MONASH University

Department of Economics
Discussion Papers
ISSN 1441-5429

Reformulating Critical Values for the Bounds Fstatistics Approach to Cointegration: An Application to the Tourism Demand Model for Fiji

Paresh Kumar Narayan

$$
\text { ID\# } 11790
$$

No. 02/04

Monash University
Victoria 3800
Australia
© 2004 Paresh Kumar Narayan
All rights reserved. No part of this paper may be reproduced in any form, or stored in a retrieval system, without the prior written permission of the author.

Reformulating Critical Values for the Bounds F-statistics Approach to

 Cointegration: An Application to the Tourism Demand Model for Fiji*Paresh Kumar Narayan

Mailing Address
Department of Economics
(Box 11E)
Monash University
Victoria 3800
Australia
E-mail: Paresh.Narayan@BusEco.monash.edu.au

[^0]
Reformulating Critical Values for the Bounds F-statistics Approach to Cointegration: An Application to the Tourism Demand Model for Fiji

Abstract

This paper examines the short-and long-run relationships between visitor arrivals to Fiji, real disposable incomes, and own-hotel price and substitute hotel price for the period 1970-2000, using the bounds testing approach to cointegration and error correction models. The paper's main contribution is that it generates bounds F statistic critical values specific to the study's sample size (31 observations) and finds that critical values are 35.5\% higher than those reported in Pesaran et al. (2001) for 1000 observations and 17.1% higher than those reported in Pesaran and Pesaran (1997) for 500 observations for a model with 4 regressors and an intercept. In the light of this, we tabulate critical values for sample sizes ranging from $\mathbf{3 0}$ observations to 80 observations, which will be useful for future researchers using the bounds testing approach to cointegration.

Keywords: Fiji, tourism, cointegration, error correction models, bounds test

INTRODUCTION

The tourism industry in Fiji has become the largest and fastest growing industry and is in the vanguard of economic development. In a recent study, using a computable general equilibrium model, Narayan (2003) finds that for every 10,000 new visitor arrivals, real gross domestic product (GDP) increases by 0.35 percent while real national welfare of Fijians increases by 0.51 percent.

Tourism eamings in Fiji have increased substantially, from F\$108 million in 1980 to F $\$ 521$ million in 2001. Total receipts from tourism as a proportion of total export receipts have also been at healthy levels: valued at around 25 percent in 1980, they increased to around 30 percent by 1990, and in 2001 they were valued at over 38 percent of total export receipts. Similarly, tourism receipts as a percentage of GDP have increased substantially from around 11 percent in 1980 to around 20 percent by 1992, settling at around 25 percent in 2001. The industry provides direct and indirect employment to around 40,000 people (Ministry of Tourism 1997). In this light, the industry is increasingly seen as a catalyst for economic growth and a significant element for structural change in Fiji's economy.

The main sources of tourists for Fiji are Australia, USA, New Zealand, Canada, UK, Europe, Japan, and the Pacific Island Countries. Of these countnes, Australia, New Zealand and USA are the major tourist source markets, accounting for over 60 percent of tourists to Fiji (Narayan, 2002).

The central aim of this paper is to examine the determinants of tourist artivals to Fiji from its three main source countries using the bounds testing approach to
cointegration. In using the single equation framework, our study is an advance over existing studies (see, for instance, Gounder, 1991, 2001, 2002; Pattichis, 1999; Tang and Nair, 2002; Tang, 2001, 2002; Fedderke and Liu, 2002; Caporale and Chiu, 1999, Alam and Quazi, 2003; Mah, 2000) using the bounds testing approach because we calculate bounds F-statistic critical values specific to our sample size. This is an important exercise given that existing critical values are based on sample sizes of 500 observations (Pesaran and Pesaran, 1997) and 1000 observations (Pesaran et al., 2001). By calculating critical values specific to our sample size, we ensure that inferences regarding cointegration are correct. Our main finding from this exercise is that the critical values for small samples sizes differ substantially from those available. Hence, we tabulate critical values for sample sizes ranging from 30 observations to $\mathbf{8 0}$ observations.

MODEL SPECIFICATION

Consistent with previous empirical studies on tourism demand modeling, the proposed model for Fiji's tourism demand from its main tourist source markets is of the form:
$\ln V A_{y, t}=\alpha_{0}+\alpha_{1} \ln G D I_{i, \lambda}+\alpha_{2} \ln H P I_{i j, 1}+\alpha_{3} \ln P F B_{i}+\alpha_{4} \ln T C_{i j,}$ $+\alpha_{5} \operatorname{Coup}_{j, s}+\varepsilon_{t}$
where $\quad i=1,2,3$ (Australia, New Zealand and USA respectively) is the country of origin and j is the destination country (Fiji);
$\ln V A_{i j}$ is the \log of tourist (visitor) arrivals to Fiji in year t;
$\ln G D I_{i,}$ is the \log of per capita real gross disposable income of the origin country in year t,
$\ln H P I_{y,}$, is the log of hotel price index. ${ }^{\prime}$ It is measured as the hotel price in Fiji relative to country i in year ;
$\ln P F B_{i}$ is the \log of the total cost of holidaying ${ }^{2}$ in Fiji relative to Bali for a tourist from country i in year t^{3};
$\ln T C_{y,}$ is the \log of the real airfares between Sydney, Auckland and Los Angeles to Nadi (Fiji);
Coup_{j}, is a dummy variable used to capture the effects of coups d'êtat in Fiji, taking the value of $\mathbf{1}$ in the year of the coup and 0 otherwise;
ε_{t} is the error term; and $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and α_{4} are the elasticities to be estimated.

Previous studies have used either visitor arrivals or visitor expenditures as a dependent variable (Crouch 1994). This study uses the number of visitor arrivals from the origin country (Australia, New Zealand and USA, respectively) to Fiji in the years 1970 to 2000 inclusive.

The selection of independent variables was determined by reviewing previous empirical studies (Kulendran 1996; Kulendran and King 1997; Seddighi and Shearing 1997; Lim and McAleer 2001; among others). In a survey of 100 empirical studies on tourism demand modelling, Lim (1997) found that income and price were the most commonly used explanatory variables. This study includes both of these variables. For
the price variable, this study uses the hotel price index as a measure of the costs to a tourist in both the destination and origin country since the bulk of tourist expenditure is on accommodation and food.

Income: Economic theory suggests that one of the major determinants of demand for travel is the income of tourists in the origin country. The per capita real disposable income of the origin country was used in this analysis. Demand theory states that, as per capita incomes rise, more people are likely to travel. An increase in real per capita income in the origin country will increase the number of people visiting Fiji from Australia, New Zealand and USA. Hence, the expected sign of the estimated coefficient on per capita real income is positive.

Substitute price: The World Bank (1995) and the Fiji Ministry of Tourism (1997) identified Bali as one of Fiji's main competitors for tourists from Australia, New Zealand and USA. The underlying assumption is that for residents from these countries, Bali is a good substitute destination for Fiji because Bali and Fiji have many features in common, such as sandy beaches and climate. As the total cost of holidaying in Fiji increases relative to Bali there will be a fall in tourist arrivals to Fiji from its main source markets.

Own-price: The second price variable in the model is the hotel price (hotel price in Fiji relative to the tourist source country) based on the assumption that, with an increase in the cost of hotel price in Fiji relative to its source market, tourists may prefer spending their vacation at home. As the hotel price in Fiji relative to its main source markets increases there will be a fall in tourists to Fiji.

Transport cost: the one-way real economy class airfares between Sydney, Auckland and Los Angeles to Fiji are also incorporated in the model. The underlying assumption is that, as the cost of travel between Fiji and its main tourist source markets increases, there will be a fall in tourists coming to Fiji from these countries.

Demand theory also implies that the demand for tourism is affected by other special factors such as political unrest, economic recession and mega events (Leob, 1982; Lee et al, 1996). Coups d' e tat in Fiji is used as a dummy variable to capture its effects on visitor arrivals; its estimated coefficient is expected to have a negative sign. This is because coups d^{\prime} e tat lead to political instability and threats to personal security, all of which deter tourists from travelling to affected destinations.

Annual data are used for the period 1970 to 2000 . Visitor arrival figures and expenditure on accommodation and food are published by the Fiji Bureau of Statistics (FBOS) - Current Economic Stotistics, while tourist expenditures on accommodation and food for other countries are available from various country-based statistical publications. Gross disposable income for all countries is published in the $O E C D$ Main Economic Indicators, and data on Bali are extracted from Statistika Indonesia. Finally, data on airfares are available in the $A B C$ World Airways Guide/OAG World Airways Guide (Red Book), published by the Reed Group.

