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1 Model

We model male reproductive strategies in a discrete model. A difference-equation model is employed to ex-
plore the effects of pair bonding, paternity stealing, and partner availability. Males are categorised based on
their inherited reproductive strategies. We assume here that offspring fully inherit the strategy of their fa-
ther. Three male strategies are modelled: dependant carers, P ; multiple maters, M ; mate guarders, which
includes those searching for mates, S, and those actively guarding their mates, G. Division of males adopting
a guarding strategy into those currently guarding mates and those searching for females to guard allows us to
distinguish the number of unguarded and eligible females available for conception at each time step, as well
as the number of actively searching males.

The population of eligible and available females (who are not currently guarded) is defined as F . As each
guarding male is restricted to guarding one female (a restriction which can be later loosened), G also repre-
sents the number of guarded females. Thus the total population of females, guarded and unguarded, is given
by F +G, and the total population of males is given by P +M + S +G. However, we define eligible males as
those who are not currently guarding, which is the population of males actively looking for females to mate.
This is represented by M̂ = P +M + S.

We model these strategies as pure strategies, with offspring inheriting the strategy of their fathers. In this way
we model a system wherein we can track the fitness of each pure strategy, determining the overall benefit
of each. Developing a model that incorporates switching between strategies would be a novel inclusion, but
is beyond the scope of this investigation. This assumption of pure strategies further follows from the model
developed in Schacht and Bell [2016].

A series of events happens at each time step. Let Xn be the population size of X , any given population, at a
certain time t = n∆t. This indexes the population as it changes every generation, a time period of about 10
years. To calculate the dynamics that occur within each time step, let Xn,i be the population size of X at each
sub-step i = 1, 2, 3, 4 where the sub-steps represent the sequential events below:

1. Breaking pair bonds,

2. Mating events,

3. Death,

4. Offspring become adults.

In order to progress from t = n∆t to t = (n+ 1)∆t, we must first go through each sub-step i in order. At i = 4,
population sizes are assigned to the time step, t = (n+ 1)∆t.

We allow existing pair bonds to first be under pressure of break up. This changes the number of eligible males
and females who can then re-enter the mating population. With these eligible populations, mating and repro-
duction occurs, then death. At the end of the time step, surviving offspring reach independence and transition
to the eligible population.
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Further, we seek to investigate the effect of the ASR on the long-term equilibrium strategy when grandmoth-
ering effectively removes females from the eligible pool. To achieve this removal, we impose sex-specific adult
removal rates that are dependent on target ASRs.

A female-biased ASR is imposed with increased male removal rates, and vice versa. If male removal is higher
than corresponding female removal, a female-biased population will result, and vice versa. This manipulation
is distinct from empirical differences in mortality rates of the sexes, with mortality generally higher in males
across the mammals including our closest primate cousins.

Pair bond breakup

For sub-step i = 1, guarded pairs can break up due to random effects. A specifically defined proportion of
bonds are allowed to break up. This can be interpreted in terms of a male deciding to stop guarding a female
and begin searching for another, or a female choosing to leave. However, from [Hawkes et al., 1995], we em-
phasize the interpretation of male-male competition. For mathematical simplicity, we parametrize pair-bond
break up with a constant, β.

When pair-bond break up occurs, guarding males return to the searching compartment, and females return to
eligibility. Thus at each step,

Pn,1 = Pn,

Mn,1 = Mn,

Sn,1 = Sn + βGn,

Gn,1 = Gn − βGn,

Fn,1 = Fn + βGn.

Multiple-mating and caring males do not undergo change at this intermediate time-step.

Mating

At each mating step, we first adjust searching and guarding populations by allowing new bonds to form. The
probability that an eligible female gets guarded by a searching male is a frequency-dependent term Sn,1/M̂ .
Thus, at this step, we have

Pn,2 = Pn,1,

Mn,2 = Mn,1,

Sn,2 = Sn,1 −BS(Xn,1),

Gn,2 = Gn,1 +BS(Xn,1),

Fn,2 = Fn,1 −BS(Xn,1).

To determine the number of paternities for males using each strategy at each time step, we define the number
of paternities available to each strategy based on the number of females available, and the number of males
actively searching for mates. Mating events depend on the number, F , of eligible females able to conceive
at this time. We assume mating functions Bi(X) for each actively searching population i = P,M, S, that are
dependent on the vector of all populations, X. These define the number of paternities for each strategy, prior
to stealing by multiple maters.

Table 1 outlines the approximation of the mating functions used. This approximation is developed under the
assumption that caring and guarding males are assigned females before multiple-mating males. In female-
biased populations, we assume that the excess number of females present due to the female-biased sex ratio
are assigned to multiple-mating males, since we are considering only social monogamy. In a male-biased sit-
uation, paternities are assigned as an average of the population. Each strategy gets a fraction of the available
females, proportional to the number of males adopting each strategy.

