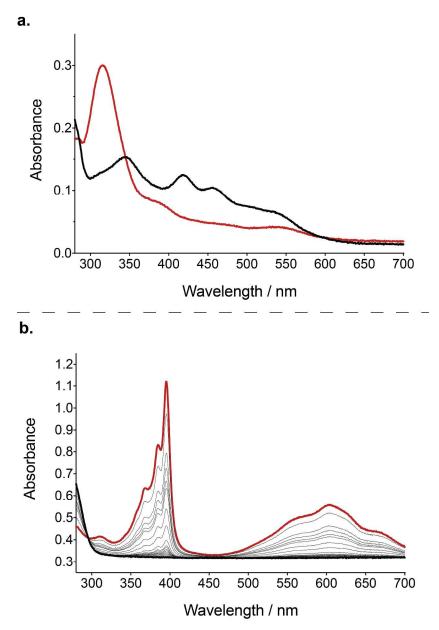
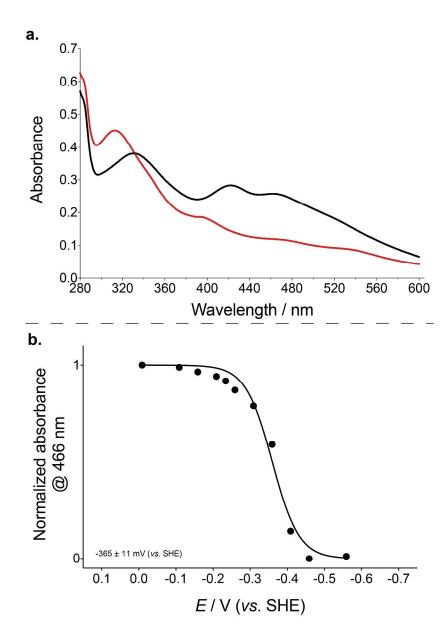
SUPPORTING INFORMATION for:

The *In Vivo* Potential-Regulated Protective Protein of Nitrogenase in *Azotobacter vinelandii* Supports Aerobic Bioelectrochemical Dinitrogen Reduction *In Vitro*

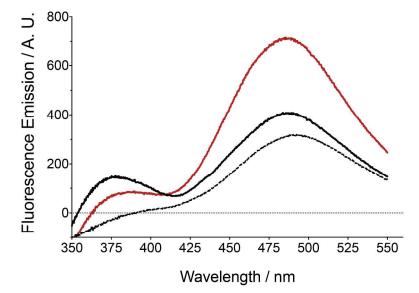
Ross D. Milton,^{ab} Rong Cai,^a Selmihan Sahin,^{ac} Sofiene Abdellaoui,^a Bassam Alkotaini,^a Dónal Leech^b and Shelley D. Minteer^a*

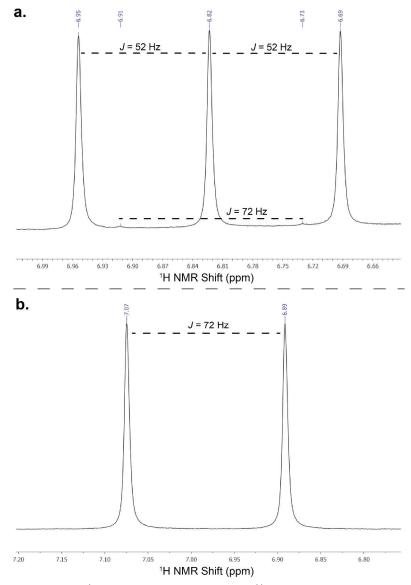

^aDepartment of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, USA.

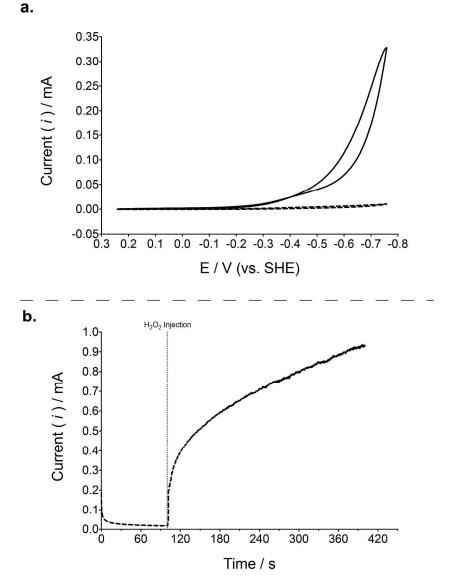
^bSchool of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland.