METHODOLOGY

The methodology used here is based on the recently developed autoregressive distributed lag (ARDL) ${ }^{4}$ framework (Pesaran and Shin, 1995, 1999; Pesaran et al, 1996; Pesaran, 1997; Pesaran et al., 1998) which does not involve pre-testing
variables, thereby obviating uncertainty. ${ }^{5}$ Put differently, the ARDL approach to testing for the existence of a relationship between variables in levels is applicable irrespective of whether the underlying regressors are purely $l(0)$, purely $/(1)$, or mutually cointegrated. The statistic underlying the procedure is the Wald or F-statistic in a generalised Dickey-Fulier regression, which is used to test the significance of lagged levels of the variables in a conditional unrestricted equilibrium correction model (ECM) (Pesaran et al., 2001: 1).

The estimates obtained from the ARDL method of cointegration analysis are unbiased and efficient given the fact that: (a) it can be applied to studies that have a small sample, such as the present study; (b) it estimates the long-run and short-run components of the model simultaneously, removing problems associated with omitted variables and autocorrelation; (c) the ARDL method can distinguish between dependent and indepedent variables.

Suppose that with respect to our model (equation 1), theory predicts that there is a long-run relationship among $\ln V A, \ln G D P, \ln H P I, \ln P F B$ and $\ln T C$. Without having any prior information about the direction of the long-run relationship among the variables, the following unrestricted error correction (EC) regressions are estimated, considering each of the variables in turn as the dependent variable:

$$
\begin{align*}
& \Delta \ln V A_{i j, t}=a_{0 V A}+\sum_{\rho=1}^{n} b_{p V A} \Delta \ln V A_{i j \lambda-\rho}+\sum_{p=0}^{n} c_{p V A} \Delta \ln G D I_{i, \lambda-\rho} \\
& +\sum_{p=0}^{n} d_{p V A} \Delta \ln H P I_{i j, i-p}+\sum_{p=0}^{n} e_{p V A} \Delta \ln P F B_{i-p} \tag{2a}\\
& +\sum_{\rho=0}^{n} f_{p V A} \Delta \ln T C_{i j t-p}+\lambda_{1 V A} \ln V A_{i j,-1}+\lambda_{2 V A} \ln G D I_{i,-1} \\
& +\lambda_{3 V A} \ln H P I_{i j t-1}+\lambda_{4 V A} \ln P F B_{t-1}+\lambda_{5 V A} \ln T C_{i j, t-1}+\varepsilon_{1,}
\end{align*}
$$

$$
\begin{align*}
& \Delta \ln G D I_{i, 4}=a_{0 G D I}+\sum_{p=1}^{n} b_{p G D I} \Delta \ln G D I_{i,-p}+\sum_{p=0}^{\pi} c_{p G D I} \Delta \ln V A_{i j, t-p} \\
& +\sum_{p=0}^{n} d_{p G D I} \Delta \ln H P I_{t y t-p}+\sum_{p=0}^{n} e_{p G D I} \Delta \ln P F B_{t-p} \tag{2b}\\
& +\sum_{p=0}^{n} f_{p G D I} \Delta \ln T C_{y, t-\rho}+\lambda_{1 G D I} \ln V A_{i j,-1}+\lambda_{2 G D I} \ln G D I_{t,-1} \\
& +\lambda_{3 G D} \ln H P I_{y, t-1}+\lambda_{4 G D I} \ln P F B_{t-1}+\lambda_{S G D t} \ln T C_{i j,-1}+\varepsilon_{2 t} \\
& \Delta \ln H P I_{y, t}=a_{0 H P I}+\sum_{p=1}^{n} b_{p H P I} \Delta \ln H P I_{y,-p}+\sum_{p=0}^{n} c_{p H P I} \Delta \ln G D I_{t,-p} \\
& +\sum_{\rho=0}^{n} d_{p H P t} \Delta \ln V A_{y, 1-p}+\sum_{p=0}^{n} e_{p H P P} \Delta \ln P F B_{t-p}+\sum_{p=0}^{n} f_{p H P t} \Delta \ln T C_{i, t-p} \tag{2c}\\
& +\lambda_{1 A P I} \ln V A_{y,-1}+\lambda_{2 H P I} \ln G D I_{t,-1}+\lambda_{3 H P I} \ln H P I_{j, j,-1} \\
& +\lambda_{A H P I} \ln P F B_{t-1}+\lambda_{\text {sHPt }} \ln T C_{y, t-1}+\varepsilon_{3 t}
\end{align*}
$$

$\Delta l n P F B_{1}=a_{0 P F B}+\sum_{p=1}^{n} b_{p P F B} \Delta \ln P F B_{1-p}+\sum_{p=0}^{n} c_{p P F B} \Delta \ln H P I_{y,-p}$
$+\sum_{p=0}^{n} d_{p P F B} \Delta \ln G D I_{1,-p}+\sum_{p=0}^{n} e_{p P F B} \Delta \ln V A_{i j,-p}+\sum_{p=0}^{n} f_{p P F B} \Delta \ln T C_{i y,-p}$
$+\lambda_{1 P F B} \ln V A_{i_{i t-1}}+\lambda_{2 P F B} \ln G D I_{I_{1,-1}}+\lambda_{3 P F B} \ln H P I_{t, t-1}$
$+\lambda_{4 P F B} \ln P F B_{i-1}+\lambda_{S P F B} \ln T C_{i j,-11}+\varepsilon_{45}$
$\Delta \ln T C_{b j}=a_{0 r c}+\sum_{p=1}^{n} b_{p r c} \Delta \ln T C_{y, 1-p} \sum_{p=0}^{n} c_{p \pi C} \Delta \ln P F B_{t-p}$
$+\sum_{\rho=0}^{n} d_{p r c} \Delta \ln H P I_{y, t-p}+\sum_{p=0}^{n} e_{p \pi c} \Delta \ln G D I_{1,1-p}+\sum_{p=0}^{n} f_{p r C} \Delta \ln V A_{y, t-p}$
$+\lambda_{1 \pi C} \ln V A_{\psi,-1}+\lambda_{2 \pi} \ln G D I_{i, k-1}+\lambda_{3 \pi} \ln H P I_{t, \lambda-1}$
$+\lambda_{4 \pi c} \ln P F B_{t-1}+\lambda_{5 \pi} \ln T C_{y, t-1}+\varepsilon_{51}$

The F tests are used for testing the existence of long-run relationships. When long-run relationships exist, the F test indicates which variable should be normalised. The null
hypothesis for no cointegration among the variables in Equation (2a) is $H_{0}: \lambda_{1 V A}=\lambda_{2 V A}=\lambda_{3 V A}=\lambda_{4 V A}=\lambda_{3 V A}=0$ against the altermative hypothesis $H_{1}: \lambda_{1 V A} \neq \lambda_{2 V A} \neq \lambda_{3 V A} \neq \lambda_{4 V A} \neq \lambda_{S V A} \neq 0$. This can also be denoted as: $F_{V A}(V A \mid G D I, H P I, P F B, T C)$. Similarly, the F test for the nonexistence of the long-run relationship in Equation
$H_{0}: \lambda_{1 G D I}=\lambda_{2 G D I}=\lambda_{3 G D I}=\lambda_{4 G D I}=\lambda_{S G D I}=0$ is denoted by $F_{G D I}(G D I \mid V A, H P I, P F B, T C)$, and so forth.

The F-test has a non-standard distribution which depends upon (i) whether variables included in the ARDL model are $I(0)$ or $I(1)$, (ii) the number of regressors, and (iii) whether the ARDL model contains an intercept and/or a trend. Critical values are reported by Pesaran and Pesaran (1997) and Pesaran er al. (2001). However, these critical values are generated for sample sizes of 500 and 1000 observations and 20,000 and $\mathbf{4 0 , 0 0 0}$ replications, respectively. Given the relatively small sample size in our study (31 observations), we calculate critical values specific to our sample size. To this end, we use the same GAUSS code used to generate the original set of critical values.

