SUPPLEMENTARY MATERIAL

A novel and efficient synthesis of 3,4-dihydroxyphenylacetic ester and amide derivatives/conjugates and assessment of their antioxidant activity

Aikaterini Pagoni ${ }^{a}$ and Stamatia Vassiliou ${ }^{a}$
${ }^{\text {a }}$ University of Athens, Department of Chemistry, Laboratory of Organic Chemistry, Panepistimiopolis Zografou, 15701, Athens, Greece

Corresponding author: Stamatia Vassiliou, University of Athens, Department of Chemistry, Laboratory of Organic Chemistry, Panepistimiopolis Zografou, 15701, Athens, Greece
e-mail: svassiliou@chem.uoa.gr

Abstract

Phenolic acids, a sub-class of polyphenols, are widely studied. By contrary, 3,4dihydroxyphenylacetic acid is scarcely studied. For this purpose, a series of 3,4dihydroxyphenylacetic acid ester and amide derivatives/conjugates were synthesized for the first time. A systematic study has been performed to quantitatively identify the functional groups present in these compounds using different techniques such as ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ESI MS. The synthesized compounds were evaluated for their in vitro antioxidant activity by a DPPH radical-scavenging assay. Their physico-chemical profile is also studied using Molinspiration tool. Among all tested compounds, amidoester $\mathbf{3 6}$ showed the best scavenging activity possessing an $\mathrm{EC}_{50} 17 \mu \mathrm{M}$ and improved physico-chemical properties compared to the parent compound.

Keywords: polyphenols, phenolic acids, antioxidant, 3,4-dihydroxyphenylacetic acid, molinspiration, conjugates, DPPH

Experimental section

1.General

Reagents were purchased at the highest commercial quality, and were used without further purification. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm silica gel plates (silica gel 60F254) and components were visualized by UV light absorbance. Purification of compounds by column chromatography was carried out on silica gel (70-230 mesh) or reversed phase silica gel (Kieselgel 60, RP-18, 40-63 $\mu \mathrm{m}$) and the indicated solvents. ${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ spectra were recorded on a 200 MHz Mercury spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra are referenced according to the residual peak of the solvent based on literature data. ESI mass spectral analyses were performed on a mass spectrometer, using direct sample injection. Negative or positive ion ESI spectra were acquired by adjusting the needle and cone voltages accordingly.

General method for the synthesis of monoesters/diesters A

To a stirred solution of 3,4-dimethoxyphenylacetic acid ($0.19 \mathrm{~g}, 1.00 \mathrm{mmol}$) and the corresponding alcohol $(1.00 \mathrm{mmol}) / \mathrm{diol}(0.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}), 10 \%$ DMAP (0.01 $\mathrm{g}, 0.10 \mathrm{mmol})$ was added and the mixture was cooled to $0^{\circ} \mathrm{C}$. Then EDC $(0.19 \mathrm{~g}, 1.00 \mathrm{mmol})$ was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at room temperature for 24 hours. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ were added and the organic phase was successively washed with $\mathrm{HCl} 0.6 \mathrm{~N}(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}), \mathrm{NaHCO}_{3} 5 \%(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10$ mL) and brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatiles were removed in vacuo. The residue was purified with column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}: 9.5 / 0.5$ as eluent.

General method for the synthesis of monoamides/diamide B

To a stirred solution of 3,4-dimehtoxyphenylacetic acid ($0.19 \mathrm{~g}, 1.00 \mathrm{mmol}$) and the corresponding amine $(1.00 \mathrm{mmol}) /$ diamine $(0.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, $\mathrm{HOBt}(0.13 \mathrm{~g}$, $1.00 \mathrm{mmol})$ was added and the mixture was cooled to $0^{\circ} \mathrm{C}$. Then EDC $(0.19 \mathrm{~g}, 1.00 \mathrm{mmol})$ was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at room temperature for 2 hours. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ were added and the organic phase was successively washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatiles were removed in vacuo. The residue was purified with column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$: 9/1 as eluent.

General method for the synthesis of amidoalcohols C

To a stirred solution of 3,4-dimethoxyphenylacetic acid ($0.19 \mathrm{~g}, 1.00 \mathrm{mmol}$) and the corresponding aminoalcohol $(1.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$, $\mathrm{HOBt}(0.13 \mathrm{~g}, 1.00 \mathrm{mmol})$ was added and the mixture was cooled to $0^{\circ} \mathrm{C}$. Then EDC $(0.19 \mathrm{~g}, 1.00 \mathrm{mmol})$ was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at room temperature for 2 hours. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ were added and the organic phase was successively washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatiles were removed in vacuo. The residue was purified with column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}: 9 / 1$ as eluent.

General method for the synthesis of amidoesters D

To a stirred solution of the corresponding amidoalcohol (1.00 mmol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}), 3,4-$ dimethoxyphenylacetic acid $(0.19 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{HOBt}(0.13 \mathrm{~g}, 1.00 \mathrm{mmol})$ were added and the mixture was cooled to $0^{\circ} \mathrm{C}$. Then EDC $(0.19 \mathrm{~g}, 1.00 \mathrm{mmol})$ was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at room temperature for 24 hours Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ were added and the organic phase was successively washed with HCl $0.6 \mathrm{~N}(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}), \mathrm{NaHCO}_{3} 5 \%(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatiles were removed in vacuo. The residue was purified with column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$: 9.5/0.5 as eluent.
General method for the phenolic hydroxyl group deprotection E
The methoxy-containing compound (0.50 mmol) was dissolved in 5 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{BF}_{3} \cdot \mathrm{SMe}_{2}(10 \mathrm{mmol} /$ methoxy) was added to the mixture. The solution was allowed to slowly warm to room temperature and stirred for a total of 18 h . The reaction was stopped by the addition of 2 mL of water and 8 mL of methanol. The volatiles were removed in vacuo, the residue was taken up in $\operatorname{AcOEt}(20 \mathrm{~mL})$ and washed with brine (5 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified with column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}: 9 / 1$ as eluent in the case of monoesters, diesters and amidoesters or with reversed phase column chromatography using $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 0: 10$ to $9: 1$ in the case of monoamides and diamide.

cyclohexyl 2-(3,4-dimethoxyphenyl)acetate (2)

Following the general method \mathbf{A} using cyclohexanol, monoester 2 was obtained in 78% yield as thick oil. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9.5: 0.5\right)=0.79{ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.81(\mathrm{~d}, J=$ $4.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=2.7,1.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 1.71(\mathrm{dd}, J=14.6,8.6$ $\mathrm{Hz}, 4 \mathrm{H}), 1.57-1.16(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,148.6,147.8,126.7,121.2$,
112.1, 110.9, 72.9, 55.7, 55.7, 41.2, 31.4, 25.2, 23.5. MS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{4}{ }^{+}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$296.2, found 296.4.

hexadecyl 2-(3,4-dimethoxyphenyl)acetate (3)

Following the general method for the synthesis of monoesters \mathbf{A} using 1-hexadecanol, compound $\mathbf{3}$ was obtained in 79% yield as white solid $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9.5: 0.5\right)=0.88{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.04(\mathrm{td}, J=6.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{dd}, J$ $=3.7,1.9 \mathrm{~Hz}, 6 \mathrm{H}), 3.50(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 26 \mathrm{H}), 0.84(\mathrm{dd}, J$ $=6.6,4.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,148.6,147.8,126.4,121.1,112.1$, $110.8,64.7,55.6,55.5,40.8,31.7,29.5,29.5,29.4,29.3,29.2,29.0,28.4,25.7,22.5,13.9$. MS (ESI) m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{NO}_{4}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 438.4$, found 438.3 .

octyl 2-(3,4-dimethoxyphenyl)acetate (4)

