0 / \mathrm{AGGCAP}_{q}\right) \sum_{\mathrm{j} \in \mathbb{I N D}} \text { CAPITAL }_{\mathrm{j}, \mathrm{q}} \mathrm{r}_{\mathrm{j}, \mathrm{q}}$	$q \in$ RDES	8	Rate of return on capital
$\begin{aligned} & \text { E_xiplpk_ind } \\ & (2.8 .18) \end{aligned}$	xiplpk_ind $_{j, q}=$ pllab $_{\text {j,q }}$ - plcap $_{\text {j,q }}$	$\mathrm{j} \in \mathrm{IND}$ $q \in$ RDES	13×8	Index of relative price movenents of labour \& capital

Identifier	Equation	Subscript Range	Number	Description
E_xiplpk (2.8.18)		q \in RDES	8	Index of relative price movements of labour \& capital: regional aggregate
2.2.13. Other miscellaneous regional equations				
E_ploct (2.8.1)	ploct $_{\text {j. }}=x \mathrm{i}_{\mathbf{q}}+$ floct $_{\text {j.q }}$	jeIND $q \in$ RDES	${ }^{13 \times 8}$	Indexing of prices of other cost tickels
$\begin{aligned} & \text { E_cr_shr } \\ & \text { (2.8.14) } \end{aligned}$		$\mathrm{q} \in$ RDES	8	Regional shates in national real household consumption
$\begin{aligned} & \text { E_ximp0 } \\ & (2.8 .16) \end{aligned}$	$\operatorname{ximpo}_{q}=\left(1.0 /\left[A G G I M P_{q}+{A G G T A X M_{q}}\right) \sum_{i \in C O M} I M P O R T S_{i, q}{ }^{p 0 i_{i, s}}\right.$	$q \in$ RDES $\mathrm{s}=$ forcign	8	Duty-paid imports price index
$\begin{aligned} & \text { E_toldom } \\ & \text { (2.8.18) } \end{aligned}$	toddorn $_{q}=$ psexp $_{q}-$ psimp $_{q}$	q \in RDES	8	Doinestic terms of trade
$\begin{aligned} & \text { E_totifor } \\ & \text { (2.8.18) } \end{aligned}$	tofor $_{\mathbf{q}}=\mathrm{xi}^{4} \mathbf{q} \cdot \mathrm{xim}_{\mathbf{q}}$	qGRDES	8	Foreign terms of trade
2.2.14. National aggregutes				
$\begin{aligned} & \text { E_naltaxrev1 } \\ & \text { (2.8.7) } \end{aligned}$	$\text { NATAGGTAXI nattaxrevl }=\sum_{q \in R D E S} \sum_{q G G T A X 1}^{q} q^{t a x r e v I_{q}}$		1	Revenue fromindirect taxes levied on fows to User 1
$\begin{aligned} & \text { E_nattaxrev2 } \\ & (2.8 .7) \end{aligned}$	$\text { NATAGGTAX2 nallaxrev2 }=\sum_{q \in \text { RDES }} \operatorname{AGGTAX}^{2} 13 \times r c v 2^{q}$		1	Revenue from indirect taxes levied on flows to User 2
$\begin{aligned} & \text { E_nataxrev3 } \\ & \text { (2.8.7) } \end{aligned}$	$\text { NATAGGTAX3 nattaxrev3 }=\sum_{q \in R D E S} \text { AGGTAX3 }^{2} \mathrm{q}^{2 \times r c v}{ }^{3} q$		1	Revenue from indirect taxes levied on nows to User 3
$\begin{aligned} & \text { E_natiaxrevt } \\ & (2.8 .7) \end{aligned}$	$\text { NATAGGTAX4 nattaxrev4 }=\sum_{s \in R S O U} \text { AGGTAX } 4_{s} \text { taxrevis }_{s}$		1	Revenue from indirect laxes levied on fows to User 4

Identifier	Equation	Suhscript Range	Number	Description
$\begin{aligned} & \text { E_nataxrev5 } \\ & \text { (2.8.7) } \end{aligned}$	$\text { NATAGGTAXS nallaxrevs }=\sum_{q \in \text { RDES }} \text { AGGTAX }_{q} \mathrm{inxrevs}_{q}$		1	Revenue from indireet taxes levied on flows to User 5
$\begin{aligned} & \text { E_nataxrev6 } \\ & (2.8 .7) \end{aligned}$	$\text { NATAGGTAX6 natiaxrev6 }=\sum_{q \in R D E S} \text { AGGTAX }_{q}{ }^{\text {taxrev }}{ }_{q}$		1	Revenue from indirect taxes levied on flows to User 6
$\begin{aligned} & \text { E_natx0imp } \\ & (2.8 .12) \end{aligned}$	$\text { NATIMPORTS }_{i} \text { nalxOimp }_{i}=\sum_{q \in \operatorname{RDES}}^{\sum_{1 M P O R T S}^{i, q}}{ }^{\times 0 i m p_{i, q}}$	$i \in \operatorname{COM}$	13	Import volumes
E_natlabind (2.8.14)		$\mathrm{j} \in$ IND	13	Employment: wage bill weights
E_natcaprev (2.8.15)	$\text { natcaprev }=(i .0 / \text { NATAGGCAP }) \sum_{q \in \text { RDES }} \text { AGGCAP }_{q} \text { caprev }_{q}$		1	Payments to capital
E_natlabrev (2.8.15)	$\text { natlabrev }=(1.0 \mathrm{NATAGGLAB}) \sum_{q \in \text { RDES }} \operatorname{AGGLAB}_{\mathbf{q}} \operatorname{labrev}_{\mathbf{q}}$		1	Payments to labour
$\begin{aligned} & \text { E_natIndrev } \\ & \text { (2.8.15) } \end{aligned}$	$\text { nalindrev }=(1.0 \text { NATAGGLND }) \sum_{q \in R D E S} A_{q}$		1	Payments to land
$\begin{aligned} & \text { E_natoctrev } \\ & \text { (2.8.15) } \end{aligned}$	$\text { natoctrev }=(1.0 \text { NATAGGOCT }) \sum_{q \in \operatorname{RDES}} \text { AGGOCT }_{q}{ }^{\text {octrev }_{q}}$		1	Other cost ticket payments
$\begin{aligned} & \text { E_nattaxrevin } \\ & \text { (2.8.15) } \end{aligned}$	$\text { nartaxrevm }=(1.0 / \text { NATAGGTAXM }) \underset{q \in \text { RDES }}{\sum_{\text {AGGTAXM }}^{\mathbf{q}^{\text {ti }} \times r e v m_{q}}}$		1	Tariff revenue
$\begin{aligned} & \text { E_nattaxind } \\ & \text { (2.8.15) } \end{aligned}$	nattaxind $=(1.0$ NATAGGTAX)(NATAGGTAX!nattaxrev1 + NATAGGTAXX2nataxrev2 + NATAGGTAX3nattaxrev3 + NATAGGTAX4naltaxrev4 + NATAGGTAXSnaltaxrev5 + NATAGGTAX6nattaxrev6 + NATAGGTAXMnattaxrevm)		1 .	Value of indirect taxes

Identifier	Equation	Subscript Range	Number	Description
$\begin{aligned} & \text { E_natgdpinc } \\ & (2.8 .15) \end{aligned}$	natgdpine $=(1.0 /$ NATGDPIN $)($ NATAGGLNDnallndrev + NATAGGCAPnatcaprev + NATAGGLABnatlabrev + NATAGGOCTnatoctrev + NATAGGTAXnattaxind)		1	Nominal GDP from income side
$\begin{aligned} & \text { E_nalkt } \\ & (2.8 .15) \end{aligned}$	$\text { natkt }=(1.0 / \text { NATAGGCAP }) \sum_{\mathbf{q} \in \text { RDES }}^{\sum A G G C A P_{q} k t q}$		1	Usage of capital: rental weights
$\begin{aligned} & \text { E_natl }^{(2.8 .15)} \end{aligned}$	$\text { natl }=\left(1.0 / \text { NATAGGLAB } \sum_{q \in \operatorname{RDES}} \text { AGGLAB }_{q^{\prime} q}\right.$		I	Employment: wage bill weights
$\begin{aligned} & \text { E_natz_101 } \\ & (2.8 .15) \end{aligned}$	$\text { NATTOTFAC natz_tot } \sum_{q \in \text { RDES }}^{\sum \text { TOTFAC }_{q} z_{-} \text {tot }} \mathbf{q}$		1	Aggregate output: valuc-added weights
$\begin{aligned} & \text { E_notz } \\ & (2.8 .15) \end{aligned}$	$\text { NATTOTFACIND }_{j} \text { natz }_{\mathrm{j}}=\sum_{\mathrm{q} \in \text { RDES }} \text { TTOTFACIND }_{\mathrm{j}, \mathrm{q}^{\mathrm{z}, q}}$	$\mathrm{j} \in$ IND	13	Industry oulput: value-added weights
$\begin{aligned} & \text { E_natc } \\ & \text { (2.8.15) } \end{aligned}$	$\text { NATAGGCON natc }=\sum_{q \in \operatorname{RDES}} \operatorname{AGGCON}_{q} \mathcal{q}_{q}$		1	Nominal houschold consumption
$\begin{aligned} & \text { E_nater } \\ & \text { (2.8.15) } \end{aligned}$	$\text { NATAGGCON natcr }=\sum_{q \in \text { RDES }} \operatorname{AGGCON}_{q} c r_{q}$		1	Real houschold consumption
$\begin{aligned} & \text { E_natin } \\ & \text { (2.8.15) } \end{aligned}$	natin $=$ natir + naxxi2		1	Nominal investment
$\begin{aligned} & \text { E_natir }_{\text {(2.8.15) }} \end{aligned}$	$\text { natir }=\left(1.0 / \text { NATAGGINV } \sum_{j \in \operatorname{IND}} \sum^{\text {NATINVEST }} \mathrm{m}_{\mathrm{j}} \mathrm{naty}_{\mathrm{j}}\right.$		1	Real investment
E_natothnom (2.8.15)	natothnoms = natothreals + natxi5		1	Nominal value of regional other demands
$\begin{aligned} & \text { E_natothnor: } \\ & \text { (2.8.15) } \end{aligned}$	natothnom6 $=$ natothreal6 + natxi6		1	Noninal value of Federal other demands

Identificr	Equation	Subscript Range	Number	Description
$\begin{aligned} & \text { E_natothreal5 } \\ & \text { (2.8.15) } \end{aligned}$	$\text { natcithreat5 }=(t .0 / \text { NATAGGOTH }) \sum_{q \in \text { RDES }} \text { AGGOTHS }_{q} \text { othreals }_{q}$		1	Real regional other demands
$\begin{aligned} & \text { E_natothreal6 } \\ & (2.8 .15) \end{aligned}$	$\text { NAT } / \text { GGOTH6 natothrcal6 }=\sum_{i \in C O M} \sum_{s \in A S O U} \sum_{q \in \text { RDES }} \text { PVAL }^{\prime} A_{i, s, q} \times 6 a_{i, s, q}$		1	Real Federal other demands
$\begin{aligned} & \text { E_natexport } \\ & (2.8 .15) \end{aligned}$	$\text { nalexport }=(1.0 / \text { NATAGGEXP }) \sum_{s \in \text { RSOU }} \text { AGGEXP }_{s} \text { export } s$		1	Forcign currency value of expors
E_natexpvol (2.8.15)	natexpvol $=$ natexport + natphi \boldsymbol{n} natxi4		1	Export volume index
E_natimp (2.8.15)	$\text { natimp }=(1.0 / \text { NATAGGIMP }) \sum_{i \in \operatorname{COM}} \text { NATIMPCOST }_{i}\left[\mathrm{pm}_{\mathrm{i}}+\text { nalx0imp }{ }_{\mathrm{i}}\right]$		1	Foreign currency value of imports
E_natimpvol (2.8.1.5)	natimpvol $=$ natimp + natphi $\boldsymbol{n o t x i m}$		1	Import volume index
$\begin{aligned} & \text { E_natgdpexp } \\ & \text { (2.8.15) } \end{aligned}$	natgdpexp $=(1.0 /$ NATGDPEX $)($ NATAGGCONnatc + NATAGGINVnatin + NATAGGOTH5natothnom5 + NATAGGOTH6natothnom6 + NATAGGEXP(natexport + natphi) - NATAGGIMP(natimp + natphi))		1	Nominal GDP from expenditure side
$\begin{aligned} & \text { E_natgdprea! } \\ & \text { (2.8.15) } \end{aligned}$	natgdpreal $=$ natgdpexp $\boldsymbol{n a t x i g d p}$		1	Real GDP: expenditure side
$\begin{aligned} & \text { E_natdelb } \\ & \text { (2.8.15) } \end{aligned}$	1000.0100.0 natdelb $=$ NATAGGEXPnatexport \cdot NATAGGIMPnatimp		1	Balance of trade in billions of dollars
$\begin{aligned} & \text { E_natxi3 } \\ & (2.8 .16) \end{aligned}$	$\text { NATAGGCON natxi3 }=\sum_{q \in \operatorname{RDES}} \operatorname{AGGCON}_{q} \times i 3_{q}$		1	Consumer price index
$\begin{aligned} & \text { E_natxi2 } \\ & \text { (2.8.16) } \end{aligned}$	$\text { NATAGGINV natxi2 }=\sum_{q \in \text { RDES }} \text { AGGINV }_{\mathrm{q}} \times{ }^{\times i} 2_{q}$:	Investment price index

Identificr	Equation	Subscript Range	Number	Description
$\begin{aligned} & \text { E_natxi4 } \\ & (2.8 .16) \end{aligned}$	$n a t \times i 4=(1.0 / \text { NATAGGEXP }) \sum_{q \in \text { RDES }} \text { AGGEXP }_{\mathbf{q}} \times \mathrm{xi}_{\mathbf{q}}$		1	Exports price index
$\begin{aligned} & \text { E_natxi5 } \\ & (2.8 .16) \end{aligned}$	$\text { natxis }=(1.0 / \text { NATAGGOTH5 }) \sum_{q \in \operatorname{RDES}} A G G O T H 5_{q} \times i 5_{q}$		1	Price index for regional other demands
$\begin{aligned} & \text { E_natxi6 } \\ & (2.8 .16) \end{aligned}$	$\text { NATAGGOTH6 natxi6 }=\sum_{i \in C O M} \sum_{s \in A S O U} \sum_{q \in R D E S} \text { PVALGA }_{i, s, q} \text { p }^{p a_{i, s, q}}$		1	Price index for Federal other demands
$\begin{aligned} & \text { E_nalxigdp } \\ & (2.8 .16) \end{aligned}$	natxigdp $=(1.0 /$ NATGDPEX $)($ NATAGGCONnatxi3 + NATAGGINVnatxi2 + NATAGGOTH5natxi5 + NATAGGOTH6natxi6 + NATAGGEXPnatxi4 - NATAGGIMPnatxim)		1	Price index for GDP: expenditure side
E_natxim (2.8.16)	$\text { natxim }=(1.0 / \text { NATAGGIMP }) \sum_{q \in \operatorname{RDES}} \text { AGGIMP }_{\mathbf{q}} \text { xim }_{q}$		1	linpors price index
$\begin{aligned} & \text { E_natxinnp } \\ & \text { (2.8.16) } \end{aligned}$	$\text { natximp }=\left(L .0 /[\text { NATAGGIMP }+ \text { NATAGGTAXM] }) \sum_{i \in C O M} \text { NATIMPORTS }_{i} p 0 a_{i}, s\right.$	$s=$ foreign	1	Duty-paid impors price index
$\begin{aligned} & \text { E_nattot } \\ & (2.8 .16) \end{aligned}$	nattot $=$ natxi4 - natxitm		1	Terms of trade
$\begin{aligned} & \text { E_natplcap } \\ & \text { (2.8.18) } \end{aligned}$	natplcap $=$ natcaprev $\boldsymbol{- n a t k t}$		1	Nominal capital rentals
$\begin{aligned} & \text { E_natpwage } \\ & (2.8 .18) \end{aligned}$	$\text { NATAGGLAB natpwage }=\sum_{q \in \operatorname{RDES}} \text { AGGLAB }_{\boldsymbol{q}} \text { pwage }_{\boldsymbol{q}}$		1	Nominal wages received by workers
$\begin{aligned} & \text { E_natpwage_ } \\ & \text { (2.8.18) } \end{aligned}$	NATAGGLAB nalpwage_p $=\sum_{q \in R D E S}$ AGGLAB $_{q}$ pwage_- $_{q}$		1	Nominal wages paid by producers
E_natrwage_ (2.8.18)	natrwage_w $=$ natrealwage		1	Real wages for workers: deflated by CPI

Identifier	Equation	Subscript Range	Number	Description
$\begin{aligned} & \text { E_nalrwage_p } \\ & (2.8 .18) \end{aligned}$	natrwage_p $=$ natpwage_p \cdot natxigdp		1	Real wages for producers
$\begin{aligned} & \text { E_natxiplpk } \\ & (2.8 .18) \end{aligned}$	natxiplpk $=$ natpwage_p - natplcap		1	National movement in relative prices of labour and capital
$\begin{aligned} & \text { E_natlambda } \\ & (2.8 .19) \end{aligned}$		$m \in O C C$	8	Demand for labour by occupation
2.3. Governument Finances				
2.3.1. Disaggregation of value added				
$\begin{aligned} & \text { E_201_r } \\ & (3.8 .1) \end{aligned}$	$C_{-} Z 0 I_{-} R_{q} z 0 I_{-} r_{q}=\sum_{j \in 1 N D} C_{N} z 0 I_{-} I_{-} R_{j, q}\left(\text { labind }_{j, q}+\text { pwagci }_{j, q}\right)$	q \in R RES	8	Wages, salaries and supplements regions
$\begin{aligned} & \text { E_202_r } \\ & (3.8 .1) \end{aligned}$		q \in R DES	8	Imputed wages - regions
$\begin{aligned} & \text { E_203_r } \\ & (3.8 .1) \end{aligned}$	$C_{-} Z 03_{-} R_{q} 203_{-} r_{q}=\sum_{j \in I N D} C_{-} 203_{-} I_{-} R_{j . q}\left(r p r_{j . q}+\operatorname{labjind}_{j . q}+\text { pwage }_{j, q}\right)$	$\mathbf{q} \in$ RDES	8	Payroll taxes - regions
$\begin{aligned} & \text { E_203 } \\ & (3.8 .1) \end{aligned}$			1	Payroll taxes - national
$\begin{aligned} & \text { E_z04_r } \\ & (3.8 .1) \end{aligned}$	$\mathrm{C}_{-} \mathrm{ZO}_{_} \mathrm{R}_{\mathrm{q}} \mathrm{zO4}_{-} \mathrm{r}_{\mathrm{q}}=\sum_{\mathrm{j} \in \mathrm{IND}} \mathrm{C}_{\mathrm{Z}} \mathrm{ZO4}_{-} I_{-} \mathrm{R}_{\mathrm{j}, \mathrm{q}}\left(\text { curcap }_{\mathrm{j}, \mathrm{q}}+\text { plcap }_{\mathrm{j}, \mathrm{q}}\right)$	$q \in$ RDES	8	Returns to fixed capital - regions
$\begin{aligned} & \text { E_z05_r } \\ & (3.8 .1) \end{aligned}$		$q \in$ RDES	8	Property taxes - regions
$\begin{aligned} & \text { E_z05 } \\ & (3.8 .1) \end{aligned}$	$C_{-} Z 05205=\sum_{q \in \text { RDES }}^{\text {CC_ZOS_R }_{\text {q }}^{205} _r_{q}}$		1	Propeny laxes - national