The critical value bounds are calculated using stochastic simulations for $\mathrm{T}=31$ and 40,000 reptications for the F-statistic. The F-statistic is used for testing the null hypothesis $\psi=\delta_{1}=\delta_{2}=\ldots=\delta_{k}=0$ in a model with an intercept but no trend. In the Pesaran et al. (2001: T3) terminology, a model with an intercept and no trend is referred to as Case II, and has the following form:

$$
\begin{equation*}
\Delta y_{t}=\beta_{0}+\psi y_{t-1}+\sum_{i=1}^{k} \delta_{i} x_{i, t-1}+\varepsilon_{t} \tag{3}
\end{equation*}
$$

Here, $t=1, \ldots T ; x_{t}=\left(x_{1 t}, \ldots, x_{k t}\right)^{\prime}$ and $z_{t-1}=\left(y_{t-1}, x_{t-1}^{\prime}, 1\right)^{\prime}, w_{t}=0$. The variables y_{t} and x_{t} are generated from $y_{t}=y_{t-1}-\varepsilon_{1 t}$ and $x_{t}=P x_{t-1}-\varepsilon_{2 t}, t=1, \ldots, T$, $y_{0}=0, x_{0}=0$ and $\varepsilon_{t}=\left(\varepsilon_{1 t}, \varepsilon_{2 t}^{\prime}\right)$ is drawn as $(k-1)$ independent standard normal variables. If x_{t} is purely $I(t)$, i.e. integrated of order one, $\mathrm{P}=I_{k}$. On the other hand, $\mathrm{P}=0$ if x_{t} is purely $I(0)$, i.e. if it is integrated of order zero. The critical values for $k=0$ correspond to those for the Dickey and Fuller (1981) unit root F-statistics. Two sets of critical values are generated and presented. One set refers to the $I(1)$ series and the other for the $I(0)$ series. Here, critical values for the $I(1)$ series are referred to as the upper bound critical values, while the critical values for the $I(0)$ series are referred to as the lower bound critical values.

If the computed F statistics falls outside the critical bounds, a conclusive decision can be made regarding cointegration without the need for knowing the order of integration of the regressors. For instance, if the empirical analysis shows that the estimated $F_{v A}($.$) is higher than the upper bound of the critical value, then the null hypothesis of$ no cointegration is rejected. When the computed F statistic falls inside the upper and lower bounds, a conclusive inference cannot be made without knowing the order of integration of the underlying regressors. ${ }^{6}$ In other words, unit root tests of the variables need to be conducted before proceeding with the ARDL technique.

Given that a long-run relationship exists, a further two-step procedure to estimate the model is undertaken. These steps are explained below.

Longron and short-run elasticities

Having found a long-run relationship (cointegration), equation (I) is estimated using the following ARDL (m, n, p, q, r) model:

$$
\begin{align*}
& \ln V A_{i j, s}=\alpha_{0}+\sum_{\rho=1}^{m} \alpha_{1} \ln V A_{i j,-p}+\sum_{\rho=0}^{n} \alpha_{2} \ln G D I_{i s-p}+\sum_{\rho=0}^{p} \alpha_{3} \ln H P I_{i, s-\rho} \tag{4}\\
& +\sum_{p=0}^{q} \alpha_{4} \ln P F B_{j-p}+\sum_{\rho=0}^{r} \alpha_{5} \ln T C_{i j, s-p}+\omega_{1}
\end{align*}
$$

Here all variables are as previously defined. The orders of the lags in the ARDL model are selected by either the Akaike Information criterion (AIC) or the Schwarz Bayesian criterion (SBC), before the selected model is estimated by ordinary least squares. We use the SBC criterion in lag selection. For annual data, Pesaran and Shin (1999) recommend choosing a maximum of 2 lags. From this, the lag length that minimises SBC is selected.

In the presence of cointegration, short-run elasticities can also be derived by constructing an error correction model of the following form:

$$
\begin{align*}
& \Delta \ln V A_{i j,}=\beta_{0}+\sum_{p=1}^{n} \beta_{1} \Delta \ln V A_{j, r-p}+\sum_{p=0}^{n} \beta_{2} \Delta \ln G D I_{i s-p} \\
& +\sum_{p=0}^{n} \beta_{3} \Delta \ln H P I_{y, i-p}+\sum_{p=0}^{n} \beta_{4} \Delta \ln P F B_{i-p}+\sum_{p=0}^{n} \beta_{5} \Delta \ln T C_{b, t-p} \tag{5}\\
& +\beta_{6} \text { Coup }_{s}+\psi E C M_{j, t-1}+\vartheta_{1}
\end{align*}
$$

where $E C M_{j, t}$ is the error correction term, defined as

$$
\begin{align*}
& E C M_{y, t}=\ln V A_{y,}-\alpha_{0}-\sum_{\rho=1}^{m} \alpha_{1} \ln V A_{y, \lambda-p}-\sum_{p=0}^{n} \alpha_{2} \ln G D I_{i, s-p} \tag{6}\\
& -\sum_{\rho=0}^{p} \alpha_{3} \ln H P I_{y, \lambda-p}-\sum_{\rho=0}^{\ell} \alpha_{4} \ln P F B_{t-p}-\sum_{p=0}^{\infty} \alpha_{5} \ln T C_{i j, 1-p}
\end{align*}
$$

Here Δ is the first difference operator; β 's are the coefficients relating to the shortrun dynamics of the model's convergence to equilibrium, and $\psi /$ measures the speed of adjustment.

INTERPRETATION OF THE RESULTS

In the first step we estimate equations (2a-2e) to examine the long-run relationships among the variables in model I. Since the observations are annual, we choose 2 as the maximum order of lags in the ARDL and estimate for the period 1970-2000. The calculated F-statistics for model 1 are reported in Table 1. The critical values are reported in Table 2. The calculated F-statistic when visitor arrivals to Fiji from its main source markets is the dependent variable, $F_{V A}($.$) , is higher than the upper bound$ critical value at the 5 percent level of significance (4.73. Table 2) for Australia and New Zealand. For example, in the case of Australian demand for Fiji tourism, $F_{V A}()=$.5.08 . In the case of New Zealand demand for Fiji tourism, $F_{V A}()=$.4.90 . In the case of US demand for Fiji tourism, $F_{V_{A}}()=$.4.16 , which is greater than the critical value at the 10 percent level (3.92) of significance. This implies that the null hypothesis of no cointegration cannot be accepted at the 10 percent level or better and that there is indeed a cointegration relationship among the variables in model 1. Notice also that when the other variables in model I, for all three countries, are used
as a dependent variable, the F-statistics are smaller than the lower bound critical values. According to Pesaran et al. (2001), this implies that there is a unique long run equilibrium in model I for the demand for Fiji's tourism from its source markets.

INSERT TABLE 1

Next we compare the critical values generated with 31 observations and the critical values reported in Pesaran et al. (2001) based on 1000 observations. The upper bound critical value at the 5 percent significance level for 31 observations with 4 regressors is 4.73 (Table 2). The corresponding critical value for 1000 observations is 3.49 (Table 3). This indicates that the critical value for 1000 observations is 35.5% lower than for 31 observations.

INSERT TABLES 2-3

Meanwhile, the critical values reported in Pesaran and Pesaran (1997), while close to the critical values generated for 31 observations, are still an underestimation because they are based on 500 observations. For instance, the upper bound critical value at the 5 percent level with 4 regressors is 4.04 , which is 17.1 percent less than that for 31 observations.

This comparison reveals two things. One, it justifies our exercise of re-estimating critical values specific to our sample size. In doing so, it is clear that we have achieved a reliable conclusion regarding cointegration. Two, it questions the extant literature which has used the bounds testing approach to cointegration using small sample sizes. ${ }^{7}$ Given this, we are motivated to ensure that future studies (both tourism and non-tourism based) draw reliable conclusions regarding cointegration. To this end, we compute a new set of critical values for sample sizes ranging from 30 observations to 80 observations (see Appendix A).

The empirical results of the long-run tourism demand model for Fiji's three main tourist source countries, oblained by normalising on visitor arrivals, are presented in Table 4. All variables appear with the correct sign. Clearly, incomes of origin countries, travel costs, own-price and substitute prices are influential in determining visitor arrivals to Fiji. However, the magnitudes of the estimated elasticities vary across markets.