Following the general method for the synthesis of monoesters \mathbf{A} using n-octanol, compound $\mathbf{4}$ was obtained in 68% yield as colorless thick oil. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9.5: 0.5\right)=0.89{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.81(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{td}, J=6.7,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.83(\mathrm{~m}, 6 \mathrm{H}), 3.54(\mathrm{~d}$, $J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 10 \mathrm{H}), 0.86(\mathrm{dd}, J=6.6,4.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,148.8,148.0,126.6,121.3,112.2,111.0,65.0,55.8,55.7,40.9$, 31.7, 29.1, 28.5, 25.8, 22.6, 14.1. MS (ESI) m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}_{4}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 326.2$, found 326.1.

butyl 2-(3,4-dimethoxyphenyl)acetate (5)

Following the general method for the synthesis of monoesters \mathbf{A} using n-butanol compound $\mathbf{5}$ was obtained in 91% yield as colorless thick oil. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9.5: 0.5\right)=0.84{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.06(\mathrm{td}, J=6.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.83 (dd, J $=3.1,2.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.94-$ $0.83(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,148.7,147.9,126.5,121.2,112.1,110.9$, $64.5,55.7,55.6,40.8,30.5,18.9,13.5 . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ 270.2, found 270.2.

cyclohexyl 2-(3,4-dihydroxyphenyl)acetate (6)

Following the general method for the phenolic hydroxyl group deprotection E, compound $\mathbf{6}$ was obtained in 52% yield as colorless thick oil. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)=0.52{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.79-6.59(\mathrm{~m}, 3 \mathrm{H}), 6.25(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.77(\mathrm{dd}, J=8.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48$ $(\mathrm{s}, 2 \mathrm{H}), 1.77(\mathrm{dd}, J=25.7,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.57-1.23(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 173.1, 143.8, 143.1, 126.2, 121.5, 116.2, 115.3, 73.9, 41.0, 31.4, 25.2, 23.6. MS (ESI) m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4}^{-}[\mathrm{M}-\mathrm{H}]^{-}$249.1, found 249.1.
hexadecyl 2-(3,4-dihydroxyphenyl)acetate (7)

Following the general method for the phenolic hydroxyl group deprotection E, compound 7 was obtained in 75% yield as white solid. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)=0.67{ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.76-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.59(\mathrm{~m}, 1 \mathrm{H}), 6.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.10$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 1.61(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 26 \mathrm{H}), 0.87(\mathrm{dd}, J=6.5,5.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6,143.8,143.1,126.0,121.6,116.2,115.3,65.6$, 40.7, 31.9, 29.7, 29.6, 29.5, 29.4, 29.2, 28.5, 25.8, 22.7, 14.1. MS (ESI) m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{4}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}$391.3, found 391.3.

octyl 2-(3,4-dihydroxyphenyl)acetate (8)

Following the general method for the phenolic hydroxyl group deprotection \mathbf{E}, compound $\mathbf{8}$ was obtained in 77% yield as colorless thick oil. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)=0.72{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.76-6.56(\mathrm{~m}, 3 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 4.16-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.50$ $(\mathrm{s}, 2 \mathrm{H}), 1.61(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 10 \mathrm{H}), 0.88(\mathrm{t}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}) $\delta 173.7,143.8,143.1,125.9,121.6,116.2,115.3,65.6,40.7,31.7,29.1,28.4,25.8$, 22.6, 14.1. MS (ESI) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{4}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}$279.2, found 279.3.

butyl 2-(3,4-dihydroxyphenyl)acetate (9)

Following the general method for the phenolic hydroxyl group deprotection \mathbf{E}, compound $\mathbf{9}$ was obtained in 84% yield as colorless thick oil. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)=0.83{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.74(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.66-6.46(\mathrm{~m}, 2 \mathrm{H}), 4.21-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.48$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.7,143.8,143.1,125.9,121.5,116.3,115.4,65.3,40.6,30.4$, 19.0, 13.6. MS (ESI) m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{4}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}$223.1, found 223.2.
N-(sec-buty)-2-(3,4-dimethoxyphenyl)acetamide (10)
Following the general method for the synthesis of monoamides \mathbf{B} using sec-butylamine, compound $\mathbf{1 0}$ was obtained in 85% yield as white solid. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)=0.72{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.84-6.68(\mathrm{~m}, 3 \mathrm{H}), 5.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.92-3.73(\mathrm{~m}, 7 \mathrm{H}), 3.45(\mathrm{~s}$, $2 \mathrm{H}), 1.33(\mathrm{dtd}, J=14.0,7.3,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,149.0,148.0,127.5,121.4,112.2,111.3,55.8,46.5,43.4$, 29.4, 20.2, 10.2. MS (ESI) m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 252.1$, found 252.2.

N-cyclohexyl-2-(3,4-dimethoxyphenyl)acetamide (11)

Following the general method for the synthesis of monoamides \mathbf{B} using cyclohexylamine, compound 11 was obtained in 95% yield as white solid $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)=0.71{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.61(\mathrm{dd}, J=11.3,4.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.02(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-$ 3.59 (m, 6H), $3.59-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 2 \mathrm{H}), 1.42(\mathrm{~d}, J=10.3$ $\mathrm{Hz}, 3 \mathrm{H}), 1.21-0.78(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,148.5,147.5,127.5,120.9$,
111.8, 110.8, 55.3, 55.3, 47.7, 42.7, 32.4, 25.0, 24.4. MS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$295.2, found 295.2.
N-(sec-butyl)-2-(3,4-dihydroxyphenyl)acetamide (12)
Following the general method for the phenolic hydroxyl group deprotection \mathbf{E}, compound $\mathbf{1 2}$ was obtained in 80% yield as white solid. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{AcOH} 7: 2: 0.5\right)=0.83{ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO-d d_{6}) 8.78 (br s, 2H), 7.72 (d, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.72-6.54$ (m, 2H), 6.47 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 2 \mathrm{H}), 1.34(\mathrm{dd}, J=14.2,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.00(\mathrm{dd}, J=6.6,3.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{td}, J=7.3,3.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ 169.9, 144.9, 143.7, 127.5, 119.6, 116.3, 115.3, 45.6, 42.0, 29.0, 20.4, 10.6. MS (ESI) m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 222.1$, found 222.1.

N-cyclohexyl-2-(3,4-dihydroxyphenyl)acetamide (13)

Following the general method for the phenolic hydroxyl group deprotection \mathbf{E}, compound $\mathbf{1 3}$ was obtained in 75% yield as white solid. $\mathrm{R}_{\mathrm{f}}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{AcOH} 7: 2: 0.5\right)=0.70{ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO-d d_{6}) 8.79 (br s, 2H), 7.81 (d, J=7.8 Hz, 1H), $6.67-6.55$ (m, 2H), $6.47(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 2 \mathrm{H}), 1.78-1.45(\mathrm{~m}, 5 \mathrm{H}), 1.21(\mathrm{dd}, J=$ $35.4,12.1 \mathrm{~Hz}, 5 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (50 MHz , DMSO-d ${ }_{6}$) $\delta 169.8,145.0,143.8,127.6,119.7,116.4$, 115.4, 47.6, 42.0, 32.6, 25.4, 24.7. MS (ESI) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 250.1$, found 250.2 .

butane-1,4-diyl bis(2-(3,4-dimethoxyphenyl)acetate) (14)

