Supporting Information

Concentration-Driven Selectivity of Energy Transfer Channels and Color

Tunability in Ba₃La(PO₄)₃: Tb³⁺, Sm³⁺ for Warm White LEDs

Weijie Zhou,¹ Meng Gu,¹ Yiyi Ou,¹ Caihua Zhang,¹ Xuejie Zhang,¹ Lei Zhou,¹ and Hongbin Liang^{*1}

¹ MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China

Corresponding Author

*E-mail: cesbin@mail.sysu.edu.cn; tel +86 20 84113695; fax +86 20 84111038.

Figure S1. Representative XRD patterns of samples $Ba_3La_{0.8}Sm_{0.2}(PO_4)_3$,

 $Ba_{3}La_{0.7}Tb_{0.3}(PO_{4})_{3}$ and $Ba_{3}La_{0.75}Tb_{0.20}Sm_{0.05}(PO_{4})_{3}$ at RT.

Figure S2. The luminescence decay curve ($\lambda_{ex} = 402 \text{ nm}$, $\lambda_{em} = 597 \text{ nm}$) of sample Ba₃La_{0.995}Sm_{0.005}(PO₄)₃ at RT and the corresponding fitting curve.

Figure S3. The temperature-dependent luminescence decay curves (λ_{ex} = 402 nm, λ_{em}

= 597 nm) of sample $Ba_3La_{0.995}Sm_{0.005}(PO_4)_3$ in a temperature range of 300 - 475 K.

Figure S4. The temperature-dependent luminescence decay curves ($\lambda_{ex} = 377$ nm, $\lambda_{em} = 434$ nm) of ⁵D₃ levels of Tb³⁺ ions in the temperature range of 78 – 475 K.

Figure S5. The excitation ($\lambda_{em} = 597$ nm) spectra of samples Ba₃La_{0.80-x}Tb_{0.20}Sm_x(PO₄)₃ (x = 0.005 - 0.05) at RT.

Figure S6. The straight lines evolved from the luminescence decay curves ($\lambda_{ex} = 377$ nm, $\lambda_{em} = 434$ nm) of Ba₃La_{0.95-x}Tb_{0.05}Sm_x(PO₄)₃ (x = 0 - 0.05) at RT and the corresponding fitting curves.

Figure S7. The comparison between the luminescence decay curves ($\lambda_{ex} = 377$ nm, $\lambda_{em} = 434$ nm) of Ba₃La_{1-y}Tb_y(PO₄)₃ (y = 0.10, 0.20) and Ba₃La_{0.90}Tb_{0.05}Sm_{0.05}(PO₄)₃ at RT.

Figure S8. The emission ($\lambda_{ex} = 377$ nm) spectra of two sets of co-doped samples Ba₃La_{0.80-x}Tb_{0.20}Sm_x(PO₄)₃ (x = 0 - 0.05) and Ba₃La_{0.95-y}Tb_ySm_{0.05}(PO₄)₃ (y = 0 - 0.20).

Table S1. The concentrations of Sm^{3+} ions (*C_A*), obtained energy transfer microparameters *C_{DA}* and coefficients of determination of fitting procedures (*R_{adj}*²) via Inokuti-Hirayama model.

Sm ³⁺ (at. %)	$C_A (10^{26} \text{ m}^{-3})$	$C_{DA} (10^{-54} \text{ m}^6/\text{s})$	R_{adj}^{2}
0.03	4.113	3.192	0.9969
0.05	6.855	4.459	0.9958
0.07	9.597	5.468	0.9956
0.10	13.71	5.438	0.9945
0.15	20.57	6.036	0.9929
0.20	27.42	7.428	0.9952

Table S2. The concentrations of Sm³⁺ ions (C_A), obtained energy transfer microparameters C_{DA} , energy migration microparameters C_{DD} and coefficients of determination of fitting procedures (R_{adj}^2) via Yokota-Tanimoto and Burshtein models.