INSERT TABLE 4

Fiji is likely to gain as gross disposable incomes in origin countries rise: the results imply that a 1% increase in income will lead to $3.6 \%, 3.1 \%$ and 4.3% increases in visitor arrivals from Australia, New Zealand and USA, respectively. New Zealanders seem to be more responsive to an increase in the cost of travel to Fiji (-3.4%). On the other hand, all countries react negatively to an increase in the cost of holidaying in Fiji relative to Bali. The results imply that with a 1% increase in the cost of holiday in Fiji relative to Bali, visitor arrivals from Australia, New Zealand and USA will fall by $2.5 \%, 2.4 \%$ and 5%, respectively. However, this result, while statistically significant at the 1% level for Australian and New Zealand demand for Fiji tourism. From this, we can conclude that Bali is indeed a substitute destination for Fiji tourism with respect to tourists coming from Australia and New Zealand.

Lasily, the hotel price index is also negatively related to visitor arrivals to Fiji. New Zealanders and Americans are less responsive to the hotel price difference than Australians. The message, however, is clear: Fiji needs to maintain price competitiveness for the growth and development of its tourism industry.

The results of the error correction model for Australia, New Zealand and USA are presented in Table 5. The results indicate that growth in income in origin countries impacts positively on visitor arrivals. However, this result is only significant in the case of visitors from USA. The transport cost variable impacts negatively upon visitor arrivals in the short rum, the result being significant at the 10% level only in the case of visitors from New Zeatand. Finally, as expected, coups tend to have a significant negative effect on visitor arrivals. In the year of a coup, visitor arrivals from Australia fall by around 19 percent, from New Zealand by around 25 percent, and from the USA by around 47 percent.

We applied a number of diagnostic tests to the error correction model (Table 5). There is no evidence of autocorrelation in the disturbances. The model passes the JarqueBera normality test, suggesting that the errors are normally distributed. The RESET test indicates that the model is correctly specified, while the F-tests for forecast indicate the predictive power and accuracy of the model.

INSERT TABLE 5

The stability of the regression coefficients is evaluated using the cumulative sum (CUSUM) and the cumulative sum of squares (CUSUMSQ) tesst for structural stability (Brown et al., 1975). The regression equation appears stable as neither the CUSUM nor CUSUMSQ test statistics exceed the bounds at the 5% level of significance.

Granger (1986) notes that the existence of a significant error correction term is evidence of casuality in at least one direction. The lagged error correction term
$E C M_{t-1}$ is negative and significant at the 1% level for all countries. The coefficients of $-0.2731,-0.2886$ and -0.1658 for Australia, New Zealand and the USA, respectively, indicate a moderate rate of convergence to equilibrium.

Conclusions and policy implications

In this paper, we have used the bounds testing approach to cointegation (developed within an autoregressive distributed lag framework) to investigate whether a long-run equilibrium relationstip exists between visitor arrivals, prices and income. The main contribution of this paper is that we calculate critical values for the bounds F-statistics specific to our sample size (31 observations). This as an important exercise as existing critical values are based on either 500 observations (Pesaran and Pesaran, 1997) or 1000 observations (Pesaran et al., 2001). On comparing the critical values generated from estimating a tourism demand model for Fiji , we find that they are 17.1% higher that those reported in Pesaran and Pesaran (1997) and 35.5\% higher than those reported in Pesaran ef $\boldsymbol{a l}$., (2001) for a model with 4 regressors and an intercept. This result questions the reliability of existing studies. As a remedy, that is, to ensure that future studies applying the bounds testing approach draw reliable conclusions regarding cointegration, we provide a new set of critical values for sample sizes ranging from 30 observations to 80 observations.

References

ABC World Airways Guide/OAG World Airways Guide, (various issues), Red Book, Reed Publishers, London.

Alam, M.I., and Quazi, R.M., (2003), 'Determinants of capital flight: an econometric case study of Bangladesh', International Review of Applied Economics, Vol 17, pp 85-103.
Cavanagh, C., Elliott, G., and Stock, J.H. (1995), 'Inference in models with nearly integrated regressors', Econometric Theory, pp 1131-47.
Caporale, G.M., and Chui, M.K.F., (1999), 'Estimating income and price elasticities of trade in a cointegration framework', Review of International Economics, Vol 7, pp 254-264.

Chan, N.H., and Wei, C.Z. (1988), 'Limiting distributions of least squares estimates of unstable autoregressive processes', The Amals of Statistics, Vol 16, pp 367 401.

Crouch, G.I. (1994), 'The study of international tourism demand: A survey of practice', Journal of Travel Research, Vol 32, No 4, pp 41-57.
Dickey, D.A., and Fuller, W.A. (1981), 'Likelihood Ration Statistics for Autoregressive Time Series with a Unit Root', Econometrica, Vol 49, pp 1057-72.

Engle, R.F., and Granger, C.W.J. (1987), 'Cointegration and error correction: representation, estimation and testing', Econometrica, Vol 55, pp 251-276.
Fedderke, J.W., and Liu, W., (2002), 'Modelling the determinants of capital flows and capital flight: With an application to South African data from 1960 to 1995', Economic Modelling, Vol 19, pp 419-444.

Gounder, R.. (1999), 'The political economy of development: Empirical results from Fiji', Economic Analysis and Pollcy, Vol 29, pp 133-150.

Gounder, R., (2001), 'Aid-growth nexus: Empirical evidence from Fiji', Applied Economics, Vol 33, pp 1008-1019.

Gounder, R., (2002), 'Political and economic freedom, fiscal policy and growth nexus: Some empirical results for Fiji', Contemporary Economic Policy, Vol 20, pp 234-245.
Granger, C.W.J. (1986), 'Development in the study of cointegrated economic variables', Oxford Bulletin of Economics and Statistics, Vol 48, pp 213-228.
Hendry, D., Pagan, A., and Sargan, J. (1984), Dynamic Specification. Chapter 18 in Handbook of Econometrics, vol.II , Griliches, Z. and Intriligator, M. (eds.), North Holland, Amsterdam.

Johansen, S. (1991), 'Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models', Econometrica, Vol 59, pp 1551-1580.

Johansen, S. (1995), Likelihood Based Inference in Cointegrated Vector Autoregressive Models, Oxford University Press, Oxford.

Johansen, S., and Juselius, K., (1990), 'Maximum Likelihood Estimation and Inference on Cointegration - with Applications to the Demand for Money', Oxford bulletin of Economics and Statistics, Vol 52, pp. 169-210.

King, B., and McVey, M. (1997), 'Hotel investment in the South Pacific', Travel and Tourism Analyst, Vol 5, pp 63-87.
Kulendran, N. (1996), 'Modelling quarterly tourist flows to Australia using cointegration analysis', Tourism Economics, Vol. 2, No 3, pp 203-222.
Kulendran, N., and King, M.L. (1997), 'Forecasting international quarterly tourist flows using error correction and time series models', International Journal of Forecasting, Vol 13, pp 319-27.

Lee, C., Var, T., and Blain, T.W. (1996), 'Determinants of inbound tourist expenditures, Annals of Tourism Research', Vol 23, No 3, pp 527-542.
Lim, C. (1997), 'An econometric classification and review of international tourism demand models', Tourism Economics, Vol 3, No 1, pp 69-81.

Lim, C., and McAleer, M. (2001), 'Cointegration analysis of quarterly tourism demand by Hong Kong and Singapore for Australia', Applied Economics, Vol 33, pp 1599-1619.
Loeb, P.D. (1982), 'International travel to the United States: an econg cetric evaluation', Annals of Tourism Research, Vol 9, pp 7-20.
Mah, J., (2000), 'An empirical examination of the disaggregated import demand of Korea - the case of information technology product', Journal of Asian Economics, Vol 11, pp 237-244.
Ministry of Tourism, (1997), Fiji Tourism Developmemt Plan 1998-2005, Ministry of Tourism, Suva.

Narayan, P.K. (2000), 'Fiji's tourism industry: a SWOT analysis', Journal of Tourism Studies, Vol 11, No 2, pp 110-112.

Narayan, P.K. (2002), 'A Tourism Demand Model for Fiji, 1970-2000', Pacific Economic Bulletin, Vol 17, pp. 103-116.
Narayan, P.K. (2003), 'Economic Impact of the 2003 South Pacific Games for Fiji', Economic Papers, Vol 20, pp.10-24.
Park, J.Y. (1990), 'Testing for unit roots and cointegration by variable addition', Advances in Econometrics, 8, 107-133.
Pattichis, C.A., (1999), 'Price and income elasticities of disaggregated import demands: Results from UECMs and an application', Applied Economics, Vol 31, pp 1061-1071.
Prasad, B.C., and Tisdell, C.A. (1998), Tourism in Fiji: Its Economic Development and Property Rights, in C.A. Tisdell and K. Roy (eds.) Tourism and Development: Economic, Social, Political and Environmental Issues Nova Science Publishers, New York.
Pesaran H.M., and Shin Y. (1995), 'Autoregressive distributed lag modelling approach to cointegration analysis', DAE Working Paper Series No. 9514, Department of Economics, University of Cambridge.