Following the general method \mathbf{A} using 1,4-butanediol, diester $\mathbf{1 4}$ was obtained in 88% yield as white solid. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9.5: 0.5\right)=0.63 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{~s}, 6 \mathrm{H})$, $4.06(\mathrm{~s}, 4 \mathrm{H}), 3.83(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 12 \mathrm{H}), 3.52(\mathrm{~s}, 4 \mathrm{H}), 1.64(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,148.6,147.9,126.2,121.2,112.1,110.9,64.0,55.6,55.6,40.7,25.0$. MS (ESI) m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NO}_{8}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 464.2$, found 464.2.
propane-1,3-diyl bis(2-(3,4-dimethoxyphenyl)acetate) (15)
Following the general method \mathbf{A} using 1,3-propanediol, diester $\mathbf{1 5}$ was obtained as thick oil in 87% yield. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9.5: 0.5\right)=0.76{ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{~s}, 6 \mathrm{H})$, $4.12(\mathrm{t}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.83(\mathrm{dd}, J=2.6,0.9 \mathrm{~Hz}, 12 \mathrm{H}), 3.52(\mathrm{~s}, 4 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,148.7,147.9,126.1,121.2,112.1,110.9,61.1,55.7,55.6$, 40.6, 27.7. MS (ESI) m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{8}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 450.2$, found 450.3.
oxybis(ethane-2,1-diyl) bis(2-(3,4-dimethoxyphenyl)acetate) (16)
Following the general method \mathbf{A} using diethyleneglycol, diester $\mathbf{1 6}$ was obtained as thick oil in 97% yield. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9.5: 0.5\right)=0.83{ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.75(\mathrm{~d}, J=3.0$ $\mathrm{Hz}, 6 \mathrm{H}), 4.16(\mathrm{dd}, J=5.2,4.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.79(\mathrm{dd}, J=4.9,1.1 \mathrm{~Hz}, 12 \mathrm{H}), 3.58(\mathrm{dd}, J=5.3,4.1$
$\mathrm{Hz}, 4 \mathrm{H}), 3.52(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.4,148.5,147.7,125.9,121.1,112.0$, $110.8,68.6,63.5,55.5,55.5,40.3$. MS (ESI) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NO}_{9}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 480.2$, found 480.2.
decane-1,10-diyl bis(2-(3,4-dimethoxyphenyl)acetate) (17)
Following the general method \mathbf{A} using 1,10-decanediol, diester $\mathbf{1 7}$ was obtained in as white solid in 92% yield. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9.5: 0.5\right)=0.89{ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.73(\mathrm{~d}$, $J=4.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.99(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.81-3.71(\mathrm{~m}, 12 \mathrm{H}), 3.46(\mathrm{~s}, 4 \mathrm{H}), 1.51(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 4 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,148.4,147.6,126.2,120.9,111.9$, $110.6,64.4,55.3,55.3,40.5,28.9,28.7,28.1,25.4$. MS (ESI) m/z calculated for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{NO}_{8}{ }^{+}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 548.3$, found 548.3.
cyclohexane-1,4-diyl bis(2-(3,4-dimethoxyphenyl)acetate) (18)
Following the general method \mathbf{A} using 1,4-cyclohexanediol, diester $\mathbf{1 8}$ was obtained as white solid in 84% yield. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9.5: 0.5\right)=0.86{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.79$ (dd, $J=3.8,2.8 \mathrm{~Hz}, 6 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{t}, J=2.8 \mathrm{~Hz}, 12 \mathrm{H}), 3.51(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.65$ (ddd, $J=28.7,21.5,5.3 \mathrm{~Hz}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,148.4,147.6,126.1$, $120.9,111.8,110.6,70.6,55.4,55.4,40.8,27.1,26.8$. MS (ESI) m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{NO}_{8}{ }^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 490.2$, found 490.2 .

butane-1,4-diyl bis(2-(3,4-dihydroxyphenyl)acetate) (19)

Following the general method for the phenolic hydroxyl group deprotection \mathbf{E}, compound 19 was obtained in 46% yield as white solid. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 8: 2\right)=0.64{ }^{1} \mathrm{H}$ NMR (200 MHz , Acetone- d_{6}) $\delta 7.93-7.78$ (m, 4H), $6.84-6.71$ (m, 4H), 6.61 (dd, $J=8.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), $4.09-4.00(\mathrm{~m}, 4 \mathrm{H}), 3.46(\mathrm{~s}, 4 \mathrm{H}), 1.74-1.53(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz , Acetone- d_{6}) δ 172.2, 145.7, 144.8, 126.9, 121.5, 117.1, 115.9, 64.5, 40.9, 25.9. MS (ESI) m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{8}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}$389.1, found 389.2.
propane-1,3-diyl bis(2-(3,4-dihydroxyphenyl)acetate) (20)
Following the general method for the phenolic hydroxyl group deprotection \mathbf{E}, compound $\mathbf{2 0}$ was obtained in 42% yield as white solid. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 8: 2\right)=0.59{ }^{1} \mathrm{H}$ NMR (200 MHz, Acetone- d_{6}) $\delta 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.77(\mathrm{dd}, J=8.1,5.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.60(\mathrm{dd}, J=8.0$, $2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.46(\mathrm{~s}, 4 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz , Acetone- d_{6}) $\delta 172.5,145.8,144.9,126.8,121.4,117.2,116.0,61.8,40.9,28.8$. MS (ESI) m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{8}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 375.1$, found 375.1.
oxybis(ethane-2,1-diyl) bis(2-(3,4-dihydroxyphenyl)acetate) (21)
Following the general method for the phenolic hydroxyl group deprotection \mathbf{E}, compound $\mathbf{2 1}$ was obtained in 33% yield as sticky solid. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 8: 2\right)=0.67{ }^{1} \mathrm{H}$ NMR (200

MHz, Acetone $\left.-\mathrm{d}_{6}\right) \delta 8.08-7.76(\mathrm{~m}, 4 \mathrm{H}), 6.88-6.68(\mathrm{~m}, 4 \mathrm{H}), 6.61(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 2 \mathrm{H})$, 4.17 (dd, $J=9.6,5.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.63(\mathrm{dd}, J=5.6,4.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.48(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz , Acetone- d_{6}) $\delta 172.2,145.7,144.8,126.8,121.5,117.2,115.9,69.5,64.4,40.8$. MS (ESI) m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{9}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 405.1$, found 405.1.
decane-1,10-diyl bis(2-(3,4-dihydroxyphenyl)acetate) (22)
Following the general method for the phenolic hydroxyl group deprotection \mathbf{E}, compound $\mathbf{2 2}$ was obtained in 69% yield as white solid. $\mathrm{R}_{\mathrm{f}}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 8: 2\right)=0.64{ }^{1} \mathrm{H}$ NMR (200 MHz, Acetone- d_{6}) $\delta 7.81(\mathrm{~s}, 4 \mathrm{H}), 6.75(\mathrm{dd}, J=8.1,5.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.58(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.00(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.42(\mathrm{~s}, 4 \mathrm{H}), 1.53(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.23(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz , Acetone- d_{6}) $\delta 172.2,145.7,144.7,127.0,121.4,117.1,115.9,65.0,41.0,30.2,29.3$, 26.5. MS (ESI) m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{8}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 473.2$, found 473.4.
cyclohexane-1,4-diyl bis(2-(3,4-dihydroxyphenyl)acetate) (23)
Following the general method for the phenolic hydroxyl group deprotection \mathbf{E}, compound $\mathbf{2 3}$ was obtained in 26% yield as sticky solid. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 8: 2\right)=0.61{ }^{1} \mathrm{H}$ NMR (200 MHz , Acetone- d_{6}) $\delta 7.91(\mathrm{dd}, J=19.0,13.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.83-6.70(\mathrm{~m}, 4 \mathrm{H}), 6.66-6.54(\mathrm{~m}$, $2 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 2 \mathrm{H}), 1.51(\mathrm{~d}, J=$ $5.4 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz , Acetone- d_{6}) $\delta 171.6,145.8,144.9,127.0,121.4,117.0$, 115.9, 71.3, 41.3, 28.0. MS (ESI) m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{8}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 415.1$, found 415.2.
N, N^{\prime}-(ethane-1,2-diyl)bis(2-(3,4-dimethoxyphenyl)acetamide) (24)
Following the general method for the synthesis of diamide \mathbf{B} using ethylenediamine, compound 24 was obtained in 80% yield as white solid. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)=0.69 .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.84-6.68(\mathrm{~m}, 6 \mathrm{H}), 6.13$ (br s, 2 H), $3.84(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 12 \mathrm{H}$), $3.41(\mathrm{~s}, 4 \mathrm{H}), 3.26(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,149.3,148.4,127.2,121.6$, 112.5, 111.5, 56.0, 43.3, 39.9. MS (ESI) m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 415.2$, found 415.3.
N, N^{\prime}-(ethane-1,2-diyl)bis(2-(3,4-dihydroxyphenyl)acetamide) (25)
Following the general method for the phenolic hydroxyl group deprotection \mathbf{E}, compound $\mathbf{2 5}$ was obtained in 21% yield as colorless sticky solid. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{AcOH} 9: 1: 0.5\right)=$ $0.14{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 8.84(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $8.74(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.95$ (br s, 2H), 6.62 (dd, $J=8.1,1.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.46(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 4 \mathrm{H}), 3.05(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz, DMSO-d $_{6}$) δ 171.1, 145.0, 143.9, 127.1, 119.9, 116.5, 115.4, 42.0, 38.6. MS (ESI) m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 359.1$, found 359.2.