^cDepartment of Chemistry, Faculty of Arts and Sciences, Suleyman Demirel University, Cunur, Isparta, 32260, Turkey.

Contents


Figure	Page
Figure S1.	2
Figure S2.	3
Figure S3.	4
Figure S4.	5
Figure S5.	6
Figure S6.	7


Figure S1. (a) UV/visible absorption spectra of FeSII as oxidized by O_2 (black) and reduced by 10x excess DT (red). (b) Spectroelectrochemical redox of the MV^{2+}/MV^{*+} redox couple. Initially MV was reduced at -0.61 V (*vs.* SHE) until stable (red), at which time an oxidative potential of -0.01 V (*vs.* SHE) was applied and the oxidation of MV^{*+} was followed by recording its UV/visible absorption at 1 minute intervals. Complete oxidation (black line) was achieved in < 20 minutes.


Figure S2. (a) UV/visible absorption spectra of FeSII as oxidized by O_2 (black) and reduced by 2x excess DT (red). (b) Spectroelectrochemical determination of the reduction potential of petF ferredoxin (200 μ M), using MV (80 μ M) as the electron mediator.

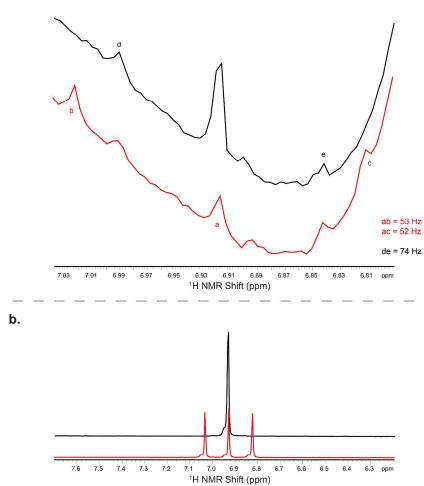

Figure S3. FRET of the double-mutant (CtW/K80C) FeSII protein labeled with AEDANS. Initially (solid red line) W was specifically excited at 295 nm and fluorescence emission with a maxima ~485 nm confirmed FRET between the W donor and AEDANS acceptor couple. A control experiment (black dashed line) consisting of wild-type (WT) FeSII protein at the same concentration in the presence of stoichiometric AEDANS (~67 % labeling was determined for the FeSII CtW/K80C + AEDANS mutant) confirmed that W was able to act as a FRET donor to AEDANS. An additional control (solid black line) experiment consisted of the addition of CtW/K80C FeSII void of AEDANS labeling to determine the extent of diffusion-mediated FRET, where the decrease in the emission of the AEDANS acceptor indicated significant FRET quenching, which we hypothesize to arise from the wide-ranging absorbance of the [2Fe-2S] cluster of the FeSII protein.

Figure S4. (a) ¹H NMR (400 MHz) spectrum of ¹⁴NH₄Cl in 1 M HCl (D₂O capillary). The peaks coupled by 52 Hz arise from ¹⁴NH₄⁺, whereas the peaks coupled by 72 Hz arise from naturally-abundant ¹⁵NH₄⁺. (b) ¹H NMR spectrum of ¹⁵NH₄Cl in 1 M HCl (D₂O capillary).

Figure S5. Electrochemical reduction of H_2O_2 at a carbon foam working electrode (r = 0.45 cm, h = 1.5 cm) by (a) cyclic voltammetry at 2 mV s⁻¹ and (b) steady-state amperometric *i*-t at -0.76 V vs. SHE, performed in anoxic (< 0.5 ppm O₂) MOPS buffer, pH 7.0 100 mM.

Figure S6. (a) ¹H NMR (500 MHz) spectroscopic determination of ¹⁴N and ¹⁵N NH₄⁺ produced by nitrogenase bioelectrosynthesis following the addition of artificial air (containing equivalent ¹⁵N₂ in the place of quiescent ¹⁴N₂) under coupled (red) or ¹⁴N-decoupled (black) conditions. Peaks "d" and "e" are present due to the reduction of ¹⁵N₂ by nitrogenase. (b) ¹H-¹⁴N coupled (red) and decoupled (black) NMR spectra of a 10 mg mL^{-1 14}NH₄Cl standard in 1M HCl (with a D₂O capillary).