The mating function defines the number of paternities assigned to each strategy, and can be interpreted as
the probability of finding a female to mate. In female-biased populations, this birth function allows caring
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Mating function, Bi(X) Value when female-biased Value when male-biased
BP (X) P F P

M̂
BS(X) S F S

M̂
BM (X) F − P − S F M

M̂

Table 1: Mating function used, constructed with different frequency-dependent paternity payoffs, where M̂ =
P + S +M , the total population of actively searching males.

males and guarders to obtain paternities prior to multiple maters. Caring and guarding males are ’first-in-line’
for paternities. The construction given in Table 1 outlines the birth function used in this model. The remain-
ing paternities are assigned to multiple maters, as they are able to mate multiply. In the case of a male-biased
sex ratio, paternities are assigned proportionally to each of the searching categories of male strategies, P ,M , S.

Parameters of paternity stealing are also introduced, with multiple-mating males given the opportunity to
steal the paternities of caring and guarding males. Assuming that paternities of the offspring of carers’ and
guarders’ mates can be stolen by multiple maters, we denote the proportion of paternities stolen by multiple
maters as ki where i = P,G denotes the total paternities of those mates. We define εi, where i = P,G, as the
availability of paternities to stealing by multiple-mating males. This value is restricted to between [0, 1], as
its interpretation corresponds to the availability of corresponding females that are taken by multiple-mating
males. The paternities of a given female are fully susceptible to multiple-mating males when εi = 1, and com-
pletely unavailable when εi = 0. An alternative interpretation of this parameter is that it indicates guarding
efficiency. If εG is high, this corresponds to low guarding efficiency, and so (1 − εG) can be interpreted as the
guarding effectiveness.

Thus, the probability that the offspring of a given strategy has been sired by a multiple-mating male is,

ki =
εiM

1 + εiM
.

This corresponds to the proportion of paternities assigned to the guarding or caring strategies, that are stolen
by multiple-mating males. By its mathematical definition, ki ∈ [0, 1].

This is a simplification of the cuckoldry term used in Schacht and Bell [2016]. Rather than using a transition
matrix to calculate the probability that a caring male is caring for a mate’s offspring without his paternity, we
simplify this to a straightforward variable parameter dependent on female availability, as described above.

Given that kP and kG are representations of the proportion of paternities sired by multiple-mating males, we
adjust the offspring born to each strategy by these values. Thus, the number of paternities for males using each
strategy is given by, CX

n,2, where X = P,M,G. We further break up offspring born to multiple-mating males
into those who receive care benefits from being brought up by caring males, CM,P , and those who receive no
such benefit, including those whose mothers are mated by guarding males, CM,G/M . Therefore,

CG
n,2 = bGn,2(1− kG),

CP
n,2 = bBP (Xn,1)(1− kP ),

CM,P
n,2 = bBP (Xn,1)kP ,

C
M,G/M
n,2 = bBM (Xn,1) + bGn,2kG,

where b is the probability that a female gives birth in the time step, and ki is the proportion of paternities stolen
by multiple maters from each strategy i = P,G.

Death/removal

Death occurs at sub-step i = 3 and is defined by adult mortality/removal rate, rA, and immature mortality
rate, rC . Further, immature mortality is modified if a dependant is cared for by a caring male. Given these
mortality/removal rates the probability of death, µA and µC can be determined, assuming an exponential dis-
tribution. Survival is determined by (1−µi) where i is either adult, A, or immature, C. We further distinguish
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male and female death/removal rates in order to impose changes to the adult sex ratio. By setting a target
sex ratio, and adjusting female removal rate by this target sex ratio, we manipulate the female removal rate in
order to obtain different adult sex ratios at equilibrium. This is given by

µA,m = 1− exp (−rA ·∆t),
µA,f = 1− exp (−rA · SR ·∆t).
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Figure S1: Male and female probability of removal, µA,m or µA,f , according to target sex ratios.

Guarding males whose female mates die (or leave the population), return to searching, and females paired
with guarding males who die (or leave the population) return to eligibility. Thus, populations are defined at
this sub-step by

Pn,3 = (1− µA,m)Pn,2,

Mn,3 = (1− µA,m)Mn,2,

Sn,3 = (1− µA,m)Sn,2 + µA,f (1− µA,m)Gn,2,

Gn,3 = (1− µA,m)(1− µA,f )Gn,2,

Fn,3 = (1− µA,f )Fn,2 + (1− µA,f )µA,mGn,2.

Further, juveniles are also subject to mortality rates, and their survival is also dependent on the survival of
their mother:

CG
n,3 = (1− µC)(1− µA,f )CG

n,2,

CP
n,3 = (1− µPC)(1− µA,f )CP

n,2,

CM
n,3 = (1− µC)(1− µA,f )C

M,G/M
n,2 + (1− µPC)(1− µA,f )CM,P

n,2 .