2-(3,4-dimethoxyphenyl)- N -(2-(2-hydroxyethoxy)ethyl)acetamide (26)

Following the general method for the synthesis of amidoalcohols \mathbf{C} using 2-(2aminoethoxy)ethanol, compound 26 was obtained in 89% yield as colorless oil. $\mathrm{R}_{f}=$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)=0.5{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.74(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.52(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.64-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 5 \mathrm{H}), 3.34(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.07$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8,148.8,147.9,127.2,121.2,112.2,111.1,72.0$, 69.5, 61.3, 55.7, 42.8, 39.2. MS (ESI) m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{5}^{+}[\mathrm{M}+\mathrm{H}]^{+} 284.1$, found 284.1.

2-(3,4-dimethoxyphenyl)- N -(3-hydroxypropyl)acetamide (27)

Following the general method for the synthesis of amidoalcohols \mathbf{C} using 3-amino-1-propanol, compound 27 was obtained in 76% yield as white solid. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)=0.56{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.80-6.66(\mathrm{~m}, 3 \mathrm{H}), 6.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.53-3.39(\mathrm{~m}$, $5 \mathrm{H}), 3.28(\mathrm{dd}, J=12.4,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{dt}, J=11.5,5.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.6,148.8,147.9,127.0,121.3,112.1,111.2,58.9,55.6,42.8,36.2,31.8 . \mathrm{MS}$ (ESI) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{4}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 252.1$, found 252.2.

2-(3,4-dimethoxyphenyl)- N -(5-hydroxypentyl)acetamide (28)

Following the general method for the synthesis of amidoalcohols \mathbf{C} using 5-amino-1-pentanol, compound 28 was obtained in 69% yield as colorless oil. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)=0.49{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.82-6.66(\mathrm{~m}, 3 \mathrm{H}), 5.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.52(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.43 ($\mathrm{s}, 2 \mathrm{H}$), 3.14 (dd, $J=12.8,6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.35$ (ddt, $J=19.1,15.7,8.0 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.6,148.9,147.9,127.2,121.4,112.2,111.2,62.0,55.7,43.0$, 39.3, 31.8, 28.9, 22.8. MS (ESI) m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$282.2, found 282.2.

2-(3,4-dimethoxyphenyl)- N -(4-hydroxybutyl)acetamide (29)

Following the general method for the synthesis of amidoalcohols \mathbf{C} using 4-amino-1-butanol, compound 29 was obtained in 98% yield as white solid. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)=0.56{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.79-6.65(\mathrm{~m}, 3 \mathrm{H}), 6.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.51(\mathrm{t}, J=5.9$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.41(\mathrm{~s}, 2 \mathrm{H}), 3.14(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{dd}, J=6.3,3.0 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7,148.8,147.9,127.2,121.3,112.2,111.2,61.6,55.7,42.9,39.2,29.4$, 25.7. MS (ESI) m/z calculated for $\left.\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{4}-\mathrm{M}-\mathrm{H}\right]^{-} 266.1$, found 266.2.

2-(2-(2-(3,4-dimethoxyphenyl)acetamido)ethoxy)ethyl 2-(3,4-dimethoxyphenyl)acetate (30)

Following the general method for the synthesis of amidoesters \mathbf{D}, compound $\mathbf{3 0}$ was obtained in 84% yield as colorless thick oil. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)=0.69{ }^{1} \mathrm{H} \mathrm{NMR}(200 \mathrm{MHz}$, CDCl_{3}) $\delta 6.80-6.67(\mathrm{~m}, 6 \mathrm{H}), 5.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.18-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 12 \mathrm{H})$, $3.58-3.48(\mathrm{~m}, 4 \mathrm{H}), 3.42(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.39-3.27(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 171.6,171.2,148.9,148.6,147.9,127.1,126.0,121.2,121.2,112.1,111.1,110.9$, 69.4, 68.6, 63.5, 55.6, 43.0, 40.4, 39.1. MS (ESI) m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{8}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 462.2 , found 462.2.

3-(2-(3,4-dimethoxyphenyl)acetamido)propyl 2-(3,4-dimethoxyphenyl)acetate (31)

Following the general method for the synthesis of amidoesters \mathbf{D}, compound $\mathbf{3 1}$ was obtained in 81% yield as white solid. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)=0.63{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.72(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 5.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 12 \mathrm{H})$, 3.44 (d, $J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.19(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{p}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,171.3,148.9,148.5,147.9,147.8,127.0,126.0,121.2,121.1,112.0$, 111.1, 110.8, 61.9, 55.6, 43.0, 40.5, 36.1, 28.3. MS (ESI) m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{7}{ }^{-}$[M-$\mathrm{H}]^{-} 430.2$, found 430.3

5-(2-(3,4-dimethoxyphenyl)acetamido)pentyl 2-(3,4-dimethoxyphenyl)acetate (32)

Following the general method for the synthesis of amidoesters \mathbf{D}, compound $\mathbf{3 2}$ was obtained in 83% yield as colorless thick oil. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)=0.69{ }^{1} \mathrm{H} \mathrm{NMR}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.82-6.67(\mathrm{~m}, 6 \mathrm{H}), 5.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, $12 \mathrm{H}), 3.47(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.13(\mathrm{dd}, J=13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{dt}, J=13.9,6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.37(\mathrm{dd}, J=14.0,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.29-1.16(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8$, $171.2,148.9,148.6,148.0,147.8,127.1,126.3,121.4,121.2,112.1,112.1,111.2,110.8$, 64.4, 55.7, 43.2, 40.7, 39.2, 28.9, 28.0, 22.9. MS (ESI) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{7}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 460.2 , found 460.3 .

4-(2-(3,4-dimethoxyphenyl)acetamido)butyl 2-(3,4-dimethoxyphenyl)acetate (33)

Following the general method for the synthesis of amidoesters \mathbf{D}, compound $\mathbf{3 3}$ was obtained in 79% yield as colorless thick oil. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)=0.67{ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.74(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 6 \mathrm{H}), 5.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 12 \mathrm{H}), 3.47$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.24-3.09(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.35(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.7,171.2,148.9,148.5,148.0,147.8,127.1,126.2,121.3,121.1,112.0,111.1,110.8,64.1$, 55.6, 43.1, 40.6, 38.9, 25.9, 25.7 MS (ESI) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{7}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 446.2$, found 446.2.

