
Supplementary Material: Quantifying the Volume of Water Influx into a Gas Reservoir 
 
Due to the Hewett Upper Bunter Sandstone reservoir and the North Morecambe Sherwood Sandstone 
reservoir datasets showing the presence of a water drive when plotted on a Cole plot, it is likely that the 
OGIP estimated from the P/z plot is an overestimate, as it assumes the reservoir experiences depletion 
drive.  To check this estimate, Equation 1 (after Dake 1978) can be used to estimate a value for the 
cumulative volume of water influx into a reservoir, We: 
 
 

𝑊𝑒 =
𝐺𝑝 − 𝑂𝐺𝐼𝑃(1 − 𝐸 𝐸𝑖⁄ )

𝐸
 (1) 

 
where, Gp is the cumulative volume of produced hydrocarbons, E is the gas expansion factor and the 
subscript, i, denotes initial reservoir conditions. 
 
Within a depletion drive gas reservoir the value of We will be zero, or close to it, as there is little or no 
water encroachment throughout production.  However, if a water drive reservoir has been misidentified 
as a depletion drive reservoir the OGIP may have been overestimated, which would result in an incorrect 
(negative) value for We.  Table 2 (a) shows the estimated values of We estimated using Equation 1 for the 
Hewett Upper Bunter Sandstone reservoir and the North Morecambe Sherwood Sandstone reservoir.  In 
both reservoirs, the estimated value of We is negative, and therefore further evidence to suggest that the 
OGIP values estimated originally from the P/z plots are incorrect.  If both reservoirs experience a water 
drive as indicated by their respective Cole Plots, their estimated We values should be positive, i.e. they 
should experience aquifer influx as gas is produced from them. 
 
Aquifer models can be used to estimate We, from which a range of OGIP can be estimated.  This revised 
OGIP estimates can then be input to CO2 storage capacity equations to give a more accurate estimate of 
CO2 storage capacity.  In this study the unsteady state water influx theory of Van Everdingen and Hurst 
(1949) was used to estimate the cumulative volume of water influx throughout the productive lifetimes 
of the the Hewett Upper Bunter Sandstone and North Morecambe Sherwood Sandstone reservoirs. 
 
Aquifers can be classified as radial or linear.  In both case studies, the aquifer type is unknown, therefore 
both radial and linear models were evaluated.  Equation 2 can be used to estimate We for both a radial 
aquifer and a linear aquifer: 
 
 𝑊𝑒 = 𝑈∆𝑃𝑊𝐷(𝑡𝐷) (2) 
 

where, U is the aquifer constant, P is the pressure change over the time interval being assessed and 
WD(tD) is the dimensionless cumulative water influx function. 
 
For a radial aquifer, U is defined by Equation 3: 
 
 𝑈 = 2𝜋𝑓𝜑ℎ(𝑐𝑟𝑒𝑠 + 𝑐𝑓𝑙𝑢𝑖𝑑)𝑟𝑜

2 (3) 

 
where, f is a constant used for aquifers which subtend angles of less than 360° and is defined by Equation 

4,  is porosity, h is aquifer height, cres is the matrix compressibility, cfluid is the fluid (water) 
compressibility, and ro

2 is the square of the reservoir radius. 
 
The constant, f, can be estimated using Equation 4: 
 
 

𝑓 =
(𝑒𝑛𝑐𝑟𝑜𝑎𝑐ℎ𝑚𝑒𝑛𝑡 𝑎𝑛𝑔𝑙𝑒)°

360°
 (4) 

 



The encroachment angle can be estimated from the reservoir geometry (see Fig. 9 (a)).  The Hewett 
Upper Bunter Sandstone reservoir is fault bounded to the east by the North Hewett Fault and the South 
Hewett Fault also runs parallel to the western flank of the anticline, although it is thought not to close 
the reservoir.  This implies flow can occur in a N-S orientation (see Fig. 9 (b)).  The North Morecambe 
Sherwood Sandstone reservoir is fault bounded to the east, south and west, therefore the angle of water 
encroachment into the reservoir is estimated to be 90° from the north (see Fig. 9 (c)). 
 
The dimensionless cumulative water influx function, WD(tD), is determined from graphs, after Van 
Everdingen and Hurst (1949), in Dake (1978), by reading off the value for WD which corresponds to the 
point where dimensionless time, tD, intersects the relevant curve for the dimensionless radius, reD.  
Dimensionless time, tD, and dimensionless radius, reD, are determined using Equations 5 and 6: 
 
 

𝑡𝐷 =
𝑘𝑡

𝜑𝜇(𝑐𝑟𝑒𝑠 + 𝑐𝑓𝑙𝑢𝑖𝑑)𝑟𝑜
2
 (5) 

 
 𝑟𝑒𝐷 =

𝑟𝑒

𝑟𝑜
 (6) 

 

where, k is permeability, t is time,  is viscosity and re is the external boundary radius. 
 
It is possible to check the WD value estimated from the graphs using Equation 5.  In cases of bounded 
aquifers, irrespective of the geometry, there is a value of tD for which the dimensionless water influx 
reaches a constant maximum value.  The value is dependent upon the geometry as defined in Equation 
7: 
 
 

𝑅𝑎𝑑𝑖𝑎𝑙 𝑊𝐷 =
1

2
(𝑟𝑒𝐷

2 − 1) (7) 

 
For a linear aquifer, Equation 2 can be used to calculate We.  However, Equation 3, used to estimate the 
aquifer constant, U, is modified to Equation 8: 
 
 𝑈 = 𝑤𝐿ℎ𝜑(𝑐𝑟𝑒𝑠 + 𝑐𝑓𝑙𝑢𝑖𝑑) (8) 
 
where, w is the aquifer width and L is the aquifer length. 
 
Equation 5, used to estimate dimensionless time, tD, is also modified to Equation 9: 
 
 

𝑡𝐷 =
𝑘𝑡

𝜑𝜇(𝑐𝑟𝑒𝑠 + 𝑐𝑓𝑙𝑢𝑖𝑑)𝐿2
 (9) 

 
Again, WDtD is determined from graphs, after Van Everdingen and Hurst (1949), in Dake (1978).  
However, for linear aquifers, values of WD are determined by reading off where tD intersects the line, 
“finite linear aquifer”.  It is again possible to check the estimated WD value: for a linear aquifer the 
maximum value for WD is equal to 1.  Linear aquifer geometry is shown in Fig. 10, after Dake (1978). 
 
Using the mean estimates of We obtained using the finite radial and linear aquifer models, it is possible 
to obtain values of OGIP for both case study reservoirs through rearranging Equation 1: 
 
 

𝑂𝐺𝐼𝑃 =
𝐺𝑝 − 𝑊𝑒𝐸

1 − 𝐸/𝐸𝑖
 (10) 

 