Sm ³⁺ (at. %)	$C_A (10^{26} \text{ m}^{-3})$	$C_{DA} (10^{-54} \text{ m}^6/\text{s})$	$C_{DD} (10^{-54} \text{ m}^6/\text{s})$	R_{adj}^{2}
Y-T model				
0.03 (Failed)	4.113	3.778	-3.514	0.9962
0.05 (Failed)	6.855	3.357	5.045	0.9953
0.07 (Failed)	9.597	4.402	2.839	0.9954
0.10 (Failed)	13.71	4.289	2.161	0.9952
0.15 (Failed)	20.57	4.675	1.702	0.9952
0.20 (Succeeded)	27.42	7.105	0.2410	0.9949
Burshtein model				
0.03 (Failed)	4.113	3.124	1.542E-14	0.9957
0.05 (Failed)	6.855	3.064	6.706	0.9954
0.07 (Failed)	9.597	4.112	2.153	0.9955
0.10 (Failed)	13.71	3.992	1.480	0.9953
0.15 (Failed)	20.57	4.357	0.9780	0.9953
0.20 (Failed)	27.42	7.017	0.01901	0.9949

Table S3. The concentrations of Tb^{3+} ions (C_A), obtained energy transfer microparameters C_{DA} and coefficients of determination of fitting procedures (R_{adj}^2) via Inokuti-Hirayama model.

Tb^{3+} (at. %)	$C_A (10^{26} \text{ m}^{-3})$	$C_{DA} (10^{-53} \text{ m}^6/\text{s})$	R_{adj}^{2}
0.03	4.113	4.765	0.9825
0.05	6.855	2.720	0.9877
0.08	10.97	1.870	0.9844
0.10	13.71	1.549	0.9842

Table S4. The concentrations of Tb^{3+} ions (C_A), obtained energy transfer microparameters C_{DA} , energy migration microparameters C_{DD} and coefficients of determination of fitting procedures (R_{adj}^2) via Yokota-Tanimoto and Burshtein models.

Tb^{3+} (at. %)	$C_A (10^{26} \mathrm{m}^{-3})$	$C_{DA} (10^{-53} \text{ m}^6/\text{s})$	$C_{DD} (10^{-54} \text{ m}^6/\text{s})$	R_{adj}^{2}
Y-T model				
0.03 (Failed)	4.113	5.038	-5.467	0.9825
0.05 (Failed)	6.855	2.463	4.825	0.9879
0.08 (Failed)	10.97	1.721	2.123	0.9847
0.10 (Failed)	13.71	1.612	-0.6950	0.9842
Burshtein model				
0.03 (Failed)	4.113	4.992	1.380E-14	0.9830
0.05 (Failed)	6.855	2.349	1.806	0.9869
0.08 (Failed)	10.97	1.653	0.5866	0.9840
0.10 (Failed)	13.71	1.545	8.250E-15	0.9885

Table S5. The CIE chromaticity coordinates of emission spectra ($\lambda_{ex} = 377$ nm) of two

sets of co-doped samples $Ba_3La_{0.80-x}Tb_{0.20}Sm_x(PO_4)_3$ (x = 0 - 0.05) and

$Ba_3La_{0.95-y}T$	b _y Sm _{0.05} (F	PO ₄) ₃ (<u>'</u>	y = 0 -	0.20).
--------------------	--------------------------------------	---	---------	--------

Samples	Chromaticity Coordinates
$Ba_{3}La_{0.80-x}Tb_{0.20}Sm_{x}(PO_{4})_{3}$	
0	(0.311, 0.571)
0.01	(0.385, 0.527)
0.02	(0.419, 0.506)
0.03	(0.456, 0.476)
0.05	(0.477, 0.466)
$Ba_{3}La_{0.95-v}Tb_{v}Sm_{0.05}(PO_{4})_{3}$	

0	(0.590, 0.395)
0.01	(0.572, 0.403)
0.03	(0.554, 0.412)
0.05	(0.532, 0.426)
0.10	(0.503, 0.447)
0.20	(0.485, 0.467)