2-(2-(2-(3,4-dihydroxyphenyl)acetamido)ethoxy)ethyl
2-(3,4-dihydroxyphenyl)acetate (34)

Following the general method for the phenolic hydroxyl group deprotection \mathbf{E}, compound $\mathbf{3 4}$ was obtained in 71% yield as colorless thick oil. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 8: 2\right)=0.66{ }^{1} \mathrm{H}$ NMR (200 MHz , Acetone- d_{6}) $\delta 8.09(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 7.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.88-6.68(\mathrm{~m}, 4 \mathrm{H}), 6.68-6.53(\mathrm{~m}$, $2 \mathrm{H}), 4.21-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.29(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz , Acetone- d_{6}) δ 172.9,
$172.3,145.8,145.0,144.8,128.0,126.6,121.4,121.3,117.0,117.0,116.0,115.8,70.1,69.3$, 64.4, 43.1, 40. 9, 40.0. MS (ESI) m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{8}-[\mathrm{M}-\mathrm{H}]^{-} 404.1$, found 404.2 .

3-(2-(3,4-dihydroxyphenyl)acetamido)propyl 2-(3,4-dihydroxyphenyl)acetate (35)

Following the general method for the phenolic hydroxyl group deprotection \mathbf{E}, compound $\mathbf{3 5}$ was obtained in 73% yield as colorless thick oil. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 8: 2\right)=0.60{ }^{1} \mathrm{H}$ NMR (200 MHz , Acetone- d_{6}) $\delta 8.04$ (br s, 4H), 7.37 (s, 1H), 6.83 (dd, $J=7.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.73 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{ddd}, J=8.2,6.3,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H})$, $3.37(\mathrm{~s}, 2 \mathrm{H}), 3.30-3.22(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.68(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz , Acetone- d_{6}) δ $172.3,171.7,145.8,145.7,145.0,144.8,128.0,126.7$, 121.4, 121.3, 117.0, 116.9, 116.0, 115.3, 62.0, 42.6, 40.4, 36.4, 28.8. MS (ESI) m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{7}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 374.1$, found 374.2.

5-(2-(3,4-dihydroxyphenyl)acetamido)pentyl 2-(3,4-dihydroxyphenyl)acetate (36)

Following the general method for the phenolic hydroxyl group deprotection \mathbf{E}, compound $\mathbf{3 6}$ was obtained in 50% yield as colorless thick oil. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 8: 2\right)=0.65{ }^{1} \mathrm{H}$ NMR (200 MHz, Acetone-d d_{6}) $8.47(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 6.77 (ddd, J = 13.3, 7.7, 1.5 Hz, 4H), $6.69-6.53(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~s}$, 2 H), $3.36(\mathrm{~s}, 2 \mathrm{H}), 3.17(\mathrm{dd}, \mathrm{J}=12.7,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.23(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz , Acetone- d_{6}) $\delta 172.7,172.2,145.8,145.0,144.8,128.2,126.9,121.3,121.3,117.0,116.9$, 116.0, 115.8, 64.8, 43.2, 41.1, 39.9, 29.9, 28.9, 23.9. MS (ESI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{7}^{-}$ [M-H] 402.1 , found 402.1.

4-(2-(3,4-dihydroxyphenyl)acetamido)butyl 2-(3,4-dihydroxyphenyl)acetate (37)

Following the general method for the phenolic hydroxyl group deprotection \mathbf{E}, compound $\mathbf{3 7}$ was obtained in 53% yield as colorless thick oil. $\mathrm{R}_{f}=\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 8: 2\right)=0.58{ }^{1} \mathrm{H}$ NMR (200 MHz , Acetone- d_{6}) $\delta 8.05(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 6.85-6.66(\mathrm{~m}, 4 \mathrm{H}), 6.60(\mathrm{td}, \mathrm{J}=8.0$, $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 3.19(\mathrm{q}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.56$ $(\mathrm{s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz , Acetone- d_{6}) $\delta 172.8,172.2,145.8,145.0,144.8,128.1,126.8$, 121.4, 121.3, 117.0, 116.9, 116.0, 115.8, 64.6, 43.2, 41.1, 39.7, 26.6. MS (ESI) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{7}^{-}[\mathrm{M}-\mathrm{H}]^{-} 388.1$, found 388.2.

Figure S1：${ }^{1} \mathrm{H}$ NMR of $\mathbf{2}$ ．
KPI24C
13C OBSE部VE

べ犬

Figure S2：${ }^{13} \mathrm{C}$ NMR of $\mathbf{2}$ ．

Figure S3: ESI-MS of 2.

Figure S4: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3}$.

Figure S5: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3}$.

Figure S6: ESI-MS of 3.

Figure S7: ${ }^{1} \mathrm{H}$ NMR of 4.

KPI96C.\&ew KPI96C_qew
13C OBSERERE

Figure S8: ${ }^{13} \mathrm{C}$ NMR of 4.

Figure S9: ESI-MS of 4.

Figure S10: ${ }^{1} \mathrm{H}$ NMR of 5.

Figure S11: ${ }^{13} \mathrm{C}$ NMR of 5.

Figure S12: ESI-MS of 5.

Figure S13: ${ }^{1} \mathrm{H}$ NMR of 6 .

Figure S14: ${ }^{13} \mathrm{C}$ NMR of 6 .

KP.I48_ESI_50 \#1-13 RT: 0.00-0.41 AV: 13 NL: 1.49E5
T: \{0,0\}-pESI !corona sid=50.00 det=1153.00 Full rn

Figure S15: ESI-MS of 6.

Figure S16: ${ }^{1} \mathrm{H}$ NMR of 7.

KPI10018C_CDCl3
13C OBSERERE

Figure S17: ${ }^{13} \mathrm{C}$ NMR of 7.

Figure S18: ESI-MS of 7.

Figure S19: ${ }^{1} \mathrm{H}$ NMR of 8 .
KPI1 $\frac{1}{2} \mathrm{C}$
$13 \mathrm{C} \mathrm{O}_{\mathrm{p}} \mathrm{SERVE}$
畐学

$\stackrel{n}{0}$
$\stackrel{+}{\dot{G}}$
\mid

$\stackrel{\hat{O}}{\dot{J}}$

Figure S20: ${ }^{13} \mathrm{C}$ NMR of 8 .

Figure S21: ESI-MS of 8.

Figure S22: ${ }^{1} \mathrm{H}$ NMR of 9.
KPI105C
13C OB̈SERV
OC OBERE
M M

Figure S23: ${ }^{13} \mathrm{C}$ NMR of 9 .

Figure S24: ESI-MS of 9.

Figure S25: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 0}$.

岕灾芯
 $-4+0$

Figure S27: ESI-MS of 10.

Figure S28: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 1 .}$

Figure S30: ESI-MS of 11.

Figure S31: ${ }^{1} \mathrm{H}$ NMR of 12.

KPI115C_迆SO 13C OBSERE

12

Figure S32: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 2}$.

KP.115 klasma 29 ESI 50 \#1-18 RT: 0.00-0.57 AV: 18 NL: 8.61E4
T: $\{0,0\}^{-}$- ESI !corona sid=50.00 det=1153.00 Full m

Figure S33: ESI-MS of 12.

Figure S34: ${ }^{1} \mathrm{H}$ NMR of 13.

Figure S35: ${ }^{13} \mathrm{C}$ NMR of 13.

Figure S36: ESI-MS of 13.

Figure S37: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 4 .}$

13C OBSE氐VE
$\stackrel{\substack{\infty \\ \dot{\infty} \\ \dot{\sim} \\ \vdots}}{\substack{j}}$

14

Figure S38: ${ }^{13} \mathrm{C}$ NMR of 14 .

Figure S39: ESI-MS of 14.

Figure S40: ${ }^{1} \mathrm{H}$ NMR of 15.
 13C OBSERVE

15

Figure S41: ${ }^{13}$ C NMR of 15.