Pesaran H.M., Shin Y., and Smith R. (1996), 'Testing the existence of a long-run relationship', DAE Working Paper Series No. 9622, Department of Applied Economics, University of Cambridge.

Pesaran, H.M., and Pesaran, B. (1997), Microfit 4.0, Oxford University Press, England.

Pesaran, M.H. (1997), 'The role of economic theory in modelling the long-run', Economic Journal, Vol 107, pp 178-191
Pesaran, M.H., and Shin, Y. (1999), An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis, Chapter 11, in Storm, S., (ed.), Econometrics and Economic Theory in the $20^{\text {th }}$ Century: the Ragnar Frisch Centennial Symposium, Cambridge University Press, Cambridge.
Pesaran, M.H., Shin, Y., and Smith, R.J. (2001), 'Bounds testing approaches to the analysis of level relationships', Journal of Applied Econometrics, Vol 16, pp 289-326.

Phillips, P.C.B., and Ouliaris, S. (1990), Asymptotic properties of residual based tests for cointegration, Econometrica, Vol 58, pp 165-193.

Reserve Bank of Fiji, (2002), Reserve Bank of Fiji Quarterly, Reserve bank of Fiji, Suva.

Seddighi, H.D., and Shearing, D.F. (1997), The demand for tourism in North East England with special reference to Northumbria: an empirical analysis, Tourism Management, Vol 18, No 8, pp 499.511.

Shin, Y. (1994), 'A residual based test of the null of cointegration against the alternative of no cointegration', Econometric Theory, Vol 10, pp 91-115.
Stock, J.H., and Watson, M.W. (1988), 'Testing for common trends', Journal of American Statistical Assoctation, Vol 83, pp 1097-1107.
Tang, T.C., (2001), 'Bank lending and inflation in Malaysia: Assessment from unrestricted error-correction models', Astan Economic Journal, Vol 15, pp 275-289.

Tang, T.C., (2002), 'Demand for M3 and expenditure components in Malaysia: Assessment from bounds testing approach', Applied Economics Letters, Vol 9, pp 721-725.

Tang, T.C., and M. Nair, (2002), 'A cointegration analysis of Malaysian import demand function: Reassessment from the bounds test', Applied Economics Leffers, Vol 9, pp 293-296.
World Bank, (1995) Fiji: Resolving Growth in a Changing Global Environment, World Bank, Washington DC.

TABLES

Table 1: F-statistics for cointegration relationship in Model 1

Statistic	Australia	New Zealand	USA
$F_{V A}()$.	5.0777	4.9032	4.1588
$F_{G D I}()$.	0.2068	1.5884	0.8879
$F_{T C}()$.	1.1413	1.7115	1.6302
$F_{H P I}()$.	1.0292	1.3538	1.5047
$F_{P F B}()$.	1.5969	0.9370	1.3790

Table 2: Critical values for the F-test
Critical values for $I(0)$ series

Significance level							
k	20%	10%	5%	2.5%	1%	mean	var
0	3.0450	4.0200	5.0650	6.1050	7.4850	2.1000	4.6650
1	1.1800	1.6900	2.2267	2.8133	3.6267	0.7467	1.7633
2	1.2600	1.7350	2.2300	2.7400	3.4150	0.8300	2.0850
3	1.3080	1.7520	2.2040	2.6620	3.2980	0.8820	2.3780
4	1.3300	1.7517	2.1650	2.6000	3.1900	0.9167	2.5850
5	1.1400	1.5014	1.8557	2.2286	2.7343	0.7857	2.2157
6	1.1800	1.5213	1.8763	2.2438	2.7400	0.8250	2.4700
7	1.3733	1.7400	2.1144	2.5000	3.0411	0.9822	3.2478
8	1.3840	1.7480	2.1110	2.4920	2.9980	0.9980	3.5100
9	1.3936	1.7545	2.1282	2.4936	3.0627	1.0145	3.8555
10	1.4000	1.7650	2.1383	2.4983	3.0025	1.0275	4.1450

Critical values for $I(1)$ series

Significance level							
	20%	10%	5%	2.5%	1%	mean	var
0	4.9200	6.8100	8.7800	10.7200	13.3600	3.0900	8.5900
1	3.8800	5.0900	6.3100	7.5400	9.1400	2.5800	7.5400
2	3.4967	4.4633	5.4333	6.4000	7.8433	2.4200	7.6300
3	3.2825	4.1350	4.9600	5.8625	7.0075	2.3375	7.8525
4	3.1700	3.9220	4.7300	5.5140	6.5600	2.2940	8.3400
5	3.0800	3.8283	4.5600	5.3100	6.3200	2.2767	8.9500
6	3.0557	3.7571	4.4371	5.1314	6.1171	2.2629	9.5571
7	3.0075	3.6850	4.3788	5.0663	6.1375	2.2525	10.3888
8	2.9889	3.6644	4.3167	5.0589	5.9833	2.2511	11.2211
9	2.9690	3.6570	4.3340	5.0060	5.9980	2.2550	12.2210
10	2.9618	3.6364	4.3264	5.0382	6.0509	2.2573	13.3764

[^1]Table 3: F-test critical values from Pesaran et al (2001: T1)

	10 percent		5 percent		I percent	
k	$I(0)$	$I(1)$	$I(0)$	$I(1)$	$I(0)$	$I(1)$
4	2.20	3.09	2.56	3.49	3.29	4.37

Source: The critical value bounds are from Tabie CI.ii (Pesaran et al., 2001: Tl). * k is the number of regressors.

Table 4: Econometric results for the long-run model (visitor arrivals is the dependent variable), 1970-2000

Variables	Australia	New Zealand	USA
Constant	13.7927	18.8153	15.5039^{*}
	(0.9622)	(1.2110)	(1.9251)
Income (GDI)	$3.5903^{* * *}$	$3.0717^{* * *}$	$4.3562^{* *}$
	(3.2212)	(2.9872)	(2.4223)
Cost of travel (TC)	-1.1371^{*}	-3.4159^{*}	$-1.9780^{* * *}$
	(-1.9255)	(-1.8992)	(2.2109)
Relative hotel price (HPI)	$-2.0067^{* *}$	-0.5967^{*}	-0.8983^{*}
	(2.4110)	(1.9622)	(1.8622)
Substitute price (PFB)	$-2.4941^{* * *}$	$-2.4057^{* * *}$	-5.0578^{*}
	(-3.8226)	(-3.1058)	(-1.6223)

Note: $\left.{ }^{(4 *}\right)^{* * *}$ denotes stalistical significance at the 10 percent, 5 percent and i percent levels respectively. "denotes statistical significance at the 20 percent level.

Table 5: The error correction model for Australia, New Zealand and the United States