Identifier	Equation	Subscript Range	Number	Description
$\begin{aligned} & \text { E_z06_r } \\ & (3.8 .1) \end{aligned}$	$C_{-} Z 06_{-} R_{q} 206_{-} r_{q}=\sum_{j \in I N D} c_{-} Z_{0} i_{-} R_{j, q}\left(n_{j, q}+p \text { lland } d_{j, q}\right)$	qG RDES	8	Returns to agricultural land - regions
$\begin{aligned} & \text { E_ } 207 _ \text {r } \\ & (3.8 .1) \end{aligned}$	$C_{-} z_{-} 07_{-} R_{q} z 07_{-} r_{q}=\sum_{j \in \operatorname{IND}} C_{-} Z 07_{-} I_{-} R_{j . q}\left(n_{j, q}+\text { plland }{ }_{j . q}\right)$	q \in RDES	8	Land taxes - regions
$\begin{gathered} \text { E_207 }_{(3.8 .1)} \\ \hline \end{gathered}$	$\mathrm{C}_{-} \mathrm{z07207}=\underset{\mathrm{q} \in \mathrm{RDES}}{\sum \mathrm{C}_{2} \text { Z07_R} \mathrm{R}^{207 _r_{q}}}$		1	Land taxcs - national
$\begin{aligned} & \text { E_208_r } \\ & (3.8 .1) \end{aligned}$		q \in RDES	8	Returns to working capital - regions
$\begin{aligned} & \text { E_209_r } \\ & (3.8 .1) \end{aligned}$	$C_{-} Z 09_{-} R_{q} z 09_{-} r_{q}=\sum_{j \in \mathbb{N} D} C_{-} Z 09_{-} I_{-} R_{j, q}\left(x \operatorname{loct}_{j, q}+\text { ploct }_{j, q}\right)$	qGRDES	8	Other indirect taxes - regions
$\begin{aligned} & \mathrm{E}_{2} 209 \\ & (3.8 .1) \end{aligned}$	$C_{-} Z 09 q^{209}=\sum_{q \in R D E S}^{\sum C_{-} Z 09-R_{q} 209 _r_{q}}$		1	Other indirect raxes - national
$\begin{aligned} & \text { E_z10_r } \\ & (3.8 .1) \end{aligned}$	$C_{-} Z 10_{-} R_{q} z 10_{-} r_{q}=\sum_{j \in \mathbb{N} D} C_{-} Z 10_{-} I_{-} R_{j, q}\left(\times \text { loct }_{j, q}+\text { ploct }_{j, q}\right)$	$q \in$ RDES	8	Sales by final buyers - regions
$\begin{aligned} & \text { E_2. } 210^{(3.8 .1)} \end{aligned}$	$C_{-} Z 10 z 10=\sum_{q \in R D E S}^{\sum C_{-} Z 10_{-} R_{q} z^{10}-r_{q}}$		1	Sales by final buyers - national
$\begin{aligned} & \text { E_7g_r } \\ & (3.8 .1) \end{aligned}$	$\begin{aligned} & C_{-} Z G_{-} R_{n} z g_{-} r_{n}=C_{-} Z 02_{-} R_{n} z 02_{-} r_{n}+C_{-} Z 04_{-} R_{n} z 04_{-} r_{n}+C_{-} Z 06_{-} R_{n} 706_{-} r_{n}+ \\ & C_{-} 208_{-} R_{q} 208_{-} r_{q} \end{aligned}$	$q \in$ RDES	8	Gross operating surplus - regions
$\begin{aligned} & \text { E_z_r_r } \\ & (3.8 .1) \end{aligned}$		$\mathrm{q} \in$ RDES	8	Production taxes - regions
$\begin{aligned} & \text { E_rpr }^{(3.8 .1)} \end{aligned}$		$\mathrm{j} \in \operatorname{IND}$ $q \in$ RDES	13×8	Payroll tix adjusiment

Identifier	EquationSubscript Range	Number	Description
$\begin{aligned} & \text { E_pri } \\ & \text { (3.8.1) } \end{aligned}$		13*8	Setting of payroll tix catcs
$\begin{aligned} & \text { E_xisfb2 } \\ & (3.8 .1) \end{aligned}$	$C_{-} Z 10_{-} R_{q} \times i s f b_{q}=\sum_{j \in \mathbb{N D}} C_{-Z 10_{-} l_{-} R_{j, q}{ }^{p l o c t}}^{j, q} \quad \quad q \in \text { RDES }$	8	Price index : sales by final buyers
2.3.2. Gross regional product and its components			
$\begin{aligned} & \text { E_dompy } 100 \\ & (3.8 .2) \end{aligned}$		8	Wages, salaries and supplements
$\begin{aligned} & \text { E_dompy } 120 \\ & (3.8 .2) \end{aligned}$		8	PAYE Laxes
$\begin{aligned} & \text { E_dompy } 110 \\ & (3.8 .2) \end{aligned}$		1	Disposable wage income (residual)
$\begin{aligned} & \text { E_dompy200 } \\ & (3.8 .2) \end{aligned}$	dompy $200 \mathbf{q}_{\mathbf{q}}=\mathbf{2 8 - r} \mathbf{q} \quad \mathbf{q} \in$ RDES	:	Non-wage primary factor incoune
$\begin{aligned} & \text { E_dompy220 } \\ & (3.8 .2) \end{aligned}$	dompy $220{ }_{\mathbf{q}}=$ dompy $200^{\mathbf{q}}+\mathrm{rk} \quad \mathbf{q} \in$ RDES	\%	Taxes on non - wage primary factor income
$\begin{aligned} & \text { E_dompy210 } \\ & (3.8 .2) \end{aligned}$		8	Disposable non - wage primary factor incone (residual)
$\begin{aligned} & \text { E_dompy } 310 \\ & (3.8 .2) \end{aligned}$	dompy $310_{q}=\operatorname{toxrevm}_{q} \quad \mathbf{q} \in$ RDES	8	Tariff revenue
$\begin{aligned} & \text { E_dompy } 320 \\ & (3.8 .2) \end{aligned}$		8	Other commodity taxes less subsidics
$\begin{aligned} & \text { E_dompy } 330 \\ & \text { (3.8.2) } \end{aligned}$		*	Production taxes
$\begin{aligned} & \text { E_dompy } 300 \\ & \text { (3.8.2) } \end{aligned}$	$\begin{aligned} \text { C_DOMPY } 300_{q} \text { dompy } 300_{q} & ={\text { C_DOMPY } 310_{q} \text { dompy } 310_{q}}^{q}+{\text { C_DOMPY } 320_{q} \text { dompy } 320_{q} q \in \text { RDES }} \\ & + \text { C_D }_{-} \text {DOMPY } 330_{q} \text { dompy } 330_{q} \end{aligned}$	8	Indirect taxes less subsidies

Identificr	Equation .Subscript Range	Number	Description
$\begin{aligned} & \text { E_dompy000 } \\ & \text { (3.8.2) } \end{aligned}$	$\begin{aligned} \text { C_DOMPY } 000_{q}{ }^{\text {dompy } 000_{q}} & ={\text { C_DOMPY } 100_{q} \text { dompy } 100_{q}}+{\text { C_DOMPY } 200_{q} \text { dompy } 200}_{q} q \in \text { RDES } \\ & +{\text { C_DOMPY } 300_{q}{ }^{\text {dompy } 300}}_{q} \end{aligned}$	B	GDP at market prices (income side) regions
$\begin{aligned} & \text { E_dompqI } 10 \\ & \text { (3.8.2) } \end{aligned}$	dompql10 ${ }_{\mathbf{q}}=\mathrm{c}_{\mathbf{q}} \quad \mathbf{q} \in$ RDES	8	Private consumption
$\begin{aligned} & \text { E_dompy } 120 \\ & \text { (3.8.2) } \end{aligned}$	Jompq\|20 ${ }_{\mathbf{q}}=\mathrm{in}_{\mathbf{q}} \quad \mathrm{q} \in$ RDES	8	Private investment
$\begin{aligned} & \text { E_dompq } 130 \\ & \text { (3.8.2) } \end{aligned}$	dompq $13 \mathbf{q}_{\mathbf{q}}=$ othnom $_{\mathbf{q}} \quad \mathbf{q} \in$ RDES	*	Government consumption - regions
$\begin{aligned} & \text { E_domig } 140 \\ & (3.8 .2) \end{aligned}$		8	Govermment consumption - federal
$\begin{aligned} & \text { E_dompq } 150 \\ & (3.8 .2) \end{aligned}$	dompq $150_{q}=\mathrm{in}_{\mathrm{q}} \quad$ qGRDES	8	Government investment
$\begin{aligned} & \text { E_dompq } 100 \\ & (3.8 .2) \end{aligned}$		${ }^{8}$	Domestic absorption
$\begin{aligned} & \text { E_dompq2 } 10 \\ & (3.8 .2) \end{aligned}$		8	Inter - regional exports
$\begin{aligned} & \text { E_dompq220 } \\ & \text { (3.8.2) } \end{aligned}$	$\operatorname{dompq}^{220}{ }_{q}=$ psimp $_{q}+\mathrm{xsimp}_{\mathbf{q}} \quad \mathbf{q} \in$ RDES	8	Inter - regional impors
$\begin{aligned} & \text { E_dompq200 } \\ & (3.8 .2) \end{aligned}$		8	Inter - regional trade balance
$\begin{aligned} & \text { E_dompq310 } \\ & \text { (3.8.2) } \end{aligned}$	$\text { dumpq310 }{ }_{q}=\operatorname{export}_{q}+\text { nalphii }$ $q \in$ RDES	8	International exports
$\begin{aligned} & \text { E_dompq320 } \\ & \text { (3.8.2) } \end{aligned}$	dompq $320{ }_{q}=\mathrm{imp}_{\mathrm{q}}+$ nalphi $\quad q \in$ RDES	8	International itnpors

Identifier	Equation	Subscripı Range	Number	Description
$\begin{aligned} & \text { E_dompq300 } \\ & \text { (3.8.2) } \end{aligned}$		qGRDES	8	International trade balance
$\begin{aligned} & \text { E_dompq000 } \\ & \text { (3.8.2) } \end{aligned}$		$q \in$ RDES	8	GDP at market prices (expenditure side)
2.3.3. Miscellancous cquations				
$\begin{aligned} & \text { E_tir } \\ & \text { (3.8.3) } \end{aligned}$	$\mathrm{ti}_{-} \mathrm{r}_{\mathrm{q}}=$ dompy 320^{q}	$\mathrm{q} \in$ RDES	8	Commodity taxes less subsidies (excl. tariffs)
$\begin{aligned} & \text { E_ti }_{(3.8 .3)} \end{aligned}$			1	Commodity taxes Icss subsidics (excl. tariffs)
$\begin{aligned} & \text { E_yn_r } \\ & (3.8 .3) \end{aligned}$	$\mathrm{yn}_{\mathrm{r}_{\mathrm{q}}}=$ dompq $000{ }_{q}$	q \in RDES	8	Nominal regional domestic product
$\begin{aligned} & \text { E_yn } \\ & (3.8 .3) \end{aligned}$	$C_{-} Y N y n=\sum_{q \in \text { RDES }}^{\sum C_{-} D O M P Q 000_{q} d o m p q 000_{q}}$		1	Nominal GDP
$\begin{aligned} & \text { E_xiy_r } \\ & \text { (3.8.3) } \end{aligned}$		$\mathrm{q} \in$ RDES	8	GDP deflator
$\begin{aligned} & \text { E_xiy } \\ & (3.8 .3) \end{aligned}$	$C_{-} Y N \text { xiy }=\sum_{q \in \text { RDES }}^{\sum C_{-} D O M P Q 000}{ }_{q} x^{x i y _r_{q}}$		1	GDP deflator
$\begin{aligned} & \text { E_yr_r } \\ & (3.8 .3) \end{aligned}$	$\mathrm{yr}_{-} \mathrm{r}_{\mathrm{q}}=\mathrm{yn}_{-} \mathrm{r}_{\mathrm{q}} \cdot x i y_{-} \mathrm{r}_{\mathrm{q}}$	qERDES	8	Real segional domestic product
$\begin{aligned} & \text { E_yr }_{(3.8 .3)} \end{aligned}$	$y \mathrm{y}=\mathrm{yn}-\mathrm{xiy}$		1	Real GDP

Idenifier	Equation	Subscript Range	Number	Description
			1	GDP at factor cost
$\begin{aligned} & \text { E_bstar } \\ & \text { (3.8.3) } \end{aligned}$	$\mathrm{C}_{-} \mathrm{YN} \text { bstar }=\sum_{q \in \text { RDES }}{\text { C_DOMPQ } \left.300_{q} d o m p q 300_{q}\right) \cdot \text { NATBTyn }}$		1	Balance of trade surplus to GDP: percentage - poini change
$\begin{aligned} & \text { E_ty } \\ & \text { (3.8.3) } \end{aligned}$	$C_{-} T Y T Y=\sum_{q \in \text { RDES }}^{\left.\sum C_{-} D O M P Y 120_{q} d o m p y: 20_{q}\right)+}{\underset{q \in R D E S}{ }}_{\sum C_{-} D O M P Y 220_{q} d o m p y 220_{q}}$		1	Income taxes
$\begin{aligned} & \text { E_yl }_{(3.8 .3)} \end{aligned}$	$C_{-} Y L y l=\sum_{q \in \text { RDES }}^{\sum C_{-} \text {DOMPY } 100_{q} \text { dompy } 100_{q}}$		1	Pre - tax wage income
$\begin{aligned} & \text { E_wn } \\ & (3.8 .3) \end{aligned}$	wn $=$ yl-natl		1	Nominal pre - tax wage rate
$\begin{aligned} & \text { E_ylstar } \\ & \text { (3.8.3) } \end{aligned}$	$\text { C_YLSTAR ylstar }^{=} \sum_{q \in R D E S}^{\sum C_{-}} \text {DOMPY }^{2} 10_{q} \text { dompy } 110_{q}$		1	Post - tax wage income
E_wnstar (3.8.3)	wnstar $=$ ylstar - nail		1	Nominal post - tax wage rate
E_wrstar (3.8.3)	wrslar $=$ wnstar - natxi3		1	Real post - tax wage rate
$\underset{(3.8 .6)}{\text { E_B_rA }^{2}}$	$\mathrm{g}_{-\mathrm{r}_{\mathrm{q}}}=$ othnoms $\mathbf{S}_{\mathbf{q}}$	qG RDES	8	Nominal governuent consumption regions
$\begin{aligned} & \text { E_g_rB } \\ & (3.8 .6) \end{aligned}$	$\mathrm{g}_{-\mathrm{r}} \mathrm{r}^{\text {a }}$ = natothnom 6	q=federal	1	Nominal government consumption federal
$\begin{aligned} & \text { E_ip } \\ & (3.8 .6) \end{aligned}$	$C_{-} I P i p=\sum_{q \in R D E S} C_{-} \not P_{-} R_{q}{ }^{i n} q$		1	Aggregate nominal private investment

Identifier	Equation	Subscript Range	Number	Description
$\begin{aligned} & \text { E_ig_r_reg } \\ & (3.8 .6) \end{aligned}$	$\mathrm{ig}_{-} \mathrm{r}_{\mathrm{q}}=\mathrm{in}_{\mathrm{q}}$	$q \in$ RDES	8	Nominal government investment regions
E_ig (3.8.6)	NATAGGINVnatin $=$ C_IPip + C_IGig $^{\text {l }}$			Aggregate nominal government investment (residual)
$\begin{aligned} & \text { Eig_r_fed } \\ & (3.8 .6) \end{aligned}$	$C_{-} 1 G \text { ig }=\sum_{q \in D D E S} C_{1} 1 G_{-} R_{q} \mathbf{i g}_{-} \mathbf{r q}_{\mathbf{q}}$		1	Nominal government investment federal (residual)
$\begin{aligned} & \text { E_c_b }^{2} \\ & (3.8 .6) \end{aligned}$		$\mathrm{q} \in$ RDES	8	Consumption function
$\begin{aligned} & \text { E_rl } \\ & (3.8 .6) \end{aligned}$	$\mathrm{rl}=\mathrm{rk}+$ miscf002		1	Relative income tax rates
2.3.4. Summary Of Financial Transactions: the SOFT accounts				
$\begin{aligned} & \text { E_softyl11 } \\ & (3.8 .4) \end{aligned}$	softy l $_{\text {q }}=1 \mathrm{ty}$	$\mathrm{q}=$ federal	1	Income taxes
$\begin{aligned} & \text { E_softy H2A } \\ & \text { (3.8.4) } \end{aligned}$		$\mathbf{q} \in$ RDES	8	Other direct taxes
$\begin{aligned} & \text { E_sofiy } 112 \mathrm{~B} \\ & (3.8 .4) \end{aligned}$	softy $112{ }_{q}=\mathrm{yn}+$ softroll	$\mathrm{q}=$ federal	1	Other direct taxes federal
$\begin{aligned} & \text { E_softyllo } \\ & (3.8 .4) \end{aligned}$		qEDDES	9	Direct taxes
$\begin{aligned} & \text { E_softy121 } \\ & (3.8 .4) \end{aligned}$	softy $\mathbf{2 1}_{\mathcal{Q}}=$ nattaxrevm	$\mathrm{q}=$ [ederal	1	Tariff revenue
$\begin{aligned} & \text { E_softy 122A } \\ & \text { (3.8.4) } \end{aligned}$	softy $\mathbf{1 2 2}_{q}=\mathrm{ti}_{-} \mathrm{r}_{\mathrm{q}}$	$\mathbf{q} \in$ RDES	8	Other commodity taxes - regions
$\begin{aligned} & \text { E_softy 122B } \\ & (3.8 .4) \end{aligned}$	$\text { C_TI }_{-}+\text {C_SUBSIDIES } \mathrm{t}=\sum_{q \in \text { DDES }} \sum_{\text {C_SOFTY } 122_{q}}{ }^{\text {softy } 122}{ }_{q}$		1	Other commodity taxes - federal (residual)

| Identifier | $:$ | Equation | Subscript
 Range | Number |
| :--- | :--- | :--- | :--- | :--- | (Description