Figure S42: ESI-MS of 15.

Figure S43: ${ }^{1} \mathrm{H}$ NMR of 16.

Figure S44: ${ }^{13} \mathrm{C}$ NMR of 16.

Figure S45: ESI-MS of 16.

Figure S46: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 7 .}$

Figure S47: ${ }^{13} \mathrm{C}$ NMR of 17 .

Figure S48: ESI-MS of 17.

Figure S49: ${ }^{1} \mathrm{H}$ NMR of 18.

KPI22a-neinc
13C OBS

18

Figure S50: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 8}$.

Figure S51: ESI-MS of 18.

Figure S52: ${ }^{1} \mathrm{H}$ NMR of 19.

Figure S53: ${ }^{13} \mathrm{C}$ NMR of 19.

KPI38 klasma9 ESI 50 \#1-12 RT: 0.00-0.37 AV: 12 NL: 9.24E4
T: $\{0,0\}$ - p ESI !corona sid=50.00 det=1153.00 Full n
100
90
8
389.19

19
$60-1$
$50-1$

Figure S54: ESI-MS of 19.

Figure S55: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 0 .}$

Figure S56: ${ }^{13} \mathrm{C}$ NMR of 20.

KPL42_klasma10_ESI_50 \#1-19 RT: 0.00-0.61 AV: 19 NL: 5.77E5
Figure S57: ESI-MS of 20.

Figure S58: ${ }^{1} \mathrm{H}$ NMR of 21. 13е्థOOBSERVE

```

लّ
```

|

```


Figure S59: \({ }^{13} \mathrm{C}\) NMR of 21.

KP.140_klasma10_ESI_50 \#1-12 RT: 0.00-0.37 AV: 12 NL: 5.68E4
T: \(\{0,0\}-p\) ESI !corona sid=50.00 det \(=1153.00\) Full \(n\)


Figure S60: ESI-MS of 21.


Figure S61: \({ }^{1} \mathrm{H}\) NMR of 22.





Figure S62: \({ }^{13} \mathrm{C}\) NMR of 22.

KPI44_klasma6_ESI_50 \#1-19 RT: 0.00-0.61 AV: 19 NL: 2.93E5
T: \{0,0\} - p ESI !corona sid=50.00 det=1153.00 Full m


Figure S63: ESI-MS of 22.


Figure S64: \({ }^{1} \mathrm{H}\) NMR of 23.


Figure S65: \({ }^{13} \mathrm{C}\) NMR of 23.


Figure S66: ESI-MS of 23.


Figure S67: \({ }^{1} \mathrm{H}\) NMR of 24.



24



Figure S68: \({ }^{13} \mathrm{C}\) NMR of 24.


Figure S69: ESI-MS of 24.

\(\stackrel{\curvearrowleft}{\text { in }}\)



25



Figure S70: \({ }^{1} \mathrm{H}\) NMR of \(\mathbf{2 5 .}\)

KPI107C DMSO 13C OBSERE

(iqjo

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & & 1 & 1 & 1 & 1 & 1 & & 1 & 1 & 1 & 1 & 1 & + & 1 & & \\
\hline 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \[
\begin{gathered}
90 \\
\mathrm{f} 1(\mathrm{pom})
\end{gathered}
\] & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

Figure S71: \({ }^{13} \mathrm{C}\) NMR of 25.

KPl107b_klasma25_ESI_50 \#1-10 RT: 0.00-0.30 AV: 10 NL: 9.24E4
T: \(\{0,0\}\) - p ESI !corona sid=50.00 det=1153.00 Full \(n\)


Figure S72: ESI-MS of 25.


26

\section*{ \\ }
\(\stackrel{9}{1}\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \[
\stackrel{b}{\circ}
\] & & & & & & Tr & 㞧 & & & & & & \\
\hline 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & \[
\stackrel{4.0}{\mathrm{f} 1}(\mathrm{ppm})
\] & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 \\
\hline
\end{tabular}

Figure S73: \({ }^{1} \mathrm{H}\) NMR of 26.

26

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline T & 1 & 1 & 1 & 1 & 1 & 1 & 1 & , & 1 & 1 & , & 1 & 1 & & 1 & 1 & 1 \\
\hline 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \[
\begin{gathered}
90 \\
\mathrm{f} 1(\mathrm{ppm})
\end{gathered}
\] & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

Figure S74: \({ }^{13} \mathrm{C}\) NMR of 26.

KP.129_klasma_9_ESI+50 \#1-14 RT: 0.00-0.44 AV: 14 NL: 3.13E5
T: \(\{0,0\}+p\) ESI !corona sid \(=50.00\) det \(=1153.00\) Full \(r\)


Figure S75: ESI-MS of 26.


Figure S76: \({ }^{1} \mathrm{H}\) NMR of 27.



27



Figure S77: \({ }^{13} \mathrm{C}\) NMR of 27.

KPI140_ESI+50 \#1-10 RT: 0.00-0.30 AV: 10 NL: 1.46E6 \(\mathrm{T}:\{0,0\}^{-}+\mathrm{p}\) ESI !corona sid=50.00 det=1153.00 Full \(r\)


Figure S78: ESI-MS of 27.