The mortality rate of paternally cared dependants is modified by a parameter of benefit of care, c. The value
of the benefit of care is defined between 0 and 1, with c = 0 corresponding to equal survival of the offspring
of caring males with the offspring of guarding and multiple mating males, and c = 1 corresponding to the
juvenile immortality of the offspring of caring males. We define the benefit of dependant care as restricted to
the juvenile years.

We assume that care benefit, c, alters the rate of mortality, rc, by a factor of (1 − c). Then the probability of
dependant survival can be expressed as

1− µPC = 1− (1− exp [−rPC∆t])

= exp [−rc(1− c)∆t]

= (exp [−rc∆t])1−c

= (1− µC)1−c.

Offspring become eligible

This sub-step corresponds to recruitment to the mating population, children becoming adults. Thus, half of
each child compartment still alive at sub-step i = 3 moves to adult male compartments. We assume the other
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Parameter Assumption
Our model S & B model

Care, c Care benefits the survival of ju-
veniles. Females can only have
one offspring per time step,
whose survival depends on her
mate’s strategy.

Care increases the birth rate of
females, resulting in a larger
number of surviving offspring.
Females can have one to two
surviving offspring per time
step.

Theft of paternities from caring
males, εP or k

εP defines the availability of
the paternities of carers’ mates’
offspring to theft by multiple
maters.

Cuckoldry, k, of the paternities
of paternally caring males by
multiple-mating males.

Theft of paternities from guard-
ing males, εG

Guarding inefficiencies mod-
elled in a similar way to the
theft of paternities from caring
males.

No theft. Guarding provides
certainty of paternity.

Pair bond breakup, β Guarding pairs break up at a
constant rate.

Pairs remain together until
death.

Table 2: Table summarising and comparing assumptions and parameters used within the difference-equation
model developed here and the model developed by Schacht and Bell [2016].

half become adult females. Full strategy inheritance is also assumed. Therefore the difference equations are
given by

Pn+1 = Pn,3 +
1

2
CP

n,3,

Mn+1 = Mn,3 +
1

2
CM

n,3,

Sn+1 = Sn,3 +
1

2
CG

n,3,

Gn+1 = Gn,3,

Fn+1 = Fn,3 +
1

2

(
CP

n,3 + CM
n,3 + CG

n,3

)
.

These are the population values of the next time step.

If we combine all sub-steps the full dynamics of the system are given by the difference equations

P (t+ ∆t) = (1− µA,m)P (t) +
b

2
(1− µC,m)1−c(1− µA,f )BP (X)(1− kP ),

M(t+ ∆t) = (1− µA,m)M(t) +
b

2
(1− µC,m)(1− µA,f ) [BM (X) + kGBS(X)]

+
b

2
(1− µC,m)1−c(1− µA,f ) [BP (X)kP ] ,

S(t+ ∆t) = (1− µA,m) [S(t) + βG(t)−BS(X)] + µA,f (1− µA,m) [G(t)− βG(t) +BS(X)]

+
b

2
(1− µC,m)(1− µA,f ) [BS(X) +G(t)− βG(t)] ,

G(t+ ∆t) = (1− µA,m)(1− µA,f ) [G(t)− βG(t) +BS(X)] ,

F (t+ ∆t) = (1− µA,f ) [F (t) + βG(t)−BS(X)] + µA,m(1− µA,f ) [G(t)− βG(t) +BS(X)]

+
b

2
[(1− µC,f )(1− µA,f ) {G(t)− βG(t) +BS(X) +BM (X)}

+(1− µC,f )1−c(1− µA,f )BP (X)
]
,

where Bi(X), with i = P, S,M , represent the birth function of each strategy and X is the vector of strategies
in the population, X = (P,M, S,G, F ).
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2 Further sensitivity analyses

Benefit of care and potential of theft from caring males

As highlighted in the main text, care only persists in populations at near equal sex ratios and where carers
have certain paternity, i.e., stealing of paternities does not occur (εP = 0). This can be seen in the top right
panel of Figure S2, where εP = 0 and care persists around a near equal sex ratio. Once theft is introduced with
εP = 0.2 in the panel below, this region disappears.
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Figure S2: The effect of different parameters of the benefit of care on the equilibrium strategies given different
sex ratios, fully efficient guarding (εG = 0), and low pair bond breakup (β = 0.1). In the top right panel,
care persists in a small region of ASRs around an equal sex ratio. In all other parameter sets, multiple mating
persists at female-biased sex ratios (ASR< 0.5), and guarding wins at all male-biased sex ratios (ASR ≥ 0.5).