Variables	Australia	New Zealand	USA	
Constant	$\begin{gathered} 0.0010 \\ (0.0354) \end{gathered}$	$\begin{gathered} 0.0107 \\ (0.6017) \end{gathered}$	$\begin{gathered} -0.2678 \\ (4.8581)^{* * *} \end{gathered}$	
$\Delta \ln V A_{t-\mathrm{t}}$	$\begin{gathered} 0.0172 \\ (0.0817) \end{gathered}$	$\begin{gathered} -0.3022 \\ (-2.3926)^{* *} \end{gathered}$	$\begin{gathered} -0.0420 \\ (0.3585) \end{gathered}$	
$\Delta \ln G D I_{\text {, }}$	$\begin{gathered} 0.5075 \\ (0.7146) \end{gathered}$	$\begin{gathered} 0.3403 \\ (0.4505) \end{gathered}$	$\begin{gathered} 2.1325 \\ (3.7720)^{* * *} \end{gathered}$	
$\triangle \ln G D I_{r-1}$	$\begin{array}{r} -0.9884 \\ (1.1794) \end{array}$			
$\triangle \ln T C$,	$\begin{aligned} & -0.3711 \\ & (1.2708) \end{aligned}$	$\begin{gathered} -0.3607 \\ (1.7254)^{*} \end{gathered}$	$\begin{gathered} -0.3485 \\ (1.0950) \end{gathered}$	
$\triangle \ln P F B_{i}$	$\begin{gathered} -0.4213 \\ (1.2397) \end{gathered}$	$\begin{gathered} 0.2688 \\ (1.5110) \end{gathered}$	$\begin{gathered} -0.4645 \\ (1.5404) \end{gathered}$	
$\Delta \ln \mathrm{PFB}_{\text {t-1 }}$		$\begin{gathered} 0.5744 \\ (2.4515)^{* *} \end{gathered}$		
$\Delta \ln H P I_{t}$		$\begin{gathered} 0.0254 \\ (0.1932) \end{gathered}$	$\begin{gathered} -0.0683 \\ (-0.4307) \end{gathered}$	
$\Delta \\|^{\prime} H P I_{t-1}$	$\begin{gathered} -0.8373 \\ \left(3.0656^{* *}\right. \end{gathered}$	$\begin{aligned} & 0.21855 \\ & (1.6487) \end{aligned}$	$\begin{gathered} 0.5024 \\ (3.3771)^{* * *} \end{gathered}$	
Coups	$\begin{gathered} -0.1950 \\ (3.0076)^{* * *} \end{gathered}$	$\begin{gathered} -0.2540 \\ (3.8372)^{* * *} \end{gathered}$	$\begin{gathered} -0.4718 \\ (5.4920)^{* * *} \end{gathered}$	
$E C M_{t-1}$	$\begin{gathered} -0.2731 \\ (4.0309)^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} -0.2886 \\ (6.7588)^{* * *} \end{gathered}$	$\begin{gathered} -0.1658 \\ (5.5379)^{* * *} \\ \hline \end{gathered}$	
Diagnostic tests				
\bar{R}^{2}	0.5480	0.8292	0.6600	
σ	0.1023	0.0769	0.1135	
$\chi_{\text {Atto }}^{2}(2)$	4.3857	0.3888	5.8598	
$\chi_{\text {Norm }}^{2}$ (2)	1.0691	1.0657	0.1951	
$\chi_{\text {Hpave }}^{2}(17),(17),(15)$	18.2681	21.3236	15.9227	
$\chi_{\text {RESET }}^{2}$ (2)	4.4940	2.6616	0.2368	
$F_{\text {Fowecast }}(6,19)$	1.0869	2.2713	0.6676	

Notes: Where σ is the standard entor of the regression; $\chi_{\text {amu }}^{2}(2)$ is the Breusch-Godfrey LM test for
 variables/finctional form; χ^{2} mour (17), (17), (15) is the White test for heteroscedasticity; $F_{\text {porasen }} 6,19$) is the Chow predictive failure lest (when calculating this test, 1995 was chosen as the starting point for forecasting). Critical value for $X^{2}(2)=5.99$.

APPENDIX A

A NEW SET OF CRITICAL VALUES

 FOR THE BOUNDS F-TESTAppendix A1: Critical values for the bounds test: Case II: restricted intercept and no trend

1 percent level																
	$k=0$						$k=3$		$k=4$		$k=5$		$k=6$			
	I(0)	I(1)	I(0)	I(1)	I(0)	I (1)		I(1)		$I(1)$	$1(0)$	I(1)		I(1)	$I(0)$	I(1)
	7.595	7.595	6.027	6.760	5.155	6.265	4.614	5.966	4.280	5.840	4.134	5.761	3.976	5.691	3.864	5.694
31	7.485	7.485	5.847	6.637	5.075	6.240	4.654	5.920	4.320	5.785	4.071	5.741	3.901	5.611	3.826	5.691
32	7.485	7.485	5.913	6.710	5.065	6.190	4.570	5.928	4.223	5.763	4.057	5.636	3.871	5.571	3.762	5.460
33	7.380	7.380	5.787	6.580	5.048	6.053	4.578	5.864	4.252	5.668	3.990	5.516	3.849	5.476	3.718	5.461
34	7.360	7.360	5.750	6.493	4.943	6.128	4.522	5.792	4.165	5.650	3.960	5.603	3.764	5.431	3.641	5.446
35	7.350	7.350	5.763	6.480	4.948	6.028	4.428	5.816	4.093	5.532	3.900	5.419	3.713	5.326	3.599	5.230
36	7.405	7.405	5.757	6.483	4.968	6.058	4.480	5.700	4.097	5.580	3.867	5.444	3.686	5.310	3.536	5.238
37	7.425	7.425	5.737	6.490	4.920	5.975	4.400	5.664	4.030	5.463	3.810	5.404	3.619	5.286	3.513	5.190
38	7.290	7.290	5.807	6.490	4.895	5.940	4.376	5.690	4.092	5.457	3.881	5.241	3.680	5.148	3.546	5.084
39	7.230	7.230	5.640	9.390	4.833	5.885	4.324	5.642	3.983	5.448	3.796	5.299	3.621	5.184	3.468	5.057
40	7.220	7.220	5.593	6.333	4.770	5.855	4.310	5.544	3.967	5.455	3.657	5.256	3.505	5.121	3.402	5.031
45	7.265	7.265	5.607	6.193	4.800	5.725	4.270	5.412	3.892	5.173	3.674	5.019	3.540	4.931	3.383	4.832
50	7.065	7.065	5.503	6.240	4.695	5.758	4.188	5.328	3.845	5.150	3.593	4.981	3.424	4.880	3.282	4.730
55	6.965	6.965	5.377	6.047	4.610	5.563	4.118	5.200	3.738	4.947	3.543	4.839	3.330	4.708	3.194	4.562
60	6.960	6.960	5.383	6.033	4.558	5.590	4.068	5.250	3.710	4.965	3.451	4.764	3.293	4.615	3.129	4.507
65	6.825	6.825	5.350	6.017	4.538	5.475	4.056	5.158	3.725	4.940	3.430	4.721	3.225	4.571	3.092	4.478
70	6.740	6.740	5.157	5.957	4.398	5.463	3.916	5.088	3.608	4.860	3.373	4.717	3.180	4.596	3.034	4.426
75	6.915	6.915	5.260	5.957	4.458	5.410	4.048	5.092	3.687	4.842	3.427	4.620	3.219	4.526	3.057	4.413
80	6.695	6.695	5.157	5.917	4.358	5.393	3.908	5.004	3.602	4.787	3.351	4.587	3.173	4.485	3.021	4.350

Appendix A2: Critical values for the bounds test: Case II: restricted intercept and no trend

5 percent level														
n	$k=0$		$k=1$		$k=2$		$k=3$		$k=4$		$k=5$		$k=6$	$k=7$
	$I(0)$	$I(1)$												

Appendix A3: Critical values for the bounds test: Case II: restricted intercept and no trend