```

28

```

Figure S79: \({ }^{1} \mathrm{H}\) NMR of 28.
KPI142CO.
13C OBSEREV
13C OBSERVE



28



Figure S80: \({ }^{13} \mathrm{C}\) NMR of 28.

KPI142 ESI+50 \#1-14 RT: 0.00-0.44 AV: 14 NL: 1.10E6
T: \(\{0,0\}^{-}+p\) ESI !corona sid \(=50.00\) det=1153.00 Full \(r\)


Figure S81: ESI-MS of 28.


Figure S82：\({ }^{1} \mathrm{H}\) NMR of 29.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
KPI144゚． \\
13C OBSERERE ।
\end{tabular} &  & \[
\begin{aligned}
& \text { N } \\
& \text { ה } \\
& \text { I }
\end{aligned}
\] & \[
\begin{gathered}
\stackrel{m}{N} \\
\stackrel{\sim}{1} \\
\mid
\end{gathered}
\] &  & ఫ8om人人尺 \(\backslash!\) & \[
\begin{aligned}
& \text { no } \\
& \stackrel{0}{0} \\
& 1
\end{aligned}
\] & ｜ & \＆ &  & \(\stackrel{\text { mid }}{\text { ¢ }}\) \\
\hline
\end{tabular}


29



Figure S83：\({ }^{13}\) C NMR of 29.

KPI144 ESI+50 \#1-15 RT: 0.00-0.47 AV: 15 NL: 1.02E6
T: \(\{0,0\}^{-}+p\) ESI !corona sid \(=50.00\) det \(=1153.00\) Full \(r\)


Figure S84: ESI-MS of 29.


Figure S85: \({ }^{1} \mathrm{H}\) NMR of \(\mathbf{3 0}\).


Figure S86: \({ }^{13} \mathrm{C}\) NMR of \(\mathbf{3 0 .}\)

KPI146 klasma10 ESI 50 \#1-8 RT: 0.00-0.24 AV: 8 NL: 1.02E5
T: \(\{0,0\}-p\) ESI !corona sid=50.00 det=1153.00 Full \(n\)


Figure S87: ESI-MS of \(\mathbf{3 0}\).


Figure S88: \({ }^{1} \mathrm{H}\) NRR of \(\mathbf{3 1}\).


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 1 & & 1 & 1 & & 1 & & & & & & 1 & , & 1 & 1 & 1 & \\
\hline 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \[
\begin{gathered}
90 \\
\mathrm{f} 1(\mathrm{ppm})
\end{gathered}
\] & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}

Figure S89: \({ }^{13} \mathrm{C}\) NMR of 31 .

KPI148_ESI 50 \#1-7 RT: 0.00-0.20 AV: 7 NL: 1.33E5
T: \(\{0,0\}-p\) ESI !corona sid=50.00 det=1153.00 Full \(r\)
(100
Figure S90: ESI-MS of \(\mathbf{3 1}\).
,

32


Figure S91: \({ }^{1} \mathrm{H}\) NMR of \(\mathbf{3 2}\).



Figure S92: \({ }^{13} \mathrm{C}\) NMR of \(\mathbf{3 2}\).


Figure S93: ESI-MS of 32.


Figure S94: \({ }^{1} \mathrm{H}\) NMR of \(\mathbf{3 3 .}\)


33



Figure S95: \({ }^{13} \mathrm{C}\) NMR of 33.

Figure S96: ESI-MS of 33.


Figure S97: \({ }^{1} \mathrm{H}\) NMR of \(\mathbf{3 4 .}\)
KPI1S4C_acetone
13C 4 BSERVE
\(\xrightarrow{\text { 13C }}\)



\footnotetext{

}

Figure S98: \({ }^{13} \mathrm{C}\) NMR of 34 .

KP:1154_ESI 50 \#1-9 RT: 0.00-0.27 AV: 9 NL: 9.74E4
T: \{0,0\} - p ESI !corona sid=50.00 det=1153.00 Full r


Figure S99: ESI-MS of 34.


Figure S100: \({ }^{1} \mathrm{H}\) NMR of \(\mathbf{3 5}\).


Figure S101: \({ }^{13} \mathrm{C}\) NMR of 35 .

KP.I156_ESI 50 \#1-19 RT: 0.00-0.61 AV: 19 NL: 1.44E5
T: \(\{0,0\}-p\) ESI !corona sid=50.00 det=1153.00 Full m


Figure S102: ESI-MS of \(\mathbf{3 5}\).


Figure S103: \({ }^{1} \mathrm{H}\) NMR of 36.


Figure S104: \({ }^{13} \mathrm{C}\) NMR of 36.

KPI158_ESI 25 \#1-18 RT: 0.00-0.58 AV: 18 NL: 7.22E4
T: \(\{0,0\}-p\) ESI !corona sid=25.00 det=1153.00 Full \(n\)


Figure S105: ESI-MS of \(\mathbf{3 6}\).


Figure S106: \({ }^{1} \mathrm{H}\) NMR of \(\mathbf{3 7}\).


Figure S107: \({ }^{13} \mathrm{C}\) NMR of 37.

KPI160 ESI 50 \#1-18 RT: 0.00-0.58 AV: 18 NL: 1.98E5
T: \(\{0,0\}-p\) ESI !corona sid=50.00 det=1153.00 Full \(n\)


Figure S108: ESI-MS of \(\mathbf{3 7}\).

\section*{2. DPPH Assays}

Radical scavenging activity of derivatives/conjugates was determined according to a recently modified literature procedure (Tassano et al. 2015). A \(80.14 \mu \mathrm{~m}\) solution of DPPH ( 2.90 mL , 232 nmol ) was placed in a cuvette. A solution of the polyphenol compound (with a known concentration from 100 to \(500 \mu \mathrm{M} ; 100 \mu \mathrm{~L}\), from 10 to 50 nmol ) was added, and the UV absorbance was monitored versus time at \(\lambda=516 \mathrm{~nm}\) with a UV/Vis spectrophotometer. Absorbance values were taken every 0.1 min . The end of the first fast reaction was determined by observation of the second-order derivative: when it approached 0 , the first reaction was considered ended. The end of the second slow reaction was determined by reaching the steady state. The \(\mathrm{EC}_{50}\) value was obtained by plotting the steady-state \(\left(t_{2}\right)\) values of the \(\%\) RSA for the various concentrations, obtaining the best straight line and deducting the concentration at which \(\%\) RSA was \(=50\). Experiments were performed at six different concentrations of the antioxidant in triplicate

Table S1.Results of DPPH assay on selected concentrations.
\begin{tabular}{lllllll}
\hline Compound & \(\mathbf{C}(\boldsymbol{\mu M})\) & \(\mathbf{M R}\) & \(\boldsymbol{t}_{\mathbf{1}}(\mathbf{m i n})\) & \(\boldsymbol{t}_{\mathbf{2}}(\mathbf{m i n})\) & \%RSA \(_{\mathbf{1}}\) & \%RSA \(\mathbf{R S}_{\mathbf{2}}\) \\
\hline \multirow{3}{*}{\(\mathbf{1 9}\)} & 375 & 0.06 & 8.5 & 8.5 & 76.4 & 76.4 \\
& 250 & 0.04 & 2.5 & 120 & 36.2 & 68.2 \\
& 125 & 0.02 & 2 & 120 & 14.9 & 33.4 \\
\(\mathbf{2 0}\) & 500 & 0.08 & 25 & 25 & 76.7 & 76.7 \\
& 375 & 0.06 & 10 & 120 & 52.4 & 64.1 \\
& 250 & 0.04 & 6 & 120 & 32.4 & 42.3 \\
& 125 & 0.02 & 1 & 15 & 21.8 & 25.5 \\
\(\mathbf{2 1}\) & 375 & 0.06 & 20 & 20 & 78.3 & 78.3 \\
& 250 & 0.04 & 3 & 80 & 38.0 & 75.5 \\
& 175 & 0.03 & 2 & 120 & 29.0 & 57.6 \\
& 125 & 0.02 & 1.6 & 25 & 18.5 & 26.3 \\
\(\mathbf{2 2}\) & 500 & 0.08 & 0.3 & 0.3 & 77.0 & 77.0 \\
& 250 & 0.04 & 1.6 & 60 & 42.6 & 73.9 \\
& 125 & 0.02 & 1.3 & 120 & 17.2 & 59.8 \\