Identifier	Equation	Subscript Range	Number	Description
$\begin{aligned} & \text { E_softy 150B } \\ & (3.8 .4) \end{aligned}$	softy $150{ }_{q}=\mathrm{yn}+$ sofir004 $^{\text {q }}$	$\mathbf{q}=$ federal	1	Other revenue - federal
$\begin{aligned} & \text { E_softy } 100 \\ & (3.8 .4) \end{aligned}$		$\mathrm{q} \in$ DDES	9	Government revenue
$\begin{aligned} & \text { E_softy200 } \\ & (3.8 .4) \end{aligned}$	softy $200{ }_{q}=g_{-} \mathbf{r}_{\mathbf{q}}$	$\mathrm{q} \in$ DDES	9	Consumption of fixed capital - gencral government
$\begin{aligned} & \text { E_snfly } 300 \\ & (3.8 .4) \end{aligned}$		$\mathbf{q} \in$ DDES	9	Financing transactions
$\begin{aligned} & \text { E_softy } 320 \\ & (3.8 .4) \end{aligned}$		$\mathrm{q} \in$ DDES	9	Increase in provisions
$\begin{aligned} & \text { E_softy330 } \\ & (3.8 .4) \end{aligned}$		$\boldsymbol{q} \in$ DDES	9	Other financing transactions
$\begin{aligned} & \text { E_sofiy310 } \\ & (3.8 .4) \end{aligned}$		$\mathbf{q} \in$ DDES	9	Net borrowing (residual)
$\begin{aligned} & \text { E_sofiy000 } \\ & (3.8 .4) \end{aligned}$		$\mathbf{q} \in$ DDES	9	Summary of financial transactions: income - side total
$\begin{aligned} & \text { E_sofiqito } \\ & (3.8 .4) \end{aligned}$	softal $10_{q}=\mathrm{g}_{-r_{q}}$	$4 \in$ DDES	9	Government consumption
$\begin{aligned} & \text { E_sofitq120 } \\ & (3.8 .4) \end{aligned}$	softq ${ }^{120}{ }_{\mathbf{q}}=\mathrm{ig}_{-} \mathrm{r}_{\mathbf{q}}$	$\mathrm{q} \in$ DDES	9	Government investment
$\begin{aligned} & \text { E_softqi00 } \\ & (3.8 .4) \end{aligned}$		ge DDES	9	Expenditure on goods and services
$\begin{aligned} & \text { E_softe210 } \\ & (3.8 .4) \end{aligned}$	softq2 LO $_{\text {q }}=u p b$	$\mathbf{q}=$ federal	1	Unemployment benefits

Identifier	Equation	Subscript Range	Number	Description
$\underset{(3.8 .4)}{\text { E_softq200 }}$	softq $200{ }_{q}=p b p_{-} r_{q}$	$q \in$ DDES	9	Personal bencfit payments
$\begin{aligned} & \text { E_softq220 } \\ & (3.8 .4) \end{aligned}$		q \in DDES	9	Other personal benefits (residual)
$\begin{aligned} & \text { E_sofiq300A } \\ & (3.8 .4) \end{aligned}$	softq300 ${ }_{\text {q }}=\mathrm{ti}_{-} \mathrm{r}_{\mathrm{q}}$	q \in RDES	8	Subsidies - regions
$\begin{aligned} & \text { E_sofiq300B } \\ & (3.8 .4) \end{aligned}$	$\text { C_SUBSIDIES } \mathrm{I}=\sum_{q \in \text { DDES }} . \text { C_SOFTQ }^{300_{q}}{ }^{\text {softq } 300_{q}}$.	1	Subsidies - federal (residual)
$\begin{aligned} & \text { E_softq400A } \\ & (3.8 .4) \end{aligned}$	softq400 ${ }_{q}=y^{\text {n }} __{-q}+\operatorname{softr007~}_{q}$	$\mathrm{q} \in$ RDES	8	Intercst payments - regions
$\begin{aligned} & \text { E_sofiq400B } \\ & (3.8 .4) \end{aligned}$	softq400 ${ }_{k}=\mathrm{yn}+$ softio07 $^{\text {k }}$	$\mathrm{k}=$ [ederal	1	Interest payments - Federal
$\begin{aligned} & \text { E_sofitsto } \\ & (3.8 .4) \end{aligned}$		$\mathbf{k}=$ federal	1	Commonwealth grants to regions current
$\begin{aligned} & \text { E_softty } 520 \\ & (3.8 .4) \end{aligned}$		$k=$ federal	1	Commonwealth grants to regions capital
$\begin{aligned} & \text { E_sofitg500 } \\ & (3.8 .4) \end{aligned}$		q=federal	1	Commonwealth grants to regions
$\begin{aligned} & \text { E_sofitg600 } \\ & (3.8 .4) \end{aligned}$	softq $600{ }_{q}=\operatorname{softq}^{000}{ }_{q}+\operatorname{soffto06}_{q}$	q \in DDES	${ }^{9}$	Other outlays
$\begin{aligned} & \text { E_sofig000 } \\ & (3.8 .4) \end{aligned}$		q \in DDES	9	Summary of financial transactions: expenditure - side total

Identificr	Equation	Subscript Range	Number	Description
$\begin{aligned} & \text { E_realdefr } \\ & (3.8 .4) \end{aligned}$	realdef ${ }_{q}=\operatorname{softy~}^{300}{ }_{q} \cdot \mathrm{xi3}_{q}$	$q \in$ RDES	8	Real budget deficit for region
$\begin{aligned} & \text { E_realdeff } \\ & \text { (3.8.4) } \end{aligned}$	realdef $_{q}=\operatorname{softy~}^{\mathbf{3 0 0}} \mathbf{q}^{-} \cdot$ nalxi3	q=federal	1	Real budget deficit for Fed.
$\begin{aligned} & \text { E_dGstas } \\ & (3.8 .4) \end{aligned}$		$q \in$ DDES	9	Net borsowing to total outlays: percent point change
$\begin{aligned} & \text { E_lod_r } \\ & (3.8 .4) \end{aligned}$	tod_r $_{\text {q }}=$ softy 112_{q}	q \in RDES	8	Other direct taxes
2.3.5. Household disposable income				
$\begin{aligned} & \text { E_hhldylto } \\ & (3.8 .5) \end{aligned}$	hhidy $110{ }_{\mathbf{q}}=201 _\mathrm{r}_{\mathrm{q}}$	$q \in$ RDES	8	Wages, salaries and supplements
$\begin{aligned} & \text { E_hhldy } 120 \\ & \text { (3.8.5) } \end{aligned}$	haidy $\mathbf{I 2 O}_{4}=\mathrm{zg}_{-} \mathrm{r}_{4}$	q \in R RES	8	Non - wage primary factor income
$\begin{aligned} & \text { E_hhldy } 100 \\ & \text { (3.8.5) } \end{aligned}$		qGRDES	8	Primary factor income
$\begin{aligned} & \text { E_hhldy210 } \\ & \text { (3.8.5) } \end{aligned}$		$\underline{q} \in$ RDES	8	Unemployment benefit receipls
$\begin{aligned} & \text { E_hhldy220 } \\ & (3.8 .5) \end{aligned}$		\underline{q} R RDES	8	Other personal bencfit receipts
$\begin{aligned} & \text { E_hhldy } 200 \\ & (3.8 .5) \end{aligned}$		$\mathbf{q} \in$ RDES	8	Personal benefit receipts
$\begin{aligned} & \text { E_hhldy } 300 \\ & (3.8 .5) \end{aligned}$		q \in RDES	8	Other Income (net)
$\begin{aligned} & \text { E_hhldy410 } \\ & (3.8 .5) \end{aligned}$		$\mathbf{q} \in$ RDES	8	PAYE taxes

Identifier	- Equation	Subscript Range	Number	Descriplion
$\begin{aligned} & \text { E_hhldy } 420 \\ & \text { (3.8.5) } \end{aligned}$	hhldy $42 \mathrm{q}_{\mathrm{q}}=$ hhldy $120 \mathrm{q}+\mathrm{rk}$	$q \in$ RDES	8	Taxes on non - wage primary factor income
$\begin{aligned} & \text { E_hhldy } 430 \\ & \text { (3.8.5) } \end{aligned}$	hhldy $430_{q}=$ cod_r $^{\text {q }}$	qERDES	8	Other direct taxes
$\begin{aligned} & \text { E_hhldy } 400 \\ & (3.8 .5) \end{aligned}$		qERDES	8	Direct taxes
$\begin{aligned} & \text { E_hhldy000 } \\ & \text { (3.8.5) } \end{aligned}$		q \in RDES	8	Disposable income
E.ydr (3.8.5)	$\mathrm{yd}_{-} \mathrm{r}_{\mathbf{q}}=$ hhldy $000 \mathrm{q}_{\mathrm{q}}$	$\mathrm{q} \in$ RDES	8	Disposable income
E_upb (3.8.5)	$C_{_} \text {UPB upb }=\sum_{q \in \text { RDES }}^{\sum C_{2} H H L D Y 210_{q} \text { hhldy } 210_{q}}$			Aggregate unemployment benefit payments
$\begin{aligned} & \text { E_pbp_r }_{(3.8 .5)} \end{aligned}$	pbp_rq $=$ hhldy $200{ }_{q}$	$q \in$ RDES	8	Personal benefit payments - regions
E_pbpA (3.8.5)	$\text { C_PBPpbp }=\sum_{q \in \text { RDES }}^{\sum C_{-} H H L D Y 200} \mathbf{q}^{\text {hhldy } 200_{q}}$			Aggregate personal benefit payments
E_pbpB (3.8.5)	$C_{-} \text {PBP pbp }=\sum_{q \in D D E S} C_{-} P B P_{-} R_{q} p b p_{-} r_{q}$		1	Personal benefit payments - federal (residual)
2.4. Dynamics for Forccasting				
2.4.I. Industry capital and investment				
E_yTA (4.4)		$j \in I N D$ qERDES	13×8	Investunent in period T: farecasting

Identifier	Equation	Subscripı Range	Number	Description
$\underset{(4,4)}{E_{\text {_curcap T1A }}}$	curcap_ $^{\text {t }} \mathrm{l}_{\mathrm{j} \cdot \mathrm{q}}=$ K_TERMcurcap $_{\mathrm{j}, \mathrm{q}}$	$j \in \operatorname{IND}$ $4 \in$ RDES	13×8	Capital stock in period $T+1$: forecasting
$\begin{aligned} & \mathrm{E}_{4} \mathrm{y} \text { y } \end{aligned}$	curcap $_{\mathrm{j}, \mathrm{q}}=\mathrm{y}_{\mathrm{j}, \mathrm{q}}{ }^{-}+100$ delf_rate $_{\text {j, }}$	$\mathrm{j} \in$ IND $q \in$ RDES	13×8	Investument in period T: comparative statics
$\underset{(4.4)}{\text { E_curcap TiB }^{\text {B }}}$		$j \in \operatorname{IND}$ $\mathrm{q} \in$ RDES	13×8	Capital stock in period $\mathrm{T}+\mathrm{t}$: comparative statics
$\underset{(4.4)}{\text { E_ro }}$	$\mathrm{r}_{\mathrm{j}, \mathrm{q}}=\mathrm{QCOEF}_{\mathrm{j}, 4}\left(\mathrm{ptc}^{\text {a }} \mathrm{p}_{\mathrm{j}, 4} \cdot \mathrm{pi}_{\mathrm{j}, 4}\right)$	$j \in \operatorname{IND}$ $\mathrm{q} \in$ RDES	13×8	Definition of rates of return to capital
$\underset{(4.4)}{\text { Ef_rale_ }^{\text {anx }}}$		$\mathrm{j} \in \operatorname{IND}$ $\mathbf{q} \in$ RDES	13×8	Capital growth rates related to rates of return
$\begin{aligned} & \text { E_naty } \\ & (4.4) \end{aligned}$	$\text { NATINVEST }_{\mathrm{j} \text { naly }}^{\mathrm{j}} \text { }=\sum_{\mathrm{q} \in \text { RDES }}^{\operatorname{ZINVEST}_{\mathrm{j}, \mathrm{q}} \mathrm{y}_{\mathrm{j}, \mathrm{q}}}$	$j \in I N D$	13	Total real investment
2.4.2. Accummulation of national foreign debt				
E_deldebt (5.5)	deldebl $=\{$ DEBTO(R_WORLD^PRIOD -1$)+$ B0N_DEBT $\}$ deldfudge + M_DEBTdelbt		1	Ordinary change in foreign debt
$\begin{aligned} & \text { E_delbt } \\ & (5.5) \end{aligned}$	100P_GLOBALdelbt $=$ NATAGGIMP(natimpvol) \cdot NATAGGEXP(natexpvol + natxi4 natxim)		1	Ordinary change in Real trade deficit
E_deldebl_ratio (5.5)	deldebt_ralio $=($ DEBT_RATIO/DEBT)deldebt $-($ DEBT_RATIO/100)(natgdpexp - nalxim $)$		1	Change in Deb/GDP ratio
2.5. Regional Population and Labour Market Settings				
$\underset{(6.5)}{E_{\text {_del_rm }}}$		$q \in$ RDES	8	Accumulation of regional population
$\begin{aligned} & \text { E_del_labsup } \\ & (6.5) \end{aligned}$	C_labsup $_{\text {del_unr }}^{\text {d }}$ ($=$ C_EMPLOY $_{q}\left(\right.$ labsup $_{q}-$ employ $\left._{q}\right)$	qG RDES	8	Percentage-point changes in regional uneinployment rates

Identifier	Equation	Subscript Range	Number	Description
E_wpop (6.5)	$\mathrm{labsur}_{\mathrm{q}}=\mathrm{pr}_{\mathrm{q}}+\mathrm{wpop}_{q}$	qERDES	8	Regional labour supply
$\begin{aligned} & \text { E_pop } \\ & 6.5 \end{aligned}$	w- $^{\text {POP }}{ }_{\text {q }}=$ POP $_{\text {q }}+\mathrm{f}_{-}$wpop $_{\text {q }}$	$\mathrm{q} \in$ RDES	8	Regional working age population
$\underset{(6.5)}{E_{-} m m_{2} 0}$	del_rm $_{\mathbf{q}}=$ del__ $^{\text {rm_ }} \mathbf{O}_{\mathrm{q}}+$ delf_rm_	$q \in$ RDES	8	ABS population forecasis can drive interregional migration
E_rempl_inter (6.5)	$f_{q}=\text { cimploy }_{q}+f_{-} I_{q}$	$\mathrm{q} \in$ RDES	8	Interface employment in wage-bill weights and person weights.
E_pop_interf (6.5)	qhous $_{\text {q }}=$ pop $_{\text {q }}+\mathrm{f}_{-} \mathrm{qhous}_{q}$	$q \in$ RDES	8	Interface population and householf formation.
$\begin{aligned} & \text { E_rm_addup } \\ & (6.5) \end{aligned}$	$\text { delf_rm }=\sum_{q \in \text { RDES }^{2}}^{\text {del_rm }_{q}}$		1	Adding - up condition on interregional migration.
$\begin{aligned} & \text { E_delnatfm } \\ & \text { (6.5) } \end{aligned}$	$\text { del_nalfin }=\sum_{\mathcal{q} \in \text { RDES }} \sum_{\text {del_ }}$		1	National foreign migration.
E_delnatg (6.5)	$\text { del_natg }=\sum_{\mathbf{q} \in \text { RDES }} \text { del_g }_{q}$		1	National natural population change.
$\begin{aligned} & \text { E_natiabsup } \\ & (6.5) \end{aligned}$	$C_{-} \text {NATLABSUP natlabsup }=\sum_{q \in R D E S} C_{-} \text {AABSUP }_{4} \text { labsup }_{q}$		1	National labour supply
E_natemploy (6.5)	$\text { C_NATEMPLOY natempluy }=\sum_{q \in \text { RDES }} \sum_{\text {CMPLOY }}^{q} \text { employ }_{q}$		1	National employment
$\begin{aligned} & \text { E_natunr } \\ & (6.5) \end{aligned}$	C_NATLABSUP del_natunr = C_NATEMPLOY(natlabsup \cdot natemploy)		1	Percentage-point change in national unemployment rate

Table 2.2. The MMRF Variables

Variable	Subscript Range	Number	Description
The CGE Core			
Scalar Variables			
deltax fall		1	Overall percent-point change in indirect tax rates, user I
deltax 2 ald		1	Overall percent-point change in indirect tax rates, user 2
- deltax 3		1	Overall percent-point change in indirect tax rates, user 3
deltaxall		1	Overall percent-point change in indirect tax rates, user 4
delcax5all		1	Overall percent-point change in indirect tax rates, user 5
deltax6all		1	Overall percent-point change in indirect tax rates, user 6
natc		1	Nominal total household consumption
natcaprey		1	Aggregate payments to capital
nater		1	Real household consumption
natdelb		1	Ordinary change in balance of crade
natexport		1	Foreign-currency value of exports
natexpvol		1	Export volumes
natfep		1	Economy-wide shifter of export demand curves
natf5gen		1	Overall shift term for regional "Other" demands
natf6gen		1	Overall shift term for Federal "Other" demands
natfwage		1	Overall wage shifter
natgdpexp		1	Nominal GDP from expenditure side
natgdpinc		1	Nominal GDP from income side
natgdpreal		1	Real GDP from expenditure side
natimp		1	Foreign currency value of imports
natimpvol		1	Import volumes
nutin		1	Aggregate nominal investment
natir		1	Aggregate real investment expenditure

