

An Investigation of Hydrocarbon Flames using Probe Sampling and GC/MS

Bryan Weber Advisors:

Dr. Chih-Jen Sung

Dr. Gaurav Mittal

Presentation Outline

- Background
 - Fuels
 - Fundamentals of Gas Chromatography and Mass Spectrometry
- Experimental Apparatus and Procedure
 - Shimadzu GCMS-QP2010 Plus
 - Analysis Techniques
- Results
 - Jet A, JP8, S-8 Results
 - Fuel Comparisons
- Future Work
 - Extend work to flame studies
- Acknowledgements

- Modern hydrocarbon fuels are complex
- Reaction kinetics of heavy hydrocarbons (>C6) are not well understood
- Experimental work requires less complex mixtures
- When we understand how a fuel burns, we can create better alternatives

- GC is good at separating mixtures, not at determining components
- MS is good at determining single components, but not mixtures
- Combining GC and MS allows "best of both worlds" analysis

- Fundamental Operation of a Gas Chromatograph
 - Primary Pieces

- Column separates sample mixtures
- Mixture components are slowed at different rates by the column

- Fundamental Operation of a Mass Spectrometer
 - Primary Pieces

- Source creates electrically charged particles
- Varying voltages filter ions by weight

Apparatus

Shimadzu GCMS-QP2010Plus

Image courtesy: http://ssi.shimadzu.com

Procedure

- Analysis using GC/MS is an empirical procedure
- Temperature programs are optimized for different fuels and columns

Name	Jet A	JP8	S-8
# of Peaks Identified	117	141	149
Primary Species:	Dodecane	Decane	Octane
	Hexadecane	Dodecane	Nonane
	Decane	Tridecane	Decane
	Octane	Cyclohexane	Undecane
	Cyclohexane	Benzene	Dodecane
	Benzene	Benzene Isomers	
	Benzene Isomers	Non-Hydrocarbon Additives	

- Comparison between fuels:
 - S-8 tends to have shorter chains
 - S-8 contains more isomers of methyl groups attached to the chain
 - Jet A and JP8 have similar weights
 - JP8 contains a significant number of ringshaped molecules (cyclohexane, benzene)

Future Work

 Help Dr. Gaurav Mittal complete methylcyclohexane study

- Improve fundamental understanding of oxidation reactions of pure fuel components
- Characterize chemical interactions of fuel blends

Acknowledgments

- Dr. Sung, Dr. Mittal and CDL colleagues
- SOURCE Office
- Dominion Energy and the Case Alumni Association
- Case Western Reserve University Office of the Provost

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