& 62.5 & 0.01 & 0.7 & 110 & 14.5 & 30.4 \\
\(\mathbf{2 3}\) & 500 & 0.08 & 6 & 43 & 52.7 & 78.5 \\
& 375 & 0.06 & 1.5 & 30 & 52.6 & 72.9
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 125 & 0.02 & 1.2 & 120 & 6.3 & 42.1 \\
\hline & 500 & 0.08 & 7 & 60 & 47.3 & 77.4 \\
\hline 6 & 375 & 0.06 & 5 & 120 & 32.9 & 65.4 \\
\hline & 250 & 0.04 & 3 & 87 & 16.1 & 32.5 \\
\hline & 500 & 0.08 & 1.66 & 85 & 35.1 & 79.0 \\
\hline 7 & 375 & 0.06 & 0.7 & 83 & 34.5 & 73.1 \\
\hline & 250 & 0.04 & 0.49 & 120 & 17.5 & 38.7 \\
\hline & 500 & 0.08 & 1.6 & 46 & 44.9 & 72.3 \\
\hline & 375 & 0.06 & 0.6 & 70 & 35.1 & 71.6 \\
\hline 8 & 250 & 0.04 & 0.3 & 120 & 23.0 & 65.3 \\
\hline & 125 & 0.02 & 0.5 & 120 & 4.4 & 25.4 \\
\hline & 500 & 0.08 & 2 & 33 & 56.7 & 72.3 \\
\hline & 375 & 0.06 & 0.3 & 120 & 34.4 & 68.4 \\
\hline 9 & 250 & 0.04 & 0.5 & 120 & 20.2 & 55.7 \\
\hline & 125 & 0.02 & 0.2 & 120 & 9.8 & 27.2 \\
\hline & 500 & 0.08 & 0.3 & 0.3 & 72.2 & 72.2 \\
\hline 25 & 250 & 0.04 & 0.22 & 16 & 29.3 & 70.8 \\
\hline & 125 & 0.02 & 0.4 & 113 & 16.7 & 48.6 \\
\hline & 750 & 0.12 & 1.66 & 45 & 59.5 & 76.0 \\
\hline & 500 & 0.08 & 0.6 & 120 & 46.2 & 78.3 \\
\hline 12 & 375 & 0.06 & 0.5 & 120 & 44.1 & 72.6 \\
\hline 12 & 300 & 0.048 & 0.45 & 120 & 11.7 & 37.0 \\
\hline & 250 & 0.04 & 0.2 & 120 & 21.7 & 31.7 \\
\hline & 125 & 0.02 & 0.15 & 60 & 19.6 & 25.1 \\
\hline & 750 & 0.12 & 1.66 & 50 & 59.3 & 78.6 \\
\hline 13 & 500 & 0.08 & 1 & 68 & 52.9 & 77.8 \\
\hline & 250 & 0.04 & 0.6 & 120 & 29.1 & 45.5 \\
\hline & 500 & 0.08 & 3.7 & 3.7 & 80.0 & 80.0 \\
\hline 34 & 250 & 0.04 & 3 & 70 & 40.7 & 60.8 \\
\hline & 125 & 0.02 & 1 & 100 & 27.9 & 49.4 \\
\hline & 500 & 0.08 & 3 & 3 & 80.5 & 80.5 \\
\hline 35 & 250 & 0.04 & 2.6 & 56 & 39.8 & 76.1 \\
\hline & 125 & 0.02 & 1 & 88 & 26.6 & 45.1 \\
\hline
\end{tabular}
\begin{tabular}{lllllll} 
& 500 & 0.08 & 5 & 5 & 78.1 & 78.1 \\
\(\mathbf{3 6}\) & 250 & 0.04 & 1.6 & 21 & 41.6 & 76.2 \\
& 175 & 0.028 & 1.3 & 95 & 34.7 & 68.8 \\
& 125 & 0.02 & 1.4 & 120 & 18.7 & 43.2 \\
\(\mathbf{3 7}\) & 500 & 0.08 & 4.5 & 4.5 & 79.4 & 79.4 \\
& 375 & 0.06 & 4 & 4 & 74.1 & 74.1 \\
& 125 & 0.02 & 1 & 66 & 22.3 & 38.1 \\
& 500 & 0.08 & 3 & 3 & 76.3 & 76.3 \\
DHPAA & 375 & 0.06 & 1.66 & 120 & 49.8 & 65.2 \\
& 250 & 0.04 & 0.8 & 120 & 33.4 & 42.8 \\
\hline
\end{tabular}

Table S2. \(\mathrm{EC}_{50}\) of 3,4-dihydroxyphenylacetic derivatives/conjugates
\begin{tabular}{ccccccccc}
\hline Compd & \(\mathrm{EC}_{50}{ }^{\mathrm{a}}\) & \(\mathrm{EC}_{50}{ }^{\mathrm{b}}\) & \(\mathrm{Compd}^{2}\) & \(\mathrm{EC}_{50}{ }^{\mathrm{a}}\) & \(\mathrm{EC}_{50}{ }^{\mathrm{b}}\) & Compd & \(\mathrm{EC}_{50}{ }^{\mathrm{a}}\) & \(\mathrm{EC}_{50}{ }^{\mathrm{b}}\) \\
\hline \(\mathbf{6}\) & 328 & 52 & \(\mathbf{1 3}\) & 239 & 38 & \(\mathbf{2 5}\) & 39 & 6 \\
\(\mathbf{7}\) & 291 & 46 & \(\mathbf{1 9}\) & 196 & 31 & \(\mathbf{3 4}\) & 126 & 20 \\
\(\mathbf{8}\) & 239 & 38 & \(\mathbf{2 0}\) & 297 & 48 & \(\mathbf{3 5}\) & 73 & 12 \\
\(\mathbf{9}\) & 263 & 42 & \(\mathbf{2 1}\) & 181 & 29 & \(\mathbf{3 6}\) & 17 & 3 \\
\(\mathbf{1 2}\) & 347 & 55 & \(\mathbf{2 2}\) & 117 & 19 & \(\mathbf{3 7}\) & 239 & 38 \\
Ascorbic acid & 25 & 4 & \(\mathbf{2 3}\) & 190 & 30 & DHPAA & 290 & 46 \\
\hline\({ }^{\text {a }}(\mu \mathrm{M})\) & & & & & & & \\
\({ }^{\mathrm{b}}\left(\mathrm{nmol}\right.\) compound \(/ \mu\) mol \(\left._{\text {DPPH }}\right)\)
\end{tabular}

Table S3. Physico-chemical properties of 3,4-dihydroxyphenylacetic derivatives/ conjugates
\begin{tabular}{llllllll}
\hline \begin{tabular}{l} 
Compd \\
Rule
\end{tabular} & \begin{tabular}{lllll} 
miLog \(^{\mathrm{a}}\) \\
\(<5,>1\)
\end{tabular} & \begin{tabular}{l}
\(\mathrm{MW}^{\mathrm{b}}\) \\
\(<500\)
\end{tabular} & \begin{tabular}{l}
\(N_{\mathrm{ON}}{ }^{\mathrm{c}}\) \\
\(<10\)
\end{tabular} & \begin{tabular}{l}
\(N_{\mathrm{OHNH}}{ }^{\mathrm{d}}\) \\
\(<5\)
\end{tabular} & \(N_{\text {viol. }}{ }^{\mathrm{e}}\)
\end{tabular} \begin{tabular}{l} 
Nrotb. \(^{\mathrm{f}}\) \\
\((<10)\)
\end{tabular} \begin{tabular}{l}
\(\mathrm{TPSA}^{\mathrm{g}}\) \\
\(<140 \AA^{2}\)
\end{tabular}
\begin{tabular}{llllllll}
\hline \(\mathbf{1 9}\) & 2.25 & 390 & 8 & 4 & 0 & 11 & 133 \\
\(\mathbf{2 0}\) & 1.98 & 376 & 8 & 4 & 0 & 10 & 133 \\
\(\mathbf{2 1}\) & 1.32 & 406 & 9 & 4 & 0 & 12 & 143 \\
\(\mathbf{2 2}\) & 5.28 & 474 & 8 & 4 & 1 & 17 & 133 \\
\(\mathbf{2 3}\) & 2.63 & 416 & 8 & 4 & 0 & 8 & 133 \\
\(\mathbf{2 5}\) & 0.20 & 360 & 8 & 6 & 1 & 7 & 139 \\
\(\mathbf{3 4}\) & 0.75 & 405 & 9 & 5 & 1 & 11 & 145 \\
\(\mathbf{3 5}\) & 1.22 & 375 & 8 & 5 & 0 & 9 & 136 \\
\(\mathbf{3 6}\) & 2.00 & 403 & 8 & 5 & 0 & 11 & 136 \\
\(\mathbf{3 7}\) & 1.49 & 389 & 8 & 5 & 0 & 10 & 136 \\
DHPAA & 0.39 & 168 & 4 & 3 & 1 & 2 & 78 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Octanol-water partition coefficient, calculated by the methodology developed by
Molinspiration.
\({ }^{\mathrm{b}}\) Molecular weight.
\({ }^{\mathrm{c}}\) Number of hydrogen-bond acceptors ( O and N atoms).
\({ }^{\mathrm{d}}\) Number of hydrogen-bond donors ( OH and NH groups).
\({ }^{\text {en }}\) Number of 'Rule of five' violations.
\({ }^{\mathrm{f}}\) Number of rotatable bonds.
\({ }^{\mathrm{g}}\) Polar surface area.

\section*{Reference}

Tassano E, Alama A, Basso A, Dondo G, Galatini A, Riva R, Banfi L. 2015. Conjugation of Hydroxytyrosol with Other Natural Phenolic Fragments: From Waste to Antioxidants and Antitumour Compounds. Eur. J. Org. Chem. 6710-6726```