Variable	Subscript Range	Number	Description
natkt		1	Aggregate capital stock, rental weights
nald		1	Aggregate employment, wage bill weights
nalabrev		1	Aggregate payments to labour
natlndrev		1	Aggregate payments to land
natoctrev		1	Aggregate other cost ticket payments
natothoms		1	Aggregate nominal value of regional "Other" demands
natothnom6		1	Aggregate nominal value of Federal "Other" demands
natothreal5		1	Aggregate real regional "Other" dermands
natothreal6		1	Aggregate real Federal "Other" demands
natpleap		1	Aggregate nominal capital rentals
natphi		1	Exchange rate
natpwage		1	Aggregate nominal wage paid to workers
natpwage_p		1	Aggregate nominal wage paid by producers
natrealwage		1	National consumer real wage
natrwage_p		1	National real wages for producers: deflated by GDP deflator
natrwage_w		1	National real wages for workers: deflated by CPI
nataxind		1	Aggregate revenue from all indirect taxes
nataxrev1		1	Aggregate revenue from indirect taxes on intermediate
nattaxrev2		1	Aggregate revenue from indirect taxes on investment
nattaxrev 3		1	Aggregate revenue from indirect taxes on households
nattaxrev4		1	Aggregate revenue from indirect taxes on exports
nataxrev5		1	Aggregate revenue from indirect taxes on regional "Other"
nataxrev6		1	Aggregate revenue from indirect taxes on Federal "Other"
natlaxrevm		1	Aggregate tariff revenue
nattot		1	Economy-wide terms of trade
nauxi2		1	Investment price index
naxi3		1	Consumer price index

Variable	Subscript Range	Number	Description
nutxi4		1	Exports price index
natxi5		1	Regional "Other" demands price index
natxi6		1	Federal "Other" demands price index
natxigdp		1	GDP price index, expenditure side
natuim		1	lmports price index
natximp0		1	Duty-paid imports price index
natxiplpk		1	Relative prices of labour and capital
natz_tot		1	Aggregate Output: Value-Added Weights
Vector Variables			
aggnt_feps	$s \in R S O U$	8	Price shifter on non-traditional exports
aggnt_p4r,	$s \in$ RSOU	8	Aggregate price for non-traditional exports
aggnt_x4rs	$s \in$ RSOU	8	Demand for aggregate non-traditional exports
caprev $_{4}$	q̧ RDES	8	Aggregate payments to capital
$\mathrm{c}_{\text {q }}$	¢ \in RDES	8	Nominal total household consumption
$\mathrm{cr}_{-} \mathrm{Shf}_{\mathrm{q}}$	$4 \in$ RDES	8	Regional/national consumption ratio
cr_{9}	$4 \in$ RDES	8	Real household consumption
delb_dom ${ }_{4}$	$g \in$ RDES	8	Change in interregional trade balance
delb_for_aud ${ }_{4}$	$\psi \in$ RDES	8	Change in AUD value of foreign trade balance
delb_tot ${ }_{9}$	$q \in$ RDES	8	Sum change in of domestic and foreign trade balance
deltuxdest $_{q}$	$q \in A D E S$	10	Tax shifter (percentage-point change) to all destinations including foreign and Federal
deltaxsource ${ }_{\text {s }}$	Se ASOU	9	Tax shifter (percentage-point change) by all sources (domestic and foreign)
exp_for_aud ${ }_{9}$	$q \in$ RDES	8	AUD value of foriegn exports
export ${ }_{9}$	$4 \in$ RDES	8	Foreign currency value of exports
$\operatorname{exprol}_{q}$	$q \in$ RDES	8	Export volumes
$\mathrm{f}_{5} \mathrm{gen}_{q}$	$4 \in$ RDES	8	Overall shift term for regional "Other" demands
f6gen ${ }_{\text {q }}$	qGRDES	8	Shifter, Federal "Other" demand
faggnt $\mathbf{i}_{\text {; }}$	ie NTEXP	11	Shifter by commodity for aggregate non-traditional exports
faggnt_p4rs	$s \in \mathrm{RSOU}$	8	Shifter on the price of aggregate non-traditional exports

Variable	Subscript Range	Number	Description
faggnts ${ }_{\text {s }}$	$s \in$ RSOU	8	Shifter by region for aggregate non-traditional exports
$\mathrm{fep}_{\mathrm{i}}$	ie COM	13	Price (upward) shift in export demands
$\mathrm{feq}_{\mathrm{i}}$		13	Quantity (right) shift in export demands
fwage ${ }_{4}$	qG RDES	8	Overall real wage shifter
imp_for_aud ${ }_{4}$	\underline{q} R RES	8	AUD value of imports
imp_{9}	q $¢$ RDES	8	Foreign currency value of impors
impvol $_{9}$	\underline{q} R RES	8	Import volume index
in_{9}	$9 \in$ RDes	8	Aggregate nominal investment
ir_{9}	qGRDES	8	Aggregate real investment expenditure
kg_{9}	$4 \in$ RDES	8	Aggregate capital stock, rental weights
labrev $_{4}$	$q \in$ RDES	8	Aggregate payments to labour
indrev ${ }_{4}$	qG RDES	8	Aggregate payments to land
$!_{9}$	q ¢ RDES	8	Aggregate employment- wage bill weights
luxexp ${ }_{\text {a }}$	qerdes	8	Total supermumerary household expenditure
natabind ${ }_{\text {j }}$	$j \in \operatorname{IND}$	13	Employment by Industry
natlambda ${ }_{\text {m }}$	me OCC	8	Employment in occupation M
natx0imp ${ }_{i}$	i i COM	13	Import volumes
naty ${ }_{j}$	$j \in \operatorname{IND}$	13	Capital creation by using industry
natz ${ }_{j}$	$\mathrm{j} \in \mathbb{1 N D}$	13	Activity level or value-added
octrev $_{4}$	$q \in$ RDES	8	Aggregate other cost ticket payments
othnom ${ }_{\text {q }}$	$4 \in$ RDES	8	Aggregate nominal regional "Other" demands
othnom69	$q \in$ RDES	8	Aggregate nominal Federal "Other" demand
othreal5 ${ }_{4}$	$\underline{q} \in$ RDES	8	Aggregate real regional "Other" demands
othreal6 ${ }_{4}$	$q \in$ RDES	8	Aggregate real Federal "Other" demand
$\mathrm{pm} \mathrm{m}_{\text {i }}$; $\mathrm{CCOM}^{\text {c }}$	13	C.I.F. foreign currency import prices
powtaxm;	i COM	13	Power of tariffs
psexps	$s \in$ RSOU	8	Price indices for interregional expors
$\mathrm{psimp}_{\text {q }}$	$4 \in$ RDES	8	Price indices for interregional imports
pwage ${ }_{4}$	$Q \in$ RDES	8	Region-wide nominal wage received by workers
pwage_Pq	$4 \in$ RDES	8	Region-wide nominal wage paid by producers

Variable	Subscript Range	Number	Description
qhous ${ }_{\text {Q }}$	qERDES	8	Number of households
realwage_w ${ }_{9}$	$4 \in$ RDES	8	Real wages for workers: deflated by CPI
reulwage_P ${ }_{\text {q }}$	\underline{q} RDES	8	Real wages for producers: deflated by the GDP deflator
reg_plcap ${ }_{\text {¢ }}$	$\underline{q} \in$ RDES	8	Regional rental price of capital
totdom ${ }_{\text {q }}$	$4 \in$ RDES	8	Domestic terms of trade
lotfor $_{9}$	$q \in$ RDES	8	Foreign terms of trade
$\mathrm{rO}_{-10 \mathrm{Co}_{4}}$	$4 \in$ RDES	8	Regional aggregate rate of return
tuxind ${ }_{4}$	$q \in$ RDES	8	Aggregate revenue from all indirect taxes
taxrev1 $_{\text {q }}$	$q \in$ RDES	8	Aggregate revenue, indirect taxes on intermediate
tuxrev2 ${ }_{9}$	$q \in$ RDES	8	Aggregate revenue, indirect taxes on investment
Lexrev 3_{9}	q ¢ RDES	8	Aggregate revenue, indirect taxes on households
Luxrev4;	$s \in$ RSOU	8	Aggregate revenue, indirect taxes on foreign exports
taxrev5 $_{\text {q }}$	$4 \in$ RDES	8	Aggregate revenue, indirect taxes on regional "Other"
taxrev_{9}	qERDES	8	Aggregate revenue, indirect tax on Federal "Other"
taxrevm $_{4}$	qeRDES	8	Aggregate taiff revenue
utility ${ }_{\text {¢ }}$	q E RDEs	8	Utility per household
wage_diff ${ }_{q}$	q $¢$ RDES	8	Regional real wage differential
xim_{4}	$q \in$ RDES	8	Impors price index
ximpo ${ }_{\text {q }}$	q ERDES	8	Duty-paid imports price index
xiplpk $_{q}$	$4 \in$ RDES	8	Index of relative price of labour and capital
$x^{\text {xi }}$ - r_{4}	$\underline{q} \in$ RDES	8	Regional GDP deflator
$\mathrm{xi2}_{9}$	q 6 RDES	8	Investment price index
xi_{4}	q ¢ RDES	8	Consumer price index
XiH_{4}	q¢ RDES	8	Exports Price Index
xis ${ }_{9}$	$4 \in$ RDES	8	Regional "Other" demands price index
xif_{9}	$q \in$ RDES	8	Federal "Other" demands price index
xsexp,	$s \in$ RSOU	8	Exports volume in interregional trade
xsimp_{4}	$q \in$ RDES	8	tmports volume in interregional trade
$\mathrm{z}_{-} 10 \mathrm{C}_{9}$	$\underline{q} \in$ RDES	8	Aggregate output: Value-added weights

Variable	Subscript Number Range	Description

Matrix Variables

alcap $_{\mathrm{jq}}$	$j \in 1 \mathrm{ND}$ $q \in$ RDES	13×8	Capital augmenting technical change
al_{j-q}	$j \in I N D$ $q \in$ RDES	13×8	All input augmenting technical change
$a^{\prime l l a b_{j q}}$	$j \in I N D$ $q \in \operatorname{RDES}$	13×8	Labor augmenting technical change
$\mathrm{alland}_{\mathrm{jq}}$	$j \in \operatorname{IND}$ $q \in$ RDES	13×8	Land augmenting technical change
$\operatorname{aloct}_{j-9}$	$j \in 1, \mathrm{DD}$ qE RDES	13×8	Other cost ticket techncal change
$\mathrm{al}^{\text {prim }}{ }^{\text {jq }}$	$\mathrm{j} \in$ IND $\mathrm{q} \in \mathrm{RDES}$	13×8	All primary factor technical change
$\mathrm{a}^{2} \mathrm{ind}_{j q}$	$\mathrm{j} \in \mathrm{IND}$ $q \in$ RDES	13×8	Technical change in capital creation
a3 $\mathrm{com}_{\text {i4 }}$	i CCOM q \in RDES	13×8	Change in household tastes
$\mathrm{a}_{\text {a }} \mathrm{lux}_{\text {iq }}$	$i \in \operatorname{COM}$ q \in RDES	13×8	Change in household tastes, Juxury
$\mathrm{a}_{3} \mathrm{sub}_{\text {ia }}$	$i \in C O M$ $\mathrm{q} \in$ RDES	13×8	Change in household taste, subsistence
a_{39}	$\mathrm{j} \in \operatorname{RD}$ q€ RDES	13×8	Average of technical change terms in production
$\operatorname{arpri}_{j q}$	$j \in \operatorname{IND}$ $4 \in$ RDES	13×8	Payroll tax adjustment factor
curcap $_{14}$	$j \in \operatorname{IND}$ $4 \in$ RDES	13×8	Current capital stock
	$i \in \operatorname{COM}$ $s \in$ ASOU $j \in \operatorname{IND}$ $4 \in$ RDES	$13 \times 10 \times 13 \times 8$	Percentage-point change in tax rate on sales of intermediate inputs
deltax ${ }^{\text {i, }, \text { j, } / .9}$	$i \in \operatorname{COM}$ $\leq \in$ ASOU $\mathrm{j} \in \operatorname{IND}$ $\mathrm{q} \in$ RDES	$13 \times 10 \times 13 \times 8$	Percentage-point change in tax rate on sales for capital creation

- Variable	Subscript Range	Number	Description
deltax ${ }_{\text {is, }}$	$i \in \operatorname{COM}$ $s \in$ ASOU $q \in$ RDES	$13 \times 10 \times 8$	Percentage-point change in tax rate on sales to households
deltax is $^{\text {a }}$	$i \in \mathrm{COM}$ $s \in$ RSOU	13×8	Percentage-point change in export tax rates
deltur $5_{1 \times-4}$	$i \in C O M$ $\mathbf{s} \in \mathrm{ASOU}$ $4 \in$ RDES	$13 \times 10 \times 8$	Percentage-point change in tax rate on sales to regional "Other" demand
detax $6_{1, \times, 9}$	$i \in \operatorname{COM}$ se ASOU $\mathrm{q} \in$ RDES	$13 \times 9 \times 8$	Percent-point change in sales tax rate, Federal govemment demands
delcux	$i \in C O M$	13	Percentage-point change in the general sales tax rate
efflab $_{j, q}$	$j \in \operatorname{lnD}$ $\mathrm{q} \in$ RDES	13×8	Effective labour input
floct_{j-q}	$j \in \operatorname{IND}$ $q \in$ RDES	13×8	Shifters, other cost tickets
$\mathrm{fSa}_{\text {ix, }}$	$i \in \operatorname{COM}$ $s \in$ ASOU $\mathrm{q} \in$ RDES	$13 \times 10 \times 8$	Shift in regional "Other" demands
$\mathrm{f6a}_{\mathrm{is,a}}$	$i \in C O M$ $s \in$ ASOU $q \in$ RDES	$13 \times 9 \times 8$	Shift, Federal "Other" demand
faggnt_is ${ }_{\text {i.s }}$	$i \in$ NTEXP $s \in$ RSOU	11×8	Commodity and source shifter for non-traditional exports
frPRi_{j}	$j \in \operatorname{IND}$ $\mathrm{q} \in$ RDES	13×8	Payroll tax rate shifter
fuagei $_{\text {j. }}$	$j \in \operatorname{IND}$ $\mathrm{q} \in$ RDES	13×8	Industry-specific wage shifter
kibind $^{\text {J }}$	$j \in \operatorname{ND}$ $\mathrm{q} \in$ RDES	13×8	Employment by industry
lambda $_{\text {maq }}$	$m \in O C C$ $4 \in$ RDES	8×8	Employment by occupation
$n_{j q}$	$\mathrm{j} \in \mathrm{IND}$ $\mathrm{q} \in \mathrm{RDES}$	13×8	Use of land
$\mathrm{pO}_{3}{ }_{\text {s }}$	$\begin{aligned} & i \in \operatorname{COM} \\ & s \in \mathrm{ASOU} \end{aligned}$	13×10	Basic price of good i , source s

Variable	Subscript Range	Number	Description
$\mathrm{pla}_{\mathrm{i} \times, \mathrm{j}, \mathrm{q}}$	$i \in \operatorname{COM}$ $s \in$ ASOU je ind $q \in$ RDES	$13 \times 10 \times 13 \times 8$	Prices of inputs for current production
pleap $_{19}$	$j \in \operatorname{lND}$ $\mathrm{q} \in$ RDES	13×8	Rental price of capital
$\mathrm{plc}_{i j, q}$	$\begin{aligned} & i \in \operatorname{COM} \\ & j \in \operatorname{IND} \\ & q \in \operatorname{RDES} \end{aligned}$	$13 \times 13 \times 8$	Prices of domestic composite inputs for current production
plab $_{\text {j, }}$ ¢	$\mathrm{j} \in \mathbb{N} \mathrm{N}$ $q \in$ RDES	13×8	Price of labour
pllaboi $_{\text {ja,m }}$	jeIND $q \in$ RDES me OCC	$13 \times 8 \times 8$	Wage of occupation type min industry j
plland $_{1.9}$	$\underset{q \in \operatorname{RDES}}{j \in \operatorname{IND}}$	13×8	Rental price of land
$\mathrm{ploct}_{\text {jp }}$	$\mathrm{j} \in \operatorname{IND}$ $q \in$ RDES	13×8	Price of other cost tickets
$\mathrm{plo}_{\mathrm{ij}, \mathrm{q}}$	$\begin{aligned} & i \in \operatorname{COM} \\ & j \in \operatorname{ND} \\ & q \in \mathrm{RDES} \end{aligned}$	$13 \times 13 \times 8$	Price, domestic/foreign composite inputs for current production
$\underline{p 2} \mathrm{a}_{\mathrm{isj}, \mathrm{j}}$	$i \in \operatorname{COM}$ $s \in$ ASOU $j \in \operatorname{IND}$ q \in RDES	$13 \times 10 \times 13 \times 8$	Prices of inputs for capital creation
$p 2 c_{i, j, q}$	$\begin{aligned} & i \in \operatorname{COM} \\ & j \in \mathbb{I N D} \\ & q \in \operatorname{RDES} \end{aligned}$	$13 \times 13 \times 8$	Prices of domestic composite inputs for capital creation
$\mathrm{p} 2 \mathrm{o}_{\mathrm{ij,4}}$	$\begin{aligned} & i \in \operatorname{COM} \\ & j \in \operatorname{IND} \\ & q \in \operatorname{RDES} \end{aligned}$	$13 \times 13 \times 8$	Price, domestic/foreign composite inputs for capital creation
$p 33_{i s, 9}$	$\begin{aligned} & i \in \operatorname{COM} \\ & s \in \operatorname{ASOU} \\ & q \in \text { RDES } \end{aligned}$	$13 \times 10 \times 8$	Purchasers prices by commodities and source for households
$\mathrm{pl}_{\text {in }}$	i \in COM $q \in$ RDES	13×8	Prices of domestic composite inputs for households