10 percent level																
n																
	I(0)	I(1)	$I(0)$	I(1)	$I(0)$	I(1)	$I(0)$	I(1)	I(0)	I(1)	$I(0)$	$t(1)$	$I(0)$	I(1)	$I(0)$	$I(1)$
30	4.025	4.025	3.303	3.797	2.915	3.695	2.676	3.586	2.525	3.560	2.407	3.517	2.334	3.515	2.277	3.498
31	4.020	4.020	3.273	3.800	2.890	3.680	2.662	3.578	2.518	3.513	2.386	3.479	2.303	3.483	2.256	3.454
32	4.030	4.030	3.273	3.780	2.885	3.670	2.646	3.566	2.493	3.497	2.384	3.469	2.293	3.448	2.238	3.443
33	4.025	4.025	3.260	3.780	2.880	3.653	2.644	3.548	2.482	3.472	2.367	3.447	2.284	3.428	2.229	3.399
34	4.005	4.005	3.240	3.767	2.868	3.633	2.626	3.550	2.465	3.472	2.361	3.433	2.274	3.399	2.216	3.392
35	3.980	3.980	3.223	3.757	2.845	3.623	2.618	3.532	2.460	3.460	2.331	3.417	2.254	3.388	2.196	3.370
36	3.995	3.995	3.247	3.773	2.863	3.610	2.618	3.502	2.460	3.435	2.346	3.384	2.264	3.369	2.206	3.360
37	3.980	3.98	3.253	3.747	2.865	3.608	2.622	3.506	2.458	3.432	2.339	3.396	2.240	3.361	2.187	3.336
38	3.995	3.995	3.243	3.730	2.838	3.590	2.598	3.484	2.448	3.418	2.323	3.376	2.233	3.35	2.172	3.321
39	3.985	3.985	3.230	3.727	2.833	3.570	2.596	3.474	2.442	3.400	2.316	3.371	2.224	3.339	2.169	3.306
40	3.955	3.955	3.210	3.730	2.835	3.585	2.592	3.454	2.427	3.395	2.306	3.353	2.218	3.314	2.152	3.296
45	3.950	3.950	3.190	3.730	2.788	3.540	2.560	3.428	2.402	3.345	2.276	3.297	2.188	3.254	2.131	3.223
S0	3.935	3.935	3.177	3.653	2.788	3.513	2.538	3.398	2.372	3.320	2.259	3.264	2.170	3.220	2.099	3.181
55	3.900	3.900	3.143	3.670	2.748	3.495	2.508	3.356	2.345	3.280	2.226	3.241	2.139	3.204	2.069	3.148
G0	3.880	3.880	3.127	3.650	2.738	3.465	2.496	3.346	2.323	3.273	2.204	3.210	2.114	3.153	2.044	3.104
65	3.880	3.880	3.143	3.623	2.740	3.455	2.492	3.350	2.335	3.252	2.209	3.201	2.120	3.145	2.043	3.094
70	3.875	3.875	3.120	3.623	2.730	3.445	2.482	3.310	2.320	3.232	2.193	3.161	2.100	3.121	2.024	3.079
75	3.895	3.895	3.133	3.597	2.725	3.455	2.482	3.334	2.313	3.228	2.196	3.166	2.103	3.111	2.023	3.068
80	3.87	3.8	3.1	3.61	2.713	3.45	2.47	3.312	2.30	3.220	2.303	3.15	2.088	3.103	2.017	3.05

Appendix A4: Critical values for the bounds test: Case III restricted intercept and trend
$\left.\begin{array}{llllllllllllllll}\text { 1 percent level } & & k=1 & & k=2 & & k=3 & & k=4 & & k=5 & & k=6 & & k=7 \\ n & k=0 & & k=2\end{array}\right)$

Appendix A5: Critical values for the bounds test: Case III restricted intercept and trend

n	$k=$		$k=1$		$k=2$,		\ldots		\ldots		$k=6$			
	$1(0)$	I(1)	$I(0)$	I(1)	$I(0)$	I(1)	I(0)	$J(1)$	$I(0)$	$1(1)$	$I(0)$	I(1)	I(0)	$I(1)$	I(0)	I(1)
30	8.770	8.770	5.395	6.350	4.267	5.473	3.710	5.018	3.354	4.774	3.125	4.608	2.970	4.499	2.875	4.445
31	8.780	8.780	5.365	6.310	4.237	5.433	3.695	4.960	3.326	4.730	3.120	4.560	2.953	4.437	2.850	4.379
32	8.730	8.730	5.365	6.305	4.213	5.437	3.653	4.965	3.296	4.696	3.087	4.518	2.913	4.416	2.825	4.344
33	8.620	8.620	5.320	6.225	4.183	5.347	3.638	4.908	3.310	4.636	3.078	4.513	2.917	4.387	2.799	4.296
34	8.700	8.700	5.345	6.225	4.180	5.360	3.615	4.913	3.276	4.648	3.058	4.460	2.904	4.336	2.798	4.258
35	8.640	8.640	5.290	6.175	4.183	5.333	3.615	4.913	3.276	4.630	3.037	4.443	2.864	4.324	2.753	4.209
36	8.650	8.650	5.310	6.225	4.153	5.333	3.610	4.870	3.252	4.576	3.023	4.408	2.860	4.303	2.750	4.211
37	8.590	8.590	5.290	6.170	4.183	5.303	3.593	4.865	3.236	4.570	3.005	4.398	2.836	4.271	2.723	4.175
38	8.660	8.660	5.320	6.190	4.167	5.263	3.583	4.828	3.236	4.568	3.008	4.405	2.851	4.266	2.721	4.145
39	8.640	8.640	5.290	6.140	4.137	5.243	3.560	4.798	3.214	4.508	2.995	4.367	2.823	4.237	2.704	4.128
40	8.570	8.570	5.260	6.160	4.133	5.260	3.548	4.803	3.202	4.544	2.962	4.338	2.797	4.211	2.676	4.130
45	8.590	8.590	5.235	6.135	4.083	5.207	3.535	4.733	3.178	4.450	2.922	4.268	2.764	4.123	2.643	4.004
50	8.510	8.510	5.220	6.070	4.070	5.190	3.500	4.700	3.136	4.416	2.900	4.218	2.726	4.057	2.593	3.941
55	8.390	8.390	5.125	6.045	3.987	5.090	3.408	4.623	3.068	4.334	2.848	4.160	2.676	3.999	2.556	3.904
60	8.460	8.460	5.125	6.000	4.000	5.057	3.415	4.615	3.062	4.314	2.817	4.097	2.643	3.939	2.513	3.823
65	8.490	8.490	5.130	5.980	4.010	5.080	3.435	4.583	3.068	4.274	2.835	4.090	2.647	3.921	2.525	3.808
70	8.370	8.370	5.055	5.915	3.947	5.020	3.370	4.545	3.022	4.256	2.788	4.073	2.629	3.906	2.494	3.786
75	8.420	8.420	5.140	5.920	3.983	5.060	3.408	4.550	3.042	4.244	2.802	4.065	2.637	3.900	2.503	3.768
80	8.400	8.400	5.060	5.930	3.940	5.043	3.363	4.515	3.010	4.216	2.787	4.015	2.627	3.864	2.476	3.746

Appendix A6: Critical values for the bounds test: Case III restricted intercept and trend

10	percent level															
n	$k=0$		$k=1$		$k=2$		$k=3$		$k=4$		$k=5$		$k=6$		$k=7$	
	$I(0)$	$I(1)$														
30	6.840	6.840	4.290	5.080	3.437	4.470	3.008	4.150	2.752	3.994	2.578	3.858	2.457	3.797	2.384	3.728
31	6.810	6.810	4.295	5.090	3.417	4.463	2.995	4.135	2.752	3.922	2.560	3.828	2.434	3.757	2.350	3.685
32	6.850	6.850	4.285	5.090	3.427	4.473	2.985	4.133	2.720	3.926	2.555	3.808	2.429	3.727	2.345	3.678
33	6.840	6.840	4.265	5.050	3.403	4.437	2.975	4.095	2.716	3.888	2.530	3.778	2.417	3.703	2.330	3.641
34	6.810	6.810	4.255	5.060	3.403	4.440	2.968	4.098	2.692	3.902	2.517	3.773	2.410	3.679	2.316	3.621
35	6.810	6.810	4.225	5.050	3.393	4.410	2.958	4.100	2.696	3.898	2.508	3.763	2.387	3.671	2.300	3.606
36	6.830	6.830	4.255	5.060	3.377	4.423	2.948	4.063	2.690	3.868	2.507	3.725	2.390	3.637	2.306	3.588
37	6.740	6.740	4.220	5.015	3.383	4.403	2.955	4.083	2.684	3.870	2.505	3.735	2.380	3.634	2.283	3.573
38	6.850	6.850	4.260	5.030	3.383	4.387	2.938	4.045	2.684	3.846	2.493	3.722	2.366	3.640	2.283	3.564
39	6.770	6.770	4.240	4.985	3.380	4.377	2.940	4.028	2.662	3.830	2.485	3.715	2.361	3.616	2.276	3.551
40	6.760	6.760	4.235	5.000	3.373	4.377	2.933	4.020	2.660	3.838	2.483	3.708	2.353	3.599	2.260	3.534
45	6.760	6.760	4.225	5.020	3.330	4.347	2.893	3.983	2.638	3.772	2.458	3.647	2.327	3.541	2.238	3.461
50	6.740	6.740	4.190	4.940	3.333	4.313	2.873	3.973	2.614	3.746	2.435	3.600	2.309	3.507	2.205	3.421
55	6.700	6.700	4.155	4.925	3.280	4.273	2.843	3.920	2.578	3.710	2.393	3.583	2.270	3.486	2.181	3.398
60	6.700	6.700	4.145	4.950	3.270	4.260	2.838	3.923	2.568	3.712	2.385	3.565	2.253	3.436	2.155	3.353
65	6.740	6.740	4.175	4.930	3.300	4.250	2.843	3.923	2.574	3.682	2.397	3.543	2.256	3.430	2.156	3.334
70	6.670	6.670	4.125	4.880	3.250	4.237	2.818	3.880	2.552	3.648	2.363	3.510	2.233	3.407	2.138	3.325
75	6.720	6.720	4.150	4.885	3.277	4.243	2.838	3.898	2.558	3.654	2.380	3.515	2.244	3.397	2.134	3.313
80	6.720	6.720	4.135	4.895	3.260	4.247	2.823	3.885	2.548	3.644	2.355	3.500	2.236	3.381	2.129	3.289