If inefficient guarding is introduced, comparing Figure S2 to Figure S3, we note that care can win at lower
survival benefits, c, than in the case of fully efficient guarding, and also in very male-biased populations. This
can be seen in comparing the top row of Figure S2 with the top row of Figure S3. Care wins for larger regions
in Figure S3 than in the top row of Figure S2. However, as was described in the main text, we note that the
first row represents an unrealistic case, where εG > εP , meaning that the mates of guarding males are more
available than that of caring males. In these cases, care wins as it mimics the effects of guarding. We present
the results here in Figure S3 to show the equilibrium strategies for a range of different parameter values.

Further, in the right column of Figure S3, care wins over strategies of multiple mating and guarding at male-
biased sex ratios. However, upon further inspection of these populations, it is found that given these parameter
values, these populations have progressed to extinction. Thus, the persistence of care does not accurately
represent the takeover of this strategy.

Theft by multiple mating males

Further investigation of different parameter choices demonstrates the effect of varying availabilities of pater-
nities to theft by multiple mating males. Qualitative behaviour is similar for both low and high levels of care
benefit, seen in Figure S4 and S5 respectively. The first column of Figure S4 shows that care persists only where
εG > εP ; the paternities of guarded females are more available to theft than that of caring males. Again, this
smuggles guarding effects into care, as described in the main text and in the definition of parameters given
in the model description. The left column of Figure S5 also demonstrates this. If counter to our definitions,
εG ≥ εP , i.e., caring supplies higher paternity assurance than guarding, then care can persist in a close to equal
sex ratio.
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Figure S3: The effect of different parameters of the benefit of care on the equilibrium strategies given different
sex ratios, inefficient guarding (εG = 0.1), and low pair bond breakup (β = 0.1). Here, where theft from
guarders occurs, the benefit to guarding is smaller than in Figure S2 and thus, care persists in all cases where
theft from carers does not occur (εP = 0, in the top row). In the right column, care also persists in male-biased
ASRs, but further investigation shows that these populations are extinct and are therefore not considered.
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Figure S4: The effect of the availability of the paternities of females to theft by multiple-mating males. High,
moderate, and low availabilities, εP and εG, are presented. Other parameters are that of c = 0.8 (or high
survival benefit to care), and low pair bond breakup (β = 0.1). The left panels show persistence of care,
where theft from carers does not occur (εP = 0). In the other panels, multiple mating wins in female-biased
populations, and guarding wins at male-biased. The ASR at which the switch between these winning strategies
occurs is dependent on how available the paternities of offspring of mates of guarding males are to theft by
multiple maters, εG.

Guarding inefficiencies

For parameter sets exploring the effect of guarding inefficiencies, β and εG, multiple mating is the persistent
strategy at female-biased sex ratios, and guarding is the persistent strategy at very male-biased sex ratios. This
can be seen in Figures S6 and S7. The panels on the right of Figure S6 show care persisting at very male-biased
populations, but further exploration of these long-term equilibria show that these populations are extinct.
When the size of the total population is close to 0, care is a winning strategy as it produces surviving juveniles,
when levels of care benefit are high, as is the case of Figure S6, but not Figure S7 (comparing the right column
of Figure S6, where care is high, c = 0.8, with that of Figure S7, where care is low, c = 0.2).
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Figure S5: The effect of availability of paternities to theft by multiple maters. Different combinations of high,
moderate, and low availabilities, εP and εG, are presented. Other parameters are low care benefit (c = 0.1),
and low pair bond breakup (β = 0.1). Where care here is low, the region within which care persists in the
left column, is smaller than that of Figure S4. Again, in the other panels, multiple mating wins in female-
biased populations, and guarding wins at male-biased. The ASR at which the switch between these winning
strategies occurs is dependent on how available the paternities of offspring of mates of guarding males are to
theft by multiple maters, εG.

Further, the higher the availability of the paternities of guarders’ mates’ offspring to theft by multiple maters,
the higher the ASR at which guarding takes over the population. This is further explored in Figure 3 of the
main text.
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Figure S6: The effect of changes to parameters of guarding inefficiency, at high care benefit (c = 0.8). Different
combinations of parameters quantifying pairbond break up, β, and theft of paternities from guarders, εG,
are presented. The right column shows care persisting at male-biased ASRs, but further investigation into
the populations show extinction. For other combinations of parameter regions, multiple mating wins when
female-biased, and guarding persists when male-biased.
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Figure S7: The effect of changes to parameters of guarding inefficiency, at low care benefit (c = 0.2). Different
combinations of parameters quantifying pairbond break up, β, and theft of paternities from guarders, εG, are
presented. Where care is lower, and theft of the paternities of carer’s mates’ offspring is high, multiple mating
persists in all female-biased populations, and guarding in all male-biased populations.
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