Variable	Subscript Range	Number	Description
$\mathrm{p} 3 \mathrm{o}_{\mathrm{i} .4}$	$i \in C O M$ $\mathbf{q} \in$ RDES	13×8.	Price. domestic/foreign composite inputs for households
p4r L, ,	$\begin{aligned} & i \in \operatorname{COM} \\ & s \in R S O U \end{aligned}$	13×8	F.O.B. foreign currency expon prices
	$i \in \operatorname{COM}$ $s \in$ ASOU $q \in$ RDES	$13 \times 10 \times 8$	Purchasers' prices for commodities (by source) by regional "Other"
$p 63_{i \times q}$	$i \in \operatorname{COM}$ $s \in$ ASOU $\mathrm{q} \in$ RDES	$13 \times 10 \times 8$	Purchasers' prices paid for commodities by Federal "Other"
$\mathrm{Pi}_{\text {jq }}$	$j \in \operatorname{IND}$ $\mathrm{q} \in$ RDES	13×8	Costs of units of capital
$\mathrm{psfl}_{\text {s, }}$	$s \in$ RSOU $q \in$ RDES	8×8	Price indices in interregional trade flows
pwagei $_{\text {j, }}$	$j \in \operatorname{IND}$ $\mathrm{q} \in \mathrm{RDES}$	13×8	Nominal wage rates
$\mathrm{rO}_{j, 9}$	$j \in \operatorname{lND}$ q \in RDES	13×8	Current rates of retum on capital
pri_{j-q}	$j \in \operatorname{IND}$ $\mathrm{q} \in \mathrm{RDES}$	13×8	Payroll tax rate (in per cent)
	$i \in \operatorname{COM}$ $q \in \operatorname{RDES}$	13×8	Import volumes
$\mathrm{xlin}_{\mathrm{is}, \mathrm{jq}}$	$i \in \operatorname{COM}$ $s \in A S O U$ $\mathrm{j} \in \mathrm{N} \mathrm{N}$ $4 \in$ RDES	$13 \times 10 \times 13 \times 8$	Demands for inputs for current production
$\mathrm{xlc}_{i j, \mathrm{q}}$	$\begin{aligned} & i \in \operatorname{COM} \\ & j \in \operatorname{IND} \\ & q \in \text { RDES } \end{aligned}$	$13 \times 13 \times 8$	Demands for domestic composite inputs for current production
x llaboi ${ }_{\text {ja, m }}$	$j \in \operatorname{IND}$ qERDES $\mathrm{m} \in \mathrm{OCC}$	$13 \times 8 \times 8$	Employment of occupation type min industry j
x marg $_{1, \times, j 98}$	$\begin{aligned} & i \in C O M \\ & s \in A S O U \\ & j \in \operatorname{lND} \\ & q \in \text { RDES } \\ & r \in \text { MARG } \end{aligned}$	$\begin{gathered} 13 \times 10 \times 13 \times 8 \\ \times 2 \end{gathered}$	Margins - current production

Variable	Subscript Range	Number	Description
${ }^{\times 10 c t}{ }_{j 4}$		13×8	Demand for other cost tickets
	$q \in$ RDES		
$\times 100_{1,99}$		$13 \times 13 \times 8$	Demands for domestic/foriegn composite inputs for
	je IND		current production
	$\underline{q} \in$ RDES		
$\mathrm{x}_{\text {¢ }}^{\text {prim }}{ }_{\text {J, }}$	$j \in \operatorname{IND}$	13×8	Demand for primary factor composite
	qE RDES		
$\times 2 \mathrm{a}_{\mathrm{i}, \mathrm{j}, \mathrm{g}}$	$i \in \operatorname{COM}$	$13 \times 10 \times 13 \times 8$	Demands for inputs for capital creation
	$s \in$ ASOU		
	je IND		
	$q \in$ RDES		
$\times 2 \mathrm{c}_{\mathrm{ij,}, ~}$	i¢ COM	$13 \times 13 \times 8$	Demands for domestic composite inputs for capital
	$\mathrm{j} \in \mathrm{IND}$		creation
	qG RDES		
$\times 2$ marg $_{\text {is, }{ }_{\text {dar }}}$	$i \in \mathrm{COM}$	$13 \times 10 \times 13 \times 8$	Margins - capital creation
	$s \in$ ASOU	$\times 2$	
	$j \in \mathbb{N D}$		
	$\underline{q} \in$ RDES		
	$r \in$ MARG		
$\times 20_{1, j, 9}$	$\begin{aligned} & i \in \operatorname{COM} \\ & j \in \mathbb{I N D} \end{aligned}$	$13 \times 13 \times 8$	Demands for domestic/foriegn composite inputs for capital creation
	$q \in$ RDES		
${ }^{3} 3 \mathrm{i}_{\mathrm{ixa}}$	ic COM	$13 \times 10 \times 8$	Household dernand for goods
	$s \in$ ASOU		
	qERDES		
${ }^{33} c_{i, 9}$	ieCOM	13×8	Demands for domestic composite inputs for households
	Y¢RDES		
$\times 3$ marg ${ }_{\text {is.as }}$	$\boldsymbol{i} \in \operatorname{COM}$	$13 \times 10 \times 8 \times 2$	Margins - on sales to households
	$s \in$ ASOU		
	qe RDEs		
	$r \in$ MARG		
$\times 30{ }_{\text {L9 }}$	$i \in \operatorname{COM}$	13×8	Demands for domestic/foriegn composite inputs for
	$q \in$ RDES		households
$x 4$ marg $_{\text {is, }}$	$\mathrm{i} \in \mathrm{COM}$	$13 \times 8 \times 2$	Margins - on exports
	$s \in$ RSOU		
	$r \in$ MARG		

Variable	Subscript Range	Number	Description
$\mathrm{x}^{4} \mathrm{r}_{\mathrm{i}, \mathrm{x}}$	$i \in \mathrm{COM}$	13×8	Export volumes
	$s \in$ RSOU		
$x 5 a_{1 \times .9}$	$\mathrm{i} \in \mathrm{COM}$	$13 \times 10 \times 8$	Regional "Other" demands
	$s \in A S O U$		
	$q \in$ RDES		
		$13 \times 10 \times 8 \times 2$	Margins - regional "Other"
	$s \in$ ASOU		
	q \in RDES		
	reMARG		
$\times 6 a_{1 \times 9}$	i \in COM	$13 \times 10 \times 8$	Federal "Other" demands in each region
	seASOU		
	qERDES		
	$\mathrm{i} \in \mathrm{COM}$	$13 \times 10 \times 8 \times 2$	Margins - on sales to Federal "Other" demand
	$s \in$ ASOU		
	$\mathrm{q} \in$ RDES		
	$r \in$ MARG		
$x i_{-} \mathrm{fac}_{j-q}$	$j \in I N D$	13×8	Index of factor costs
	q (RDES		
xiplpk_ind $_{\text {¢9 }}$	$\mathrm{j} \in \mathrm{IND}$	13×8	Index of ratio of price of labour to price of capital
	$\underline{q} \in$ RDES		
$\mathrm{xsfl}_{\text {\&q }}$	$s \in$ RSOU	8×8	Volume of inter and intraregional trade flows
	q¢RDES		
$y_{j, q}$	$j \in I N D$	13×8	Capital creation by using industry
	q \in RDES		
$z_{j, 9}$	$\mathrm{j} \in \mathrm{IND}$	13×8	Activiry level or value-added
	q \in RDES		
Government Finances			
Scalar Variables			
bstar		1	Balance of trade surplus as percentage of GDP
is		1	Nominal govemment investment
ip		1	Nominal private investment
miscf002		1	Shift variable : relaive income tax rates
pbp		1	Personal benefit payments
-		1	Tax rate - wages, salaries and supplements
rk		1	Tax rate - non-wage primary factor income

Variable	Subscript Range	Number	Description
soft011		1	Shifter for Federal collection of other indirect taxes
d		1	Commodity taxes less subsidies (excl tariffs)
19		1	Income taxes
upb		1	Unemployment benefits
wn		1	Nominal pre-tax wage rate
wnstar		1	Nominal post-tax wage rate
wrstar		1	Real post-tax wage rate
xiy		1	GDP deflator
yf		1	GDP at factor cost
$y{ }^{\text {d }}$		1	Pre-tax wage income
ylsar		1	Post-tax wage income
yn		1	Nominal GDP
yr		1	Real GDP
203		1	Payroll taxes
$z 05$		1	Property taxes
z07		1	Land taxes
209		1	Other indirect taxes
210		1	Sales by final buyers
Vector Variables			
$\mathrm{dgsenra}_{\mathrm{q}}$	$4 \in$ DDES	9	Government net borrowing/total outlays
deblg $_{9}$	qe DDES	9	Govemment debt
$8-r_{4}$	$4 \in$ DDES	9	Government consumption
$\mathrm{ig-r}_{4}$	$4 \in$ DDES	9	Govemment investment
libsup $_{9}$	qeRDES	8	Labour supply
Pbp_ra	$\underline{q} \in$ DDES	9	Personal benefit payments
rpr_{9}	q \in RDES	8	payroll tax rate
Cis_{\sim}	qe RDES	8	Commodity taxes less subsidies (excl tarifs)
1od_ra	qE RDES	8	Other direct taxes
xisfb ${ }_{\text {q }}$	q¢ RDES	8	price index : sales by final buyers
$\mathrm{yn}_{-9} \mathrm{q}_{\text {d }}$	$4 \in$ RDES	8	Nominal GSP - regions
$\mathrm{yr}_{-\mathrm{r}_{\text {q }}}$	$4 \in$ RDES	8	Real GSP - regions

Variable	Subscript Range	Number	Description
yd_r r_{q}	$q \in$ RDES	8	Household disposable income
$201-5_{9}$	qeRDES	8	Wages, salaries and supplements
${ }_{202}{ }_{-1} \mathrm{r}_{9}$	$4 \in$ RDES	8	Imputed wages
$203-\mathrm{r}_{9}$	$\underline{q} \in$ RDES	8	Payroll taxes
204 - q_{4}	$q \in$ RDES	8	Retums to fixed capital
${ }^{205} \mathbf{- r}_{\mathbf{q}}$	$\underline{4}$ ¢ RDES	8	Property taxes
${ }^{2006-5}$	$\mathrm{q} \in$ RDES	8	Retums to agricultural land
$\mathrm{zOO}_{-\mathrm{r}_{4}}$	$4 \in$ RDES	8	Land taxes
${ }^{208} 8_{-r_{4}}$	\underline{q} R RES	8	Returns to working capital
$\mathrm{zOO}_{-\mathrm{r}_{4}}$	qGRDES	8	Other indirect maxes
$210{ }_{\text {d }}^{4}$	qERDES	8	Sales by final buyers
${ }^{28} \mathrm{r}_{\mathrm{r}_{9}}$	qeRDES	8	Gross operating surplus
$\mathrm{Zi}_{-\mathrm{r}_{9}}$	q $¢$ RDES	8	Production taxes
dompy $000{ }_{9}$	$4 \in$ RDES	8	GSP at market prices (income side)
dompy $10{ }_{9}$	$4 \in$ RDES	8	Wages, salaries and supplements
dompy 110	qERDES	8	Disposable wage income
dompy $12 \mathrm{C}_{4}$	q ¢ RDES	8	PAYE taxes
dompy $200{ }_{4}$	$\underline{4} \in$ RDES	8	GOS : non-wage primary factor income
dompy 210_{4}	$4 \in$ RDES	8	Disposable non-wage primary factor income
dompy $22 \mathrm{O}_{4}$	qerdes	8	Taxes on non-wage primary factor income
dompy $300{ }_{\text {q }}$	$q \in$ RDES	8	Indirect taxes less subsidies
dompy 310_{9}	$\underline{4}$ R RDES	8	Tariff revenue
dompy $320{ }_{9}$	$4 \in$ RDES	8	Other commodity taxes less subsidies
dompy $330{ }_{\text {q }}$	$4 \in$ RDES	8	Production taxes
dompg $0^{000} 4$	$4 \in$ RDES	8	GSP at market prices (expenditure side)
dompq $100{ }_{9}$	$4 \in$ RDES	8	Domestic absorption
dompq 110	\underline{y} ¢ RDES	8	Private consumption
dompq $120{ }_{4}$	$q \in$ RDES	8	Private investment
dompq $130{ }_{4}$	$4 \in$ RDES	8	Govemment consumption - regions
dompq $140{ }_{9}$	$q \in$ RDES	8	Government consumption - federal
dompa 150	$\mathrm{q} \in$ RDES	8	Government investment

Variable	Subscript Range	Number	Description
dompq $200{ }_{9}$	qERDES	8	Interregional trade balance
dompq $2100^{\text {a }}$	$q \in$ RDES	8	Interregional exports
dompq 2200_{4}	q \in RDES	8	Interregional imports
dompq $300{ }_{9}$	$\mathrm{q} \in$ RDES	8	International trade balance
dompq $310{ }_{9}$	$\mathrm{q} \in$ RDES	8	Intemational exports
dompq 3209	qGRDES	8	Intemational imports
softy $000{ }_{8}$	$\mathbf{q} \in$ DDES	9	SOFT : income side total
softy $100{ }_{q}$	q DDES	9	Govermment revenue
softylloq	qEDDES	9	Direct taxes
softyllia	$\mathrm{q} \in$ DDES	9	Income taxes
softy 112	$q \in$ DDES	9	Other direct taxes
softy 120	$\mathrm{g} \in \mathrm{DDES}$	9	Indirect taxes
softy $121{ }_{q}$	qE DDES	9	Tariff revenue
softy $122{ }_{\text {q }}$	$q \in$ DDES	9	Other commodity taxes
softyl23 ${ }_{\text {q }}$	$q \in$ DDES	9	Payroll taxes
softy $124_{\text {q }}$	q $¢$ DDES	9	Property taxes
softy $12 S_{q}$	$\mathrm{q} \in$ DDES	9	Land taxes
sofiy $126^{\text {q }}$	$\mathrm{q} \in$ DDES	9	Other indirect taxes
softy 1309	q EDDES	9	Interest received
softy 140	qE DDES	9	Commonwealth grants to regions
softy $141{ }_{\text {q }}$	$\mathrm{q} \in$ DDES	9	Current grants
softy $142{ }_{\text {q }}$	q \in DDES	9	Capital grants
softy $150{ }_{q}$	$q \in$ DDES	9	Other revenue
softy $200{ }_{q}$	q \in DDES	9	Consumption of fixed capital - general government
softy $300{ }_{9}$	q $¢$ DDES	9	Financing transactions
softy 310	$\mathrm{q} \in$ DDES	9	Net borrowing
softy $320{ }_{4}$	q DDES $^{\text {d }}$	9	Increase in provisions
softy 330	$q \in$ DDES	9	Other financing transactions
$\mathrm{f}_{-} \mathrm{ft}_{4}$	$\mathrm{q} \in \mathrm{DDES}$	9	Other financing transactions shifter
realdef ${ }_{q}$	q $¢$ DDES	9	Real govemment budget deficit
softq ${ }^{-000}{ }_{4}$	$q \in$ DDES	9	SOFT: expenditure side total

Variable	Subscript Range	Number	Description
softql00 ${ }_{9}$	4, DDES	9	Expenditure on goods and services
softql 10	ye DDES	9	Government consumption
softql20	$q \in$ DDES	9	Government investment
softq $200{ }_{q}$	$q \in$ DDES	9	Personal benefit payments
softq 210	$4 \in$ DDES	9	Unemployment benefits
$\operatorname{softg} 220{ }_{4}$	$\downarrow \in$ DDES	9	Other personal benefits
$\operatorname{softq300}$	4 ¢ DDES	9	Subsidies
softq400 ${ }_{4}$	qE DDES	9	Interest payments
softq ${ }^{\text {S }} \mathrm{CO}_{\text {q }}$	qe DDES	9	Commonwealth grants to regions
softq510	$q \in$ DDES	9	Current grants
softq520	$q \in$ DDES	9	Capital grants
softq $600{ }_{q}$	$4 \in$ DDES	9	Other outlays
softf001 ${ }_{\text {q }}$	$4 \in$ RDES	8	Shift variable: other direct taxes
softf002 ${ }_{\text {q }}$	$4 \in$ RDES	8	Shift variable : current Commonwealth grants
softo03 ${ }_{q}$	q \in RDES	8	Shift variable : capital Commonwealth grants
Soff004 ${ }_{q}$	$4 \in$ DDES	9	Shift variable : other revenue
softroos ${ }_{4}$	q ¢ DDES	9	Shift variable : increase in provisions
softtoos ${ }_{4}$	$4 \in$ DDES	9	Shift variable : other outlays
softf007 ${ }_{4}$	$q \in$ DDES	9	Shift variable: govemment debt
hhldy $000{ }_{q}$	$4 \in$ RDES	8	Disposable income
hildy 100	Y \in RDES	8	Primary factor income
hhldy 110	$q \in$ RDES	8	Wages, salaries and supplements
thildy $120{ }_{4}$	$q \in$ RDES	8	Non-wage primary factor income
hludy $200{ }_{4}$	qe RDES	8	Personal benefit receipts
hhidy $210{ }_{9}$	Y 4 RDES	8	Unemployment benefits
hhldy 220	$4 \in$ RDES	8	Other personal benefits
hhldy 300	$q \in$ RDES	8	Other income (net)
hhldy 4009	$q \in$ RDES	8	Direct taxes
hhldy 410	$4 \in$ RDES	8	PAYE taxes
hhldy $420{ }_{9}$	$4 \in$ RDES	8	Taxes on non-wage primary factor income
hhldy $430^{\text {q }}$	$4 \in$ RDES	8	Other direct taxes

Variable	Subscript Range	Number	Description
hhldrion ${ }_{9}$	q€ RDES	8	Shift variable : unemployment benefits
hhldr $002{ }_{9}$	qe RDES	8	Shift variable : other personal benefits
hhldr003 ${ }_{9}$	$4 \in$ RDES	8	Shift variable : other income (net) - hholds
miscf001 ${ }_{4}$	$\mathrm{q} \in$ RDES	8	Shift variable : consumption function
Investment-Capital Accumulation			
Scalar Variables			
delkfudge		I	Dummy variable to switch on capital accumulation equation
natr_tol		1	Average rate of return
Matrix Variables			
delf_rate $_{\text {j, }}$	$\mathrm{j} \in \mathrm{IND}$ $q \in$ RDES	13×8	A change shifter in capital accumulation equation
$\mathrm{f}_{\text {_rate_x }} \mathrm{j}_{\text {jq }}$	$j \in$ IND $q \in$ RDES	13×8	Shifter. rate of return equation
curcap_ ${ }^{\text {l }}{ }_{\text {ja }}$	$j \in \operatorname{iND}$ $4 \in$ RDES	13×8	Capital stock in period $\mathrm{T}+1$

National Foreign Debr

deldfudge	I	Dummy variable in equation E_delDebt
dellbt	I	Ordinary change in Real trade deficit
deldebt_ratio	I	Change in Debt/GDP ratio
deldebt	1	Ordinary change in foreign debt

Regional Population and Labour Markets
Scalar Variables

del_natfm	1	Ordinary change in national net foreign migration. del_natg
Ordinary change in national net natural population.		
del_natunr	1	Percentage-point change in the national unemployment rate
delf_rm	1	Shift variable in equation E_rm_addup
delf_m_0	1	Shift variable in equation E_rn_0
natlabsup	1	National labour supply.
natemploy		National employment.