ENDNOTES

Titles in the Department of Economics Discussion Papers

01.02

World Income Distribution and Tax Reform: Do Low-Income Countries Need Direct Tax System?
J Ram Pillarisetti
02-02
Labour Market Intervention, Revenue Sharing and Competitive Balance in the Victorian Football League/Australian Football League (VFL/AFL), 1897-1998
D Ross Booth
03-02
Is Chinese Provincial Real GDP Per Capita Nonstationary? Evidence from Panel Data and Multiple Trend Break Unit Root Tests
Russell Smyth
04-02
Age at Marriage and Total Fertility in Nepal
Pushkar Mairra

05-02
Productivity and Technical Change in Malaysian Banking 1989-1998
Ergun Dogan and Dietrich K Fausten
06-02
Why do Governments Encourage Improvements in Infrastructure? Indirect Network
Extemality of Transaction Efficiency
Yew-Kwang Ng and Siang Ng
07-02
Intertemporal Impartial Welfare Maximization: Replacing Discounting by Probability Weighting
Yew-Kwang Ng
08-02
A General Equilibrium Model with Impersonal Networking Decisions and Bundling Sales Ke Li and Xiaokai Yang

09-02
Walrasian Sequential Equilibrium, Bounded Rationality, and Social Experiments
Xiaokai Yang
10-02
Institutionalized Corruption and Privilege in China's Socialist Market Economy: A General Equilibrium Analysis
Ke Li, Russell Smyth, and Yao Shuntian
11-02
Time is More Precious for the Young, Life is More Valuable for the Old
Guang-Zhen and Yew-Kwang Ng

12-02
Ethical Issues in Deceptive Field Experiments of Discrimination in the Market Place Peter A Riach and Judith Rich

13-02
"Errors \& Omissions" in the Reporting of Australia's Cross-Border Transactions Dietrich K Fausten and Brett Pickett

14-02
Case Complexity and Citation to Judicial authority - Some Empirical Evidence from the New Zealand Court of Appeal
Russell Smyth
15-02
The Life Cycle Research Output of Professors in Australian Economics Departments: An
Empirical Analysis Based on Survey Questionnaires
Mita Bhattacharya and Russell Smyth
16-02
Microeconomic Reform in Australia: How Well is it Working?
Peter Forsyh
17-02
Low Cost Carriers in Australia: Experiences and Impacts
Peter Forsyth
18-02
Reforming the Funding of University Research
Peter Forsyth
19-02
Airport Price Regulation: Rationales, Issues and Directions for Reform Peter Forsyth

20-02
Uncertainty, Knowledge, Transaction Costs and the Division of Labor Guang-Zhen Sun

21-02
Third-degree Price Discrimination, Heterogeneous Markets and Exclusion Yong He and Guang-Zhen Sun

22-02
A Hedonic Analysis of Crude Oil: Have Environmental Regulations Changed Refiners' Valuation of Sulfur Content?
Zhongmin Wang
23-02
Informational Barriers to Pollution Reduction in Small Businesses
lan Wills

24-02
Industrial Performance and Competition in Different Business Cycles: the Case of Japanese Manufacturing
Mita Bhattacharya and Ryofi Takehiro
25-02
General Equilibria in Large Economies with Endogenous Structure of Division of Labor Guang-Zhen Sun \& Xiaokai Yang

26-02
Testing the Diamond Effect - A Survey on Private Car Ownership in China Xin Deng

01-03
The J-Curve: Evidence from Fiji
Paresh Narayan and Seema Narayan
02-03
Savings Behaviour in Fiji: An Empirical Assessment Using the ARDL Approach to Cointegration
Paresh Narayan and Seema Narayan
03-03
League-Revenue Sharing and Competitive Balance
Ross Booth
04-03
Econometric Analysis of the Determinants of Fertility in China, 1952-2000
Paresh Kumar Narayan and Xiujian Peng
05-03
Profitability of Australian Banks: 1985-2001
Mustabshira Rushdi and Judith Tennant
06-03
Diversity of Specialization Patterns, Schur Convexity and Transference: A Note on the
Axiomatic Measurement of the Division of Labor
Chulin Li and Guang-Zhen Sun
07-03
Identification of Equilibrium Structures of Endogenous Specialisation: A Unified Approach Exemplified
Guang-Zhen Sun
08-03
Electricity Consumption, Employment and Real Income in Australia
Paresh Narayan and Russell Smyth
09-03
Import Demand Elasticities for Mauritius and South Africa: Evidence from two recent cointegration techniques
Seema Narayan and Paresh Kumar Narayan

10-03
Dead Man Walking: An Empirical Reassessment of the Deterrent Effect of Capital Punishment Using the Bounds Testing Approach to Cointegration
Paresh Narayan and Russell Smyth
11-03
Knowledge, Specialization, Consumption Variety and Trade Dependence Guang-Zhen Sun

12-03
The Determinants of Immigration From Fiji to New Zealand An Empirical Re-assessment
Using the Bounds Testing Approach
Paresh Narayan and Russell Smyth

$13-03$

Sugar Industry Reform in Fiji, Production Decline and its Economic Consequences
Paresh Narayan and Biman Chand Prasad
14-03
The Contribution of Household and Small Manufacturing Establishments to Indonesian
Economic Development 1986-2000
Robert Rice
15-03
The Smith Dilemma: Towards A Resolution
Yew-Kwang Ng and Dingsheng Zhang
16-03
Cobweb model with the trade off between sensitive incentive and stability Dingsheng Zhang

17-03
Average-cost pricing, increasing returns, and optimal output in a model with home and market production
Yew-Kwang Ng and Dingsheng Zhang
18-03
Dynamic Analysis of the Evolution of Conventions in a Public Goods Experiment with Intergenerational Advice
Ananish Chaudhuri, Pushkar Maitra and Sara Graziano
19-03
The Increasing Returns and Economic Efficiency
Yew-Kwang Ng
20-03
Endogenous Power, Household Expenditure Patterns and Gender Bias: Evidence from India Geoffrey Lancaster, Pushkar Maitra and Ranjan Ray

21-03
Parental Education and Child Health: Evidence from China Pushtar Maitra, Xiujian Peng and Yaer Zhuang

22-03
Beyond the Diversification Cone: A Neo-Heckscher-Ohlin Model of Trade with Endogenous Specialization
Christis Tombazos, Xiaokai Yang, and Dingsheng Zhang
23-03
Curvature enforcement and the tenuous flexibility of the transcendental logarithmic variable profit function
Christis G Tombazos
01-04
Age at First Birth, Health Inputs and Child Mortality: Recent Evidence from Bangladesh Pushkar Maitra and Sarmistha Pal

02-04

Reformulating Critical Values for the Bounds F-statistics Approach to Cointegration: An Application to the Tourism Demand Model for Fiji
Paresh Kumar Narayan
03-04
A Theory of Age-Dependent Vatue of Life and Time
Guang-Zhen Sun and Yew-Kwang Ng
04-04
Multiple Regime Shifts and the Effect of Changes in Leadership on the United States Supreme Court Dissent Rate
Paresh Kumar Narayan and Russell Smyth

[^0]: - I thank Hashem Pesaran and Yongcheol Shin for sharing the GAUSS codes they used to produce the original set of critical values for the bounds testing approach to cointegration as reported in Pesaran and Pesaran (1997) and Pesaran et al. (2001). 1 also thank Peter Dixon, Michael McAleer, Farshid Vahid, Russell Smyth, and Biman Prasad for helpful comments and suggestions on earlier versions of this paper. Helpful comments and suggestions from seminar participants at the University of Western Australia and Griffith University, where this paper was presented, are also acknowledged.

[^1]: Notes: k denotes the number of exogenous variables. Critical values are generated via stochastic simulations using $\mathrm{T}=3 \mathrm{I}$ and 40,000 replications.