Variable	Subscript Range	Number	Description
Vector Variables			
del_fm ${ }_{\text {a }}$	$4 \in$ RDES	8	Ordinary change in regional net foreign migration.
del g_{9}	\underline{q} R RDES	8	Ordinary change in regional net natural population.
del_m m_{9}	$4 \in$ RDES	8	Ordinary change in net interregional migration.
del_m_09	$\mathrm{q} \in$ RDES	8	Exogenous forecast of interregional migration
delipfudge ${ }_{4}$	$q \in$ RDES	8	Dummy variable in equation E_del_m.
del_unt ${ }_{9}$	qERDES	8	Percentage-point change in regional unemploy rate
employ_{9}	q \in RDES	8	Regional employment: persons.
f_{-1}	$q \in$ RDES	8	Shift variable in equation E_remploy_interf.
$\mathrm{f}_{-} \mathrm{POP}_{4}$	$\mathrm{q} \in$ RDES	8	Shift variable in equation E_del_rm.
$\mathrm{f}_{\text {-wpop }}^{4}$	qGRDES	8	Shift variable in equation $\mathrm{E}_{\text {-wpop }}$
$\mathrm{f}_{\text {_q }}$ hous $_{9}$	$\underline{q} \in$ RDES	8	Shift variable in equation E_pop_interf
POP_{4}	q ¢ RDES	8	Regional population
$\mathrm{pr}_{\mathbf{q}}$	$q \in$ RDES	8	Regional workforce participation rate
wpOP_{q}	$4 \in$ RDES	8	Regional population of working age

Table 2.3. The MMRF Coefficients and Parameters

Coefficient	Description	Value
$\sigma 1 C_{i}$	Elasticity of substitution between regional sources of goodi i for use as an input in production.	Arbitrarity set at five times the value of the elasticity of substintion between domestic goods and foreign impored goods:
S1A $\mathrm{i}_{\mathrm{i}, \mathrm{j} .9}$	Share of purchasers-price value of good i from regional sources in industry j in region q s total purchases of good ifrom domestic sources for use in production	The numerator of this share. for the $\mathrm{isjg}{ }^{\text {th }}$ element ($s \neq 9$), is the sum of the corresponding elements of the BASI, MAR1 and TAX1 matrices. The denominator is the sum, over the 8 s regional sources (i.e., for all $s ; s \neq 9$). of the sum of the isjq ${ }^{\text {th }}$ elements of BAS1, MARI and TAXI.
-10,	Elasticity of substitution between domestic composite and foreign import of good i for use as an input in production.	Econometric estimate from MONASH model.
PVALIO $_{\text {i, }, 4}$	Purchaser's value of domestic composite and foreign import of good : as an input the jq ${ }^{\text {th }}$ industry's production.	The ijg ${ }^{\text {th }}$ value is the sum, over the 9 (all domestic plus foreign) sources, of the sum of the isjg ${ }^{\text {th }}$ elements of BASI, MARI and TAXI.
	Purchuser's value of good i from the $s^{\text {th }}$ source ($s=1, \ldots, 9$) as an input in the $\mathrm{jq}^{\text {th }}$ industry's production.	The isjq ${ }^{\text {th }}$ value $(s=1 \ldots . . .9$) is the sum of the corresponding elements of the BASI. MARI and TAX1 matrices. Dividing by PVALIO. forms the share of the is ${ }^{\text {th }}$ good in the firm's total expenditure on the ith good from all s sources ($s=1, 9$) for use in production.
OILAB $_{\text {in }}$	Elasticity of substitution for labour of moccupational types used as an inputs to production by industry j in region q	Econometric estimate from MONASH model.
LABOUR $_{\text {j-q }}$	Total wage bill of the j $q^{\text {th }}$ industry.	Sum of the m elements of LABR for the $\mathrm{jq}{ }^{\text {th }}$ industry. Dividing by TOTFACIND gives the share of the wage bill in the value-added of the jg ${ }^{\text {th }}$ industry.
$L_{\text {LAB_OCC_IND }}^{\text {mi/ }}$ (Wage bill of the $\mathrm{m}^{\text {th }}$ occupation used by the $\mathrm{jq}^{\text {th }}$ industry.	The jqm ${ }^{\text {th }}$ element of LABR. Dividing by LaBOUR gives the share of the wage bill of the $\mathrm{m}^{\text {th }}$ occupational group in the total wage bill of the $\mathrm{jq}^{\text {th }}$ industry.

Coefficient	Description	Value
$\sigma 1 \mathrm{FAC}_{i}$	Elasticity of substitution for primary factors (agricultural land, labour and capital) used as inputs to production by industry \mathbf{j} in region q.	Econometric estimate from MONASH model.
TOTFACIND $_{\mathrm{j} . q}$	Toul cost of primary factors used by industry j in region q .	Sum of $j q^{\text {th }}$ element of coefficient habour and the corresponding $j q^{\text {th }}$ elements of the CPTL and LAND matrices.
CAPITAL $_{\text {j. } 4}$	Value of rentals to capital for industry j in region q.	The $\mathrm{j} q^{\text {th }}$ element of the CPTL matrix.
LAND $_{\text {j. }}$ ¢	Value of rentals to agnicultural land for industry j in region q .	The $\mathrm{j} q^{\text {th }}$ element of the LAND matrix.
$\sigma 2 \mathrm{C}_{\mathrm{i}}$	Elasticity of substitution between regional sources of good ifor use as an input in the creation of capital.	Arbitrarily set at five times the value of the elasticity of substitution between domestic goods and foreign impored goods:
$\sigma 2 \mathrm{O}_{i}$	Elasticity of substitution between domestic composite and foreign import of good i for use as an input in creation of capital.	Econometric estimate from MONASH model.
PVAL2T ${ }_{\text {i.ss.j. } / \text { ¢ }}$	Purchaser's value of domestic composite good i as an input the $j q^{\text {th }}$ industry's creation of capital.	The sum, over the 8 regional sources (ss $=$ domestic; i.e., for all $s ; s \neq 9$), of the sum of the isjq ${ }^{\text {th }}$ elements of BAS2. MAR2 and TAX2.
$\begin{aligned} & \text { PVAL2A }_{\text {i.s.j. }} \\ & \text { (in } \mathrm{E}_{-} \mathrm{p} 2 \mathrm{c} \text {) } \end{aligned}$	Purchaser's value of good i from the $\mathrm{s}^{\text {th }}$ regional source $(\mathrm{s}=1, \ldots .8)$ as an input in the $\mathrm{jq}^{\text {th }}$ industry's creation of capital.	The isjqq ${ }^{\text {th }}$ value $(s=1, \ldots, 8)$ is the sum of the corresponding elements of the BAS2. MAR2 and TAX2 matrices. Dividing by PVAL2T, forms the share of the is ${ }^{\text {th }}$ good in the firm's tocal expenditure on the ith good from all regional sources ($s=1, \ldots .8$) for the purpose of capital creation.
$\begin{aligned} & \text { PVAL2A } A_{i, 5, j .4} \\ & \text { (in } E_{-} \text {p2o) } \end{aligned}$	Purchaser's value of good i from the all sources ($s=1 . \ldots .9$) as an input in the $\mathrm{jq}^{\text {th }}$ industry's creation of capital.	The isjq ${ }^{\text {th }}$ value $(s=1 \ldots . .9)$ is the sum of the corresponding elements of the BAS2, MAR2 and TAX2 matrices. Dividing by PVAL2O. forms the share of the is ${ }^{\text {th }}$ good in the firm's total expenditure on the th good from all sources ($s=1, \ldots, 9$) for the purpose of capital creation.
PVAL $20{ }_{i, j, q}$	Purchaser's value of domestic composite and foreign import of good ias an input the $\mathrm{jq}^{\text {th }}$ industry's capital creation.	The $\mathrm{ijg}^{\text {th }}$ value is the sum over the 9 (all domestic plus foreign) sources of the sum of the isiq ${ }^{\text {th }}$ elements of BAS2, MAR2 and TAX2.

Coefficient	Description	Value
${ }_{03}{ }_{i}$	Elasticity of substitution between regional sources of good in regional household demand.	Arbitrarily set at five times the value of the clasticity of substitution between domestic goods and foreign imported goods:
c20 ${ }_{i}$	Elasticity of substitution between domestic composite and foreign import of good i in regional household demand.	Econometric estimate from MONASH model.
PVAL3T iskumesicia $^{\text {a }}$	Purchaser's value of domestic composite good i consumed by the household in region 9 .	The sum, over the 8 regional sources. of the sum of the isq ${ }^{\text {th }}$ elements of BAS3. MAR3 and TAX3.
$\begin{aligned} & \text { PVAL_3A }_{\text {i.s.q }} \\ & \text { (in E_p } 3 \mathrm{c} \text {) } \end{aligned}$	Purchaser's value of good ifrom the $s^{\text {th }}$ regional source ($s=1 \ldots . .8$) consumed by the household in region q.	The isq ${ }^{\text {th }}$ value $(s=1, \ldots, 8)$ is the sum of the corresponding elements of the BAS3. MAR3 and TAX3 matrices. Dividing by PVAL3T. forms the share of the $i^{\text {th }}$ good in the household's total expenditure on the ith goot from all regional sources ($s=1, \ldots, 8$).
$\begin{aligned} & \text { PVAL3A }_{\text {is. }} \\ & \text { (in E_p30) } \end{aligned}$	Purchaser's value of good ifrom the all sources ($s=1 . . ., 9$) consumed by the household in region q.	The isq ${ }^{\text {th }}$ value ($s=1, \ldots .9$) is the sum of the corresponding elements of the BAS3, MAR3 and TAX3 matrices. Dividing by PVAL3O. forms the share of the is ${ }^{\text {th }}$ good in the household's total expenditure on the ith good from all sources ($s=1, \ldots, 9$).
PVAL3 ${ }_{\text {i. }}$ ¢	Purchaser's value of domestic composite and foreign impon of good i consumed by the household in region q.	The iq ${ }^{\text {th }}$ value is the sum. over the 9 (al) domestic plus foreign) sources of the sum of the isq ${ }^{\text {th }}$ elements of BAS3. MAR3 and TAX3.
ALPHA_I ${ }_{\text {i }, \text { q }}$	Supermumerary expenditure on good i as a share of supernumerary and subsistence expenditure on good i by the household in region q .	The formula for ALPHA_l $l_{i f}$ is ALPHA_ $_{i n}=-\left(1 / \mathrm{FRISCH}_{n}\right) \times\left(\right.$ DELTA $\left._{i n} / 53 \mathrm{COM}_{i n}\right)$ where FPISCH $_{n}$ is an econometrically estimated parameter taken from the MONASH model database, and DELTA ${ }_{i n}$ and $\mathrm{SHCO}_{\mathrm{in}}$ are described below.
$\operatorname{DELTA}_{i .4}$	Murginal household budget share of good i in total marginal expenditure by the household in region q.	Econometric estimate from MONASH model.
$\mathbf{S 3 C O M}_{\mathrm{i}, \mathrm{q}}$	Share of good i in total houschold expenditure by the household in region q.	The formula for $\mathrm{SBCOM}_{i} \mathrm{i}$ is where PVAL $3 \mathrm{O}_{\mathrm{in}}$ is described above and AGCCON ${ }_{n}$ is described below.

Coefficient	Description	Value
EXP_ELAST ${ }_{i}$	Foreign export demand elasticity of good i.	Econometric estimate from MONASH model.
AGGEXPNT	Total regional non-traditional export earnings.	The sum, over all non-traditional export commodities ($1=313$) of PVALAR ${ }_{\text {is }}$ (which is described below).
PVAL4R ${ }_{\text {is }}$ (in E_aggnt_p4r)	Purchaser's value of non-traditional export good $i(i=3, \ldots .13)$ from the $s^{\text {th }}$ regional source $(s=1 . \ldots ., 8)$ consumed foreigners.	The is ${ }^{\text {th }}$ value $(i=3 \ldots . .13, s=1, \ldots .8)$ is the sum of the corresponding elements of the BAS4, MAR4 and TAX4 matrices. Dividing by AGGEXPNT. forms the share of the $i^{\text {th }}$ good in the foreigners expenditure on the all goods from region $s(s=1, \ldots, 8)$.
$\operatorname{cosTs}_{j-q}$	Total costs of production in indestry jin region q	The $\mathrm{jq}^{\text {th }}$ value is the sum over the 9 (all domestic plus foreign) sources of the sum of the isjg ${ }^{\text {th }}$ elements of the BASI, MARI and TAXI matrices, plus the sum over m occupational types of the corresponding element of the LABR matrix, plus the corresponding elements of CPTL and OCTS matrices.
$\mathrm{OTHCOST}_{\text {j.q }}$	Other cost tickets paid by industry \mathbf{j} in region q .	The $\mathrm{jq}^{\text {th }}$ value is the corresponding eiement in the OCTS matrix.
$\operatorname{INVEST}_{j .4}$	Value of total capital created for industry j in region q .	The $\mathrm{jq}^{\text {th }}$ value is the sum over $\mathrm{i}(i=113)$ of PVAL2O.
BASI $\mathrm{i}_{\text {i.s.j. } \mathrm{q}}$	Basic value of good ifrom source s (domestic and foreign) used in production by industry j in region q .	The isjq ${ }^{\text {th }}$ value is the corresponding element in the BAS1 matrix.
TAX1 ${ }_{\text {i. } 3 . j .4}$	Value of commodity tuxes paid on good ifrom source s (domestic and foreign) used in production by industry j in region q .	The isjq ${ }^{\text {th }}$ value is the corresponding element in the TAX1 matrix.
MAR $\mathbf{i}_{\text {i.s.j.q. }, ~}$	Value of expenditure on margin commodity r , to facilitate the transfer of good i from source s (domestic and forcign) to industry j in region q to be used in production.	The isjqith value is the corresponding element in the MARI matrix.
BAS2 ${ }_{\text {i.s.j. } 4}$	Basic value of good ifrom sources (domestic and foreign) used in capital creation by industry j in region q.	The isjq ${ }^{\text {th }}$ value is the corresponding element in the BAS2 matrix.

Coefficient	Description	Value
$\mathrm{TAX}^{\mathbf{i}, \text {, } . \mathrm{j} . \mathrm{q}}$	Value of commodity taxes paid on good i from source s (domestic and foreign) used in capital creation by industry \mathbf{j} in region \mathbf{q}.	The isjq ${ }^{\text {th }}$ value is the corresponding element in the TAX2 matrix.
	Value of expenditure on margin commodity r , to facilitate the transfer of good ifrom source s (domestic and foreign) to industry \mathbf{j} in region q to be used in capital creation.	The isjq ${ }^{\text {th }}$ value is the corresponding element in the MAR2 matrix.
BAS3 ${ }_{\text {i.s.q }}$	Basic value of good ifrom source s (domestic and foreign) consumed by the household in region q.	The isq ${ }^{\text {th }}$ value is the corresponding element in the BAS3 matrix.
TAX3 ${ }_{\text {i.s.q }}$	Value of commodity taxes paid on good ifrom source s (domestic and foreign) consumed by the household in region q.	The isq ${ }^{\text {th }}$ value is the corresponding element in the TAX3 matrix.
	Value of expenditure on marg:n commodity r , to facilitate the transfer of good i from source s (domestic and foreign) to the household in region q.	The isqr ${ }^{\text {th }}$ value is the corresponding element in the MAR3 matrix.
$\begin{aligned} & \text { PVALAR }{ }_{\text {is }} \\ & \text { (in } E_{-} \text {p4r) } \end{aligned}$	Purchaser's value of good i ($\mathrm{i}=$ 1....13) from the $s^{\text {th }}$ regional source ($s=1, \ldots ., 8$) consumed foreigners.	The is ${ }^{\text {th }}$ value $(i=1, \ldots 13, s=1, \ldots, 8)$ is the sum of the corresponding elements of the BAS4. MAR4 and TAX4 matrices.
BAS4 ${ }_{\text {i.s }}$	Basic value of good ifrom source s (domestic and foreign) sold to the foreigner.	The is ${ }^{\text {th }}$ value is the corresponding element in the BAS4 matrix.
TAX4 ${ }_{\text {i, }}$	Value of commodity taxes paid on good i from source s (domestic and foreign) sold to the foreigner.	The is ${ }^{\text {th }}$ value is the corresponding element in the TAX4 matrix.
MAR4 ${ }_{\text {i, }, \text {, } \mathrm{r}}$	Value of expenditure on margin commodity r , to facilitate the transfer of good ifrom source s (domestic and foreign) to the Australian port of departure for shipment to the foreign consumer.	The is ${ }^{\text {th }}$ value is the corresponding element in the MAR4 matrix.

Coefficient	Description	Value
PVAL5A $_{\text {is, }}$	Purchaser's value of good $\mathrm{i}(\mathrm{i}=$ I,...13) from the $s^{\text {th }}$ source (domestic and foreign) to be used by the regional government in region q.	The is ${ }^{\text {th }}$ value is the sum of the corresponding elements of the BAS5, MAR5 and TAX5 matrices.
BAS5 ${ }_{\text {i.s.q }}$	Basic value of good i from source s (domestic and foreign) consumed by the regional government in region q.	The is ${ }^{\text {th }}$ value is the corresponding element in the BAS5 matrix.
TAX5 ${ }_{\text {i.s. }}$	Value of commodity taxes paid on good i from source s (domestic and foreign) consumed by the regional government in region q.	The isq ${ }^{\text {th }}$ value is the corresponding element in the TAX5 matrix.
$\mathrm{MAR5}_{\mathrm{i}, \mathrm{s.q.r}}$	Value of expenditure on margin commodity r, to facilitate the transfer of good ifrom source s (domestic and foreign) to the regional government in region q.	The isqrit value is the corresponding element in the MARS matrix.
PVAL6A $_{\text {is, }}{ }_{\text {q }}$	Purchaser's value of good $i(i=$ 1,...13) from the st source (domestic and foreign) to be used by the Federal govemment in region g.	The isq ${ }^{\text {th }}$ value is the sum of the corresponding elements of the BAS5, MAR5 and TAX6 matrices.
BAS $6_{\text {i, }, \text {, } q}$	Basic value of good i from source s (domestic and foreign) consumed by the Federal government in region q .	The isq ${ }^{\text {th }}$ value is the corresponding element in the BAS6 matrix.
TAX6 ${ }_{\text {i.s. }}$	Value of commodity taxes paid on good i from source s (domestic and foreign) consumed by the Federal govemment in region q.	The is $q^{\text {th }}$ value is the corresponding element in the TAX6 matrix.
MAR6 $_{\text {i,s.q. }}$	Value of expenditure on margin commodity r , to facilitate the transfer of good i from source s (domestic and foreign) to the Federal govemment in region q.	The is $\mathrm{r}^{\text {rh }}$ value is the corresponding element in the MAR6 matrix.

Coefficient	Description	Value
SALES $_{\text {r, }}$ (in E_mkt_clear_ margins)	Total value of sales received by the producer of the $\mathrm{r}^{\text {th }}$ margin commodity produced in the $\mathrm{s}^{\text {th }}$ region. Note that we distinguish two purposes for which margin commodities are purchased (i) for direct usage and (ii) to facilitate trade. Our convention regarding the second form of usage is that the margin commodity is produced by the corresponding margin industry in the purchasing region of the traded commodity.	The $\mathrm{s}^{\text {th }}$ value is the sum of sales for direct usage and sales for use as a margin. The direct sales are the sum of: the sum over j industries and q regions of the corresponding isjq ${ }^{\text {th }}$ elements of the BASI and BAS2 matrices (for $i=r$); the sum over q regions of the corresponding isq ${ }^{\text {th }}$ elements of the BAS3. BAS5 and BAS6 matrices (for $\mathrm{i}=\mathrm{r}$): and the corresponding element the BAS 4 matrix (for $\mathrm{I}=\mathrm{i}$). For the margin sales component, we are adding the purchases of the $\mathrm{r}^{\text {th }}$ margin commodity facilitating the transfer of all \mathfrak{i} commodities from all s (regional and foreign) sources to be used by (i) the j industries in the $q^{\text {th }}$ region (MAR1 and MAR2); (ii) the household in the $q^{\text {th }}$ region (MAR3): (iii) the govemments in the $q^{\text {th }}$ region (MAR5 and MAR6): and the exporter in the $q^{\text {th }}$ where it is assumed that the $q^{\text {th }}$ region is the region producing the margin (i.e.. for $q=s$).
SALES $_{t \rightarrow x}$ (in E_mkt_ciear_ nonmargins)	Total value of sales received by the producer of the $r^{\text {th }}$ nonmargin commodity produced in the $s^{\text {th }}$ region. Note that nonmargin commodities are purchased only for direct usage.	The $r^{\text {th }}$ value is the sum of: the sum over j industries and q regions of the isjq ${ }^{\text {th }}$ elements of the BASJ and BAS2 matrices (for $\mathbf{i}=\mathrm{r}$): the sum over q regions of the is $q^{\text {th }}$ elements of the BAS3, BAS5 and BAS6 matrices (for $\mathrm{i}=\mathrm{r}$); and the corresponding element the BAS4 matrix (for $\mathrm{r}=\mathrm{i}$).
IMPORTS $_{\text {i.q }}$	Total basic-value imports of good \mathbf{i} into region q.	The iq ${ }^{\text {th }}$ value is the sum of: the sum over j industries of the corresponding isjq ${ }^{\text {th }}$ ($\mathrm{s}=$ foreign) elements of the BAS1 and BAS2 matrices: and (ii) the corresponding is $q^{\text {th }}$ elements of BAS3, BAS5 and BAS6.
$\mathrm{AGGTAXI}_{4}$	Sales tax on current production collected in region q.	The $q^{\text {th }}$ value is the sum over i. $s(s=1 \ldots . .9)$ and j of the corresponding isjq ${ }^{\text {th }}$ elements of the TAXI matrix.
$\operatorname{AGGTAX}_{4}$	Sales tax on capital creation collected in region q.	The $q^{\text {th }}$ value is the sum over $i, s(s=1 \ldots . .9)$ and j of the corresponding isjq ${ }^{\text {th }}$ elements of the TAX2 matrix.

Coefficient	Description	Value
AGGTAX_{q}	Sales tax on household consumption collected in region q.	The $q^{\text {th }}$ value is the sum over i and s ($s=$ $1, \ldots, 9$) of the corresponding isq ${ }^{\text {th }}$ elements of the TAX3 matrix.
AGGTAX_{4}	Sales tax on exports collected in region q.	The $q^{\text {th }}$ value is the sum over i. for $s=q$. of the corresponding iq ${ }^{\text {th }}$ elements of the TAX4 matrix.
AGGTAX5 $_{4}$	Sales tax on regional government consumption collected in region q.	The $q^{\text {th }}$ value is the sum over i and s ($s=$ 1....9) of the corresponding isq ${ }^{\text {th }}$ elernents of the TAXS matrix.
AGGTAX_{4}	Sales tax on Federal government consumption collected in region $\%$.	The $q^{\text {th }}$ value is the sum over i and s ($s=$ 1....,9) of the corresponding is ${ }^{\text {th }}$ elements of the TAX6 matrix.
AGGCAP_{4}	Total payments to capital in region q.	The $q^{\text {th }}$ value is the sum over j of the corresponding jq ${ }^{\text {th }}$ elements of CAPITAL $\mathrm{in}_{i n}$.
AGGLAB_{4}	Total payments to labour in region q.	The $q^{\text {th }}$ value is the sum over j of the corresponding j $q^{\text {th }}$ elements of LABOUR ${ }_{i n}$.
AGGLND_{4}	Total payments to agricultural land in region q.	The $q^{\text {th }}$ value is the sum over j of the corresponding $j^{\text {th }}$ elements of LAND $_{i n}$.
AGGOCT_{4}	Total payments to other cost tickets in region q.	The $q^{\text {th }}$ value is the sum over j of the corresponding ig ${ }^{\text {th }}$ elements of OTHCOST ${ }_{\text {in }}$.
AGGTAX $_{\text {q }}$	Aggregate indirect tax revenue collected by region q.	The $q^{\text {th }}$ value is the sum of the corresponding $q^{\text {th }}$ elements of AGGTaXI ${ }_{n}$. AGGTAX2 ${ }_{n}$ AGGTAX $_{n}$ and AGGTAX5 ${ }_{n}$.
raRIFF $_{\text {i. }}^{\text {¢ }}$	The value of tariffs collected on good i in region q.	The iq ${ }^{\text {th }}$ value is the corresponding element in the MMRF database file TARF.
AGGTAXM $_{4}$	The total value of tariffs coliected in region q.	The $q^{\text {th }}$ value is the sum over i of the corresponding iq ${ }^{\text {th }}$ elements of TARIFF in $_{\text {. }}$.
AGGCON_{4}	Total value in purchaser's prices of household expenditure in region q.	The $q^{\text {th }}$ value is the sum over i of the corresponding iq ${ }^{\text {th }}$ elements of $\mathrm{PVAL}_{2} \mathrm{in}_{\text {in }}$.
AGGIN_{4}	Total value in purchaser's prices of capital creation in region 9 .	The $q^{\text {th }}$ value is the sum over i of the corresponding iq ${ }^{\text {th }}$ elements of INVEST $_{i n}$.
AGGOTH_{9}	Total value in purchaser's prices of regional government expenditure in region q .	The $q^{\text {th }}$ value is the sum over i and s of the corresponding is $q^{\text {th }}$ elements of $\mathrm{PVAL}^{2} \mathrm{SA}_{\text {i }}{ }^{n}$.
AGGOTH_{4}	Total value in purchaser's prices of Federal govemment expenditure in region q.	The $q^{\text {th }}$ value is the sum over i and s of the corresponding isq ${ }^{\text {th }}$ elements of $P V A L f A_{1 s,}$.

Coefficient	Description	Value
$\mathrm{C}_{-} \mathrm{XSFLO}_{\text {s. }}$	Basic value of inter and intra regional trade flows.	The $s^{\text {th }}$ value is the sum of: the sum over i and j of the corresponding isjg th elements of BASI ${ }_{i n i, \ldots}$; the sum over i and j of the corresponding isjq ${ }^{\text {th }}$ elements of BAS2, $\times \mathrm{in}$; and the sum over i of the corresponding isq ${ }^{\text {th }}$ elements of BAS3 ${ }_{i \times n}$ and BASS ${ }_{i \times n}$.
$\mathrm{C}_{-} \mathrm{XSEXP}_{5}$	Total value of interregional exports frem region s.	The $s^{\text {th }}$ value is the difference between the sum over q of the corresponding $s^{\text {th }}$ elements of C_XSFLO and the corresponding ss ${ }^{\text {th }}$ element of C_XSFLO.
$\mathrm{C}_{-} \mathrm{XSIMP}_{4}$	Total value of interregional imports to region q.	The $q^{\text {th }}$ value is the difference between the sum over s of the corresponding $s q^{\text {th }}$ elements of C_XSFLO and the corresponding $99^{\text {th }}$ element of C_XSFLO.
AGGEXP $_{q}$	Total value of export earnings in region q.	The $q^{\text {th }}$ value is the sum over i of corresponding iq ${ }^{\text {th }}$ elements of PVALAR.
$\operatorname{IMPCOST}_{\text {i.q }}$	Total ex-duty value of imports of good ito region q.	The iq ${ }^{\text {th }}$ value is the sum of: the sum over j of the corresponding isjq ${ }^{\text {th }}$ elements ($s=$ foreign) of the BASI and BAS2 matrices: and the corresponding isq ${ }^{\text {th }}$ elements ($s=$ foreign) of the BAS3, BASS and BAS6 mutrices
$\mathrm{AGGIMP}_{\mathrm{q}}$	Total value of foriegn import expenditures in region q.	The $q^{\text {th }}$ value is the sum over i of corresponding iq ${ }^{\text {th }}$ elements of IMPCOST.
TOTFAC $_{\text {q }}$	Total primary factor payments in region q .	The $q^{\text {th }}$ value is the sum of the corresponding elements of AGGLAB. AGGCAP and AGGLND.
$\mathrm{LAB}_{-} \mathrm{OCC}_{\text {ma }}$	Total labour bill in occupation m in region q.	The $\mathrm{mq}^{\text {th }}$ value is the sum over j of the corresponding mjq ${ }^{\text {th }}$ elements of LAB_OCC_IND.
NAT coefficients	All coefficients with the NAT prefix are national add-ups formed by summing across the q elements of the corresponding regional variable.	Example: NATAGGTAXI $=\sum_{q=1}$ AGGTAXI $_{q}$
NATGDPIN	National GDP from the income side.	The sum of nattorfac. Nataggoct und nataggtax.
NATGDPEX	National GDP from the expenditure side.	The sum of NATAGGCON. NATAGGINV. NATAGGOTHS, NATAGGOTHK, NATAGGEXP and NATAGGIMP.

....Table 2.3. continued

Coefficient	Description	Value
C_201_I_ $\mathrm{j}_{\mathrm{j} .9}$	Industry by region value of wages. salaries and supplements.	The $\mathrm{jq}{ }^{\text {th }}$ value is the corresponding element in the MMRF database file FZO1.
$\mathrm{C}_{-} \mathrm{ZOl}_{-} \mathrm{R}_{\text {q }}$	Regional value of wages. salaries and supplements.	The $q^{\text {th }}$ value is the sum, over j, of the corresponding jq ${ }^{\text {th }}$ eiements of C_zol_I_R
C_202_I_R ${ }_{\text {j.4 }}$	Industry by region value of imputed wages.	The $\mathrm{j} q^{\text {th }}$ value is the corresponding element in the MMRF database file FZO2.
C_Z02_R ${ }_{\text {q }}$	Regional value of imputed wages.	The $q^{\text {th }}$ value is the sum, over j, of the corresponding ${ }^{\text {g }}{ }^{\text {th }}$ elements of C_{-}Z02___R.
C_Z03_I_R ${ }_{\text {j. }}$ ¢	Industry by region value of payroll caxes	The $\mathrm{jq}{ }^{\text {th }}$ value is the corresponding element in the MMRF datubase file FZ03.
C_Z03_R ${ }_{\text {q }}$	Regional value of payroll taxes.	The $q^{\text {th }}$ value is the sum, over j. of the corresponding $\mathrm{jq}^{\text {th }}$ elements of C_{-}Z03_I_R.
C_203	National value of payroll taxes.	The sum of the elements of C_z03_R.
C_Z04_I_R ${ }_{\text {j, }}$	Industry by region value of retums to fixed capital.	The $\mathrm{jq}{ }^{\text {th }}$ value is the corresponding element in the MMRF database file FZO4.
$\mathrm{C}_{-} \mathrm{ZO4} \mathrm{R}_{9}$	Regional value of retums to fixed capital.	The $q^{\text {th }}$ value is the sum, over j, of the corresponding $\mathrm{jq}^{\text {th }}$ elements of C_{-}ZO4_I_R.
$C_{-} \mathrm{ZOS}_{-} \mathrm{I}_{-} \mathrm{R}_{\mathrm{j} .4}$	Industry by region value of property taxes	The $j q^{\text {th }}$ value is the corresponding element in the MMRF database file FZOS.
$C_{-} 2051 R_{4}$	Regional value of property taxes.	The $q^{\text {th }}$ value is the sum, over j, of the corresponding jq ${ }^{\text {th }}$ elements of C_{-}ZOS_I_R.
C. 205	National value of property taxes.	The sum of the elements of C_ZOS_R.
C_Z06_1_R ${ }_{\text {j. }}$	Industry by region value of relums to agricultural land.	The $\mathrm{jq}^{\text {th }}$ value is the corresponding element in the MMRF database file FZO6.
C_Z06_R ${ }_{\text {q }}$	Regional value of returns to agricultural land.	The $q^{\text {th }}$ value is the sum, over j. of the corresponding jq ${ }^{\text {th }}$ elements of C_{-}Z06_t_R.
	Industry by region value of land taxes.	The $\mathrm{j} q^{\text {th }}$ value is the corresponding element in the MMRF database file FZOT.
$C_{-} \mathrm{ZOT}_{-} \mathrm{R}_{\mathrm{q}}$	Regional value of land taxes.	The $q^{\text {th }}$ value is the sum, over j, of the corresponding $j q^{\text {th }}$ elements of C_{-}Z07_I_R.
C_207	National value of land taxes.	The sum of the elements of $\mathrm{C}_{-} \mathrm{ZO7}$-R.
C_208_1_R $\mathrm{j}_{\mathrm{j} \text { q }}$	Industry by region value of returns to working capital.	The $\mathrm{jq}{ }^{\text {th }}$ value is the corresponding element in the MMRF database file FZOs.
C_Z08_R ${ }_{9}$	Regional value of returns working capitul.	The $q^{\text {th }}$ value is the sum, over j, of the corresponding $j^{\text {th }}$ elements of C_{-}z08_I_R.
$C_{-} \mathbf{Z 0 9} \mathbf{I}_{-1} \mathrm{R}_{\mathrm{j}}$	Industry by region value of other indirect taxes.	The $\mathrm{jq}{ }^{\text {th }}$ value is the corresponding element in the MMRF database file FZO 9 .
$\mathrm{C}_{-} \mathrm{ZOS}_{-} \mathrm{R}_{\mathbf{q}}$	Regional value of other indirect taxes.	The $q^{\text {th }}$ value is the sum, over j, of the corresponding $\mathrm{j}^{\text {th }}$ elements of C_{-}Z09_1_R.

Coefficient	Description	Value
C_209	Nutional value of other indirect taxes.	The sum of the elements of $\mathrm{C}_{-} \mathbf{z 0 9}$ R .
	Industry by region value of sales by final buyers.	The $\mathrm{j}^{\text {th }}$ value is the corresponding element in the MMRF database file FZOIO.
$C_{-} \mathrm{ZOHP}_{-} \mathrm{R}_{\mathrm{q}}$	Regional value of sales by final buyers.	The $q^{\text {th }}$ value is the sum. over j. of the corresponding j9 ${ }^{\text {th }}$ elements of C_z $_{2}$ 2010_I_R.
C_Z010	National value of sales by final buyers.	The sum of the elements of C_zolo_r.
C_{-}ZG_R	Regional value gross operating surplus.	The $q^{\text {th }}$ value is the sum of the corresponding elements of $\mathrm{C}_{-} \mathrm{ZO}_{-} \mathrm{R}$. C_201_R. C_Z06_R and C. 208 _R.
$C_{-} 2 T_{-} \mathrm{R}_{\mathrm{q}}$	Regional value production taxes.	The $q^{\text {th }}$ value is the sum of the cortesponding elements of C_203_R. C_205_R. C_207_R and C_209_R.
C_{-}DOMPYOOO $_{\text {q }}$	Gross regional product: income side.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PA01.
C_DOMPY ${ }^{100}{ }_{\text {q }}$	Regional wages. salaries and supplements.	The $q^{\text {th }}$ value is the corresponding element in the MARF database file PA02.
C_DOMPY110 ${ }_{\text {q }}$	Regional disposable wage income.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PA03.
C_DOMPY $120{ }_{q}$	Regional PAYE taxes.	The $\mathrm{q}^{\text {th }}$ value is the corresponding element in the MMRF database file PADA.
C_DOMPY200q	Regional GOS : non-wage primary factor income.	The $q^{\text {th }}$ value is the corresponding element in the MAIRF database file PaOS.
C_DOMPY210 ${ }_{\text {q }}$	Regional disposable non-wage income.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PAOK.
C_DOMPY2209	Regional tax collected on non-wage income.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PA07.
C_DOMPY300 ${ }_{4}$	Regional indirect taxes less subsidies.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PA08.
C-DOMPY310q	Regional collection of tariff revenue.	The $\mathrm{q}^{\text {th }}$ value is the corresponding element in the MMRF database file PAOS.
C_DOMPY320q	Regional tax collected on other indirect taxes and subsidies.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PAIO.
C_DOMPY3309	Regional collection of production taxes.	The $\mathrm{q}^{\text {th }}$ value is the corresponding element in the MMRF database file PAll.
C_DOMPQ000q	Gross regional product: expenditure side.	The $\mathrm{q}^{\text {th }}$ value is the corresponding element in the MMRF database file PAI2.
C_DOMPQ ${ }^{(00} 4$	Regional domestic absorption.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PAI3.

Coefficient	Description	Value
C_DOMPQ $110{ }_{4}$	Regional private consumption.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database fite PA14.
C_{-}DOMPQ120 ${ }_{\text {q }}$	Regional private investment.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PAIS.
$\mathrm{C}_{-} \mathrm{DOMPQ}^{130}{ }_{9}$	Regional-government consumption.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PA16.
C_DOMPQ140 ${ }_{\text {q }}$	Federal-government consumption.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PAI?
C_DOMPQ150q	Government investment.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PAI8.
$\mathrm{C}_{-} \mathrm{DOMPQ}^{(000}{ }_{\text {q }}$	Interregional trade balance.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PA19.
C_DOMPQ2109	Interregional exports.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PA20.
$C_{-} \mathrm{DOMPQ}^{220} \mathrm{q}^{\text {a }}$	Interregional imports.	The $q^{\text {th }}$ value is the conesponding element in the MMRF database file PA21.
C_DOMPQ300 ${ }_{\text {q }}$	Regional international trade balance.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PA22.
C_DOMPQ3 ${ }^{10} 4$	Regional international exports.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PA23.
C_DOMPQ320 ${ }_{9}$	Regional international imports.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PA24.
C_DOMPY3304	Regional collection of production taxes.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file PAII.
$\mathrm{C}_{-} \mathrm{Tl}$	National collection of commodity taxes less subsidies (excluding tariffs).	The sum of the elements of C_DOMPY320.
$C_{-} \mathrm{YN}$	National nomital GDP.	The sum of the elements of C_DOMPYO00.
C_YF	National nominal GDP at fuctor cost.	The sum of the elements of C_DOMPY100 and C_DOMPY200.
NATBT	National nominal trade balance	The sum of the elements of C_DOMPQ300.
$\mathrm{C}_{\sim} \mathrm{TY}$	National income tux collection.	The sum of the elements of C_DOMPY120 and C_DOMPY220.
C_YL	National pre-tax wage income.	The sum of the elements of C_DOMPY100.
C_YLSTAR	National post-tax wage income.	The sum of the elements of C_DOMPY1to.
$\mathrm{C}_{\sim} \mathrm{IP} \mathrm{R}_{4}$	Regional nominal private investment.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file MIO2.
C. IP	National nominal private investment.	The sum of the elements of C_IP_R.

Coefficient	Description	Value
$C_{-} \mathrm{IG}_{-} \mathrm{R}_{\mathrm{q}}$	Regional nominal govemment investment (by regional and Federal govemments).	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file M103.
C_IG	National nominal govemment investment.	The sum of the elements of C_IG_R.
$\mathrm{C}_{-} \mathrm{SOFTY}^{(1) 00}{ }_{4}$	SOFT: income-side total.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GAOI.
C_SOFTY ${ }^{100}{ }_{q}$	Government revenue.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA02.
C_SOFTY110 ${ }_{\text {q }}$	Direct taxes.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA03.
C_SOFTY111 ${ }_{\text {q }}$	lncome taxes.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA04.
C_SOFTY ${ }^{112}$	Other direct taxes.	The $\mathrm{q}^{\text {th }}$ value is the corresponding elernent in the MMRF database file GA05.
C_SOFTY $120{ }_{q}$	Indirect taxes.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GAOG.
C_SOFTY 121_{q}	Tariff revenue.	The $\mathrm{q}^{\text {th }}$ value is the corresponding element in the MMRF database file GAOF.
C_SOFTY 122_{q}	Other commodity taxes.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GAOR.
C_SOFTY 123_{q}	Payroll taxes.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA09.
$\mathrm{C}_{-} \operatorname{SOFPYYI}^{2} 4_{9}$	Property taxes.	The $\mathrm{q}^{\text {th }}$ value is the corresponding element in the MMRF database file GA10.
$\mathrm{C}_{-} \mathrm{SOFFTY}^{2} 5_{4}$	Land taxes.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GAII.
C. SOFTY $126{ }_{q}$	Other indirect taxes.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA12.
C_SOFTY130 ${ }_{\text {q }}$	Interest received.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA13.
C_SOFTY140 ${ }_{\text {q }}$	Commonwealth grants to the regions.	The $\mathrm{q}^{\text {th }}$ value is the corresponding element in the MMRF database file GA:4.
C_{-}SOFTY $^{\text {a }} \mathrm{II}_{9}$	Current grants.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GAIS.
C_SOFTY142 ${ }_{\text {q }}$	Capital grants.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA16.
C_SOFTY ${ }_{\text {S }}{ }_{4}$	Other revenue.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA17.

Coefficient	Description	V alue
C_SOFTY $200{ }_{q}$	Depreciation, general government.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA18.
$\mathrm{C}_{-} \mathrm{SOFTY} 300^{4}$	Financing transactions.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GAI9.
C_SOFTY $310{ }_{q}$	Net borrowings.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA20.
C_SOFTY $320{ }_{q}$	Increase in provisions.	The $q^{\text {th }}$ value is the comesponding element in the MMRF database file GA21.
C_SOFTY $330{ }_{4}$	Other financing transactions.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA22.
C_SOFTQ000 ${ }_{q}$	SOFT: expenditure-side total.	The $\mathrm{q}^{\text {th }}$ value is the corresponding element in the MMRF database file GA23.
C_{-}SOFTQ100 $_{q}$	Expenditure on goods and services.	The $a^{\text {th }}$ value is the corresponding element in the MMRF database file GA24.
C_{-}SOFTQ ${ }^{110} 9$	Government consumption.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA2S.
$\mathrm{C}_{-} \mathrm{SOFFTQ120}_{4}$	Government investment.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA26.
$\mathrm{C}_{-} \mathrm{SOFTR}^{200}{ }_{9}$	Personal benefit payments.	The $\mathrm{q}^{\text {th }}$ value is the corresponding element in the MMRF database file GA27.
$\mathrm{C}_{-} \mathrm{SOFFTQ210}_{4}$	Unemployment benefits.	The $\mathrm{q}^{\text {th }}$ value is the corresponding element in the MMRF database file GA28.
$C_{-} \mathrm{SOFFQ}^{\text {2 }} 2 \mathrm{O}_{4}$	Other personal benefits.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA29.
C_SOFTQ300 ${ }_{4}$	Subsidies.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA30.
C_SOFTQ400 ${ }_{4}$	Interest payments.	The $\mathrm{q}^{\text {th }}$ value is the corresponding element in the MMRF database file GA3ı.
C_SOFTQSOO ${ }_{\text {q }}$	Commonwealth grants to regions.	The $\mathrm{q}^{\text {th }}$ value is the corresponding element in the MMRF database file GA32.
$\mathrm{C}_{-} \operatorname{SOFTQSS10}_{4}$	Current grants.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA33.
C_SOFTQ ${ }^{20} 9$	Capital grants.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file GA34.
C_SOFTQ ${ }^{600}$	Other outlays.	The $\mathrm{q}^{\text {th }}$ value is the corresponding element in the MMRF database file GA35.
C_SUBSIDIES	Subsidies.	The sum of the elements of C_SOFTQ300.
$\mathrm{C}_{-} \mathrm{HHLDYOOO}_{4}$	Disposable income.	The $\mathrm{q}^{\text {th }}$ value is the corresponding element in the MMRF database file HAOI.

Coefficient	Description	Value
C_HHLDY 1004	Primary factor income.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file HAO2.
C_HHLDYI $10{ }_{\text {Q }}$	Wages, salaries and supplements.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file HA03.
C_HHLDY120q	Non-wage primary factor income.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file HAO4.
C_HHLDY2004	Personal benefit receipts.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file HAOS.
C_HHLDY210 ${ }_{\text {Q }}$	Unemployment benefits.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file HAO6.
C_HHLDY2204	Other personal benefits.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file HA07.
C_HHLDY3004	Other income (net).	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file HAO8.
C_HHLDY400 ${ }_{\text {q }}$	Direct taxes.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file HAOM.
C_HHLDY410 ${ }_{4}$	PAYE taxes.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file HA10.
C_HHLDY420q	Taxes on non-wage primary factor income.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file HAll.
C_HHLDY430 ${ }_{\text {q }}$	Other direct taxes.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file HA 12 .
C_HHLDY410 ${ }_{4}$	PAYE taxes.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file HA 10 .
$\mathrm{C}_{-} \mathrm{LABSUP}_{4}$	Lisbour supply.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file RLBS.
$\mathrm{C}_{-} \mathrm{EMPLOY}_{4}$	Persons employed.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file REMP.
C_HHLODOO1 ${ }_{q}$	Reciprocal of the unemployment rate.	The $\mathrm{q}^{\text {th }}$ value is given by the fommula C_LABSUPAC_LABSUPC_EMPLOY).
C_HHLDD002 ${ }_{\text {q }}$	Reciprocal of the proportion of the unemployed to the employed.	The $q^{\text {th }}$ value is given by the formula C_EMPLOY/C_LABSUP.C_EMPLOY).
C_UPB	National payments of unemployment benefits.	The sum of the elements of C_HHLDY210.
C_{-}PBP_R $_{\text {Q }}$	Personal benefit payments.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file M104.
C_PBP	National payments of personal benefits.	The sum of the elements of C_PBP_R.
VALK_TI ${ }_{\text {j, }}$	Asset value of the capital stock in period T+I.	The $j q^{\text {th }}$ value is the corresponding element in the MMRF database file VALK.

Coefficient	Description	Value
$\mathrm{VALKT}_{\mathbf{j . Q}}$	Asset value of the capital stock in period T.	The $\mathrm{j} \mathrm{g}^{\text {th }}$ value is the corresponding element in the MMRF database file VALK.
VALK_0 ${ }_{\text {j-4 }}$	Asset value of the capial stock in period 0.	The $\mathrm{jq}^{\text {th }}$ value is the corresponding element in the MMRF database file VALK.
INVEST_ $_{\text {j. }}$	Asset value of investment in period 0.	The $\mathrm{jq}^{\text {th }}$ vilue is the corresponding element of the cocfficient INVEST.
DEP ${ }_{j}$	Depreciation factor, one minus the rate of depreciation.	The $\mathrm{j}^{\text {th }}$ value is the corresponding element in the MMRF database file DPRC.
K_TERM	A constant in equation	Its value is given by the formula $1+(1 / \mathrm{T})$.
	E_curcap TiA.	
QCOEF $_{\text {in }}$	Ratio of gross to net rate of return.	The $\mathrm{j} q^{\text {th }}$ value is the corresponding element in the MMRF database file P027.
BETA_R $\mathrm{j}_{.9}$	Parameter to distribute investment. Can be thought of as risk premia.	The $\mathrm{j} \mathrm{q}^{\text {th }}$ value is the corresponding element in the MMRF database file BETR.
DEBT_RATIO	National foreign debt to GDP rutio.	its value is stored in the MMRF database file DGDP.
R_WORLD	World real interest rate factor, one plus the real world rate of interest.	Its value is stored in the MMRF database file RWLD.
P_GLOBAL	Converts \$A into 'real' terms.	It is sel equal to NatXIM.
B0	National real trade deficit in year 0 .	Its value is given by the formula (NATAGGIMP-NATAGGEXP+NATXI4. NATXIMMP_GLOBAL.
 N_DEBT	Constants in the foreign debt accumulation equations.	Functions of time; see section 2.4 .2 for their formulas.
$\mathrm{C}_{-} \mathrm{POP}_{9}$	Regional population.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file RPOP.
$\mathrm{C}_{-} \mathrm{RM}_{\mathbf{q}}$	Net interregional migration.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file RRGM.
$\mathrm{C}_{-} \mathrm{FM}_{9}$	Net regional foreign migration.	The $q^{\text {th }}$ value is the corresponding element in the MMRF database file RFRM.
$C_{-} \mathrm{G}_{\mathrm{q}}$	Net regional natural population.	The $q^{\text {th }}$ value is the corresponding element in the MmRF database file RGRO.
$\mathrm{C}_{-} \mathrm{PR1}_{4}$	Constant in the population accumulation equation.	The $q^{\text {th }}$ value is given by the formula 100T(C_RM+C_FM+C_RM).
C_PA2	Constant in the population accumulation equation.	Its value is given by the formula so(T+1).
C_NATLABSUP	National labour supply.	The sum of the elements of C_LABSUP.
C_NATEMPLOY	National employment: persons.	The sum of the elemenis of C_EMPLOY.

Table 2.4. Dimensions of MMRF

Set	TABLO Name	Description	Elements
COM	COM	Commodities	13: Agriculture, Mining, Manufacturing. Public Utilities, Construction, Domestic Trade, Transpon \& Communication. Finance. Housing, Public Services. Community Services, Personal Services. Non-competing lmports
RSOU	regsource	Regioral sources	8: NSW, Victoria, Queensland, South Australia, Western Australia, Tasmania, Northem Territory, ACT
IND	IND	Industries	13: Same as for COM
RDES	regdest	Regional destinations	8: Same as for RSOU
OCC	occ	Occupation types	8: ASCO categories
TEXP	TEXP	Traditional exports	2: Agriculture. Mining
NTEXP	nTEXP	Non-traditional exports	11: Manufacturing, Public Utilities. Construction, Domestic Trade. Transport \& Communication, Finance, Housing, Public Services, Community Services, Personal Services, Non-competing Imports
ASOU	allsource	Origin of goods	9: Same as RSOU plus foreign
MARG	marcom	Margin commodities	2: Domestic Trade, Transport \& Communication
NONMARG	nowmarcom	Non-margin commodities	11: Agriculture, Mining, Manufacturing, Public Utilities, Construction. Finance. Housing. Public Services. Community Services, Personal Services, Non-competing lmports
DDES	DOMDEST	Destination of goods	9: Same as for RSOU plus 'Federal'.

References

ABS catalogue number 1217.0 Classification Manual for Government Finance Statistics, Australia.
ABS catalogue number 3222.0 Projections of the Populations of Australia, States and Territories.
ABS catalogue number 5512.0 State Finance Statistics.
Armington, P.S. (1969) The Geographic Pattern of Trade and the Effects of Price Changes', IMF Staff Papers, XVI, pp. 176-199.
Armington, P.S. (1970) 'Adjustment of Trade Balances: Some Experiments with a Model of Trade Among Many Countries', mf Staff Papers, XVII, pp. 488-523.
Cooper, R., K. McLaren and A.A. Powell (1985) 'Macroeconomic Closure in Applied General Equilibrium Modelling: Experience from ORANI and Agenda for Further Research' in J. Piggott and J. Whalley (eds.) New Developments in Applied General Equilibrium Analysis, Cambridge University Press.
Dixon, P.B., B.R. Parmenter, J. Sutton and D.P. Vincent (1982) ORANI: A Multisectoral Model of the Australian Economy, North-Holland publishing company.
Dixon, P.B., B.R. Parmenter, A.A. Powell and P.J. Wilcoxen (1992) Notes and Problems in Applied General Equilibrium Economic, North-Holland publishing company.
Dixon, P.B., S. Bowles and D. Kendrick (1980) Notes and Problems in Microeconomic Theory, North-Holland publishing company,
Harrison, W.J. and K.R. Pearson (1994) 'Computing Solutions for Large General Equilibrium Models Using GEmpack', Centre of Policy Studies and the IMPACT Project Preliminary Working Paper No. IP-64, Monash University, Clayton, 55 pp .
Horridge, J.M., B.R. Parmenter and K.R. Pearson (1993) 'ORANI-F: A General Equilibrium Model of the Australian Economy', Economic and Financial Computing, 3, 2, pp. 71-140.
Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling (1986) Numerical Recipes: The Art of Scientific Computing, Cambridge University Press.

[^0]: ${ }^{1}$ For an introduction to the Johansen/ORAN] approach to CGE modelling, see Dixon, Parmenter, Powell and Wilcoxen (DPPW. 1992) Ch. 3.

[^1]: ${ }^{2}$ The TABLO version of MMRF is presented in the Appendix to Chapter 3.
 ${ }^{3}$ See Horridge, Parmenter and Pearson (1993) for an example based on input demands given CES production technology.
 ${ }^{4}$ See Harrison and Pearson (1994) for an introduction to the solution methods (including Euler) available in GEMPACK. For details on the Euler method. including the Richardson extrapolation, see Dixon, Parmenter, Sution and Vincent (DPSV. 1982) Chs. 2 \& 5, DPPW (1992) Chs. 3, and Horridge. Parmenter and Pearson (1993).

[^2]: 5 Note that in our first step we have also updated the values of Y and Z, e.g., after the first step. our updated value of Y is $10.15=10 \times 1.5 / 100$.
 ${ }^{6}$ For example, if, in the power-rule equation, X is quantity demanded and Y is the price of X, α could be interpreted as a (constant) own-price elasticity of demand.

[^3]: ${ }^{7}$ Section 2.2. draws on Horridge, Parmenter and Pearson (1993).

[^4]: ${ }^{8}$ For details on the solution of input demands given a CES production function, and the linearisation of the resulting levels equation, see Dixon. Bowles and Kendrick (1980), DPSV (1982), DPPW (1992) and Horridge, Parmenter and Pearson (1993).

[^5]: ${ }^{9}$ Demand for other cost tickets includes demand for working capital and production taxes.

[^6]: ${ }^{10}$ For details on the derivation of demands in the LES. see Dixon, Bowles and Kendrick (1980) and Horridge, Parmenter and Pearson (1993).

[^7]: ${ }^{11}$ If the tariff rate is 20 percent, the power of tariff is 1.20 . If the tariff rate is increased from 20 percent to 25 percent, the percentage change in the power of the tariff is 4 , i.e.. $100^{*}(1.25$ $1.20) / 1.20=4$.

[^8]: 12 The determination in basic values reflects the convention in MMRF that all margins and commodity taxes are paid in the region which absorbs the commodity.

[^9]: 13 The reader will note that financing transactions includes a third item, increase in provisions. This is a very small item in the governments' SOFT accounts and in model simulations we hold its value fixed at zero change.

[^10]: ${ }^{14}$ This item includes gross interest received on bank balances, investment and advances of the government (see ABS cat. no. 1217.0)

[^11]: 15 We would prefer to relate the change in government interest receipts and payments to changes in the level and composition of government debt. At this stage of the model's development, we lack a specification of the mechanism by which the govemments may target and achieve a particular debt outcome. Our current specification of interest payments is consequently ad hoc.

[^12]: ${ }^{16}$ This section draws on Horridge. Parmenter and Pearson (1993).

[^13]: ${ }^{17}$ For a full discussion of atternalive model closures, see Chapter 4.

[^14]: ${ }^{18}$ This section draws on Horridge, Parmenter and Pearson (1993).

