
Supplementary Appendix to “Identifying Latent

Structures in Restricted Latent Class Models”

This supplementary appendix contains the proofs of the main results, including Theorem

1 and Propositions 1–3, in Section A.1, computational details in Section A.2, and additional

simulation results in Section A.3.

A.1 Proofs of the Main Results

Proof of Theorem 1

To prove the identifiability result, directly working with P(R = r | Q,Θ,p) is technically

challenging. To better incorporate the induced restrictions by the Q-matrix, we consider a

marginal probability approach as in Xu (2017). Although a similar technique is used, the

problem settings and detailed arguments are significantly different from Xu (2017), which

assumes Q-matrix is pre-specified, and it is more challenging to establish the identifiability

of the Q-matrix. First, this is because estimation of the Q-matrix depends on the unknown

model parameters, which themselves may not be identifiable without knowing the true Q-

matrix. Second, the latent Q-matrix is binary and the discreteness nature of the problem

makes the existing tools in Xu (2017) not directly applicable.

We introduce some notations. Define a T -matrix T (Q,Θ) as a 2J ×2K matrix, where the

entries are indexed by row index r ∈ {0, 1}J and column index α. The r = (r1, · · · , rJ)>th

row and αth column element of T (Q,Θ), denoted by tr,α(Q,Θ), is the marginal probability

that a subject with attribute profile α answers all items in subset {j : rj = 1} positively.
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Thus tr,α(Q,Θ) is the marginal probability that, given Q,Θ,α, the random response R � r,

i.e.,

tr,α(Q,Θ) = P(R � r | Q,Θ,α).

When r = 02K ,

t0,α(Q,Θ) = P(R � 0) = 1 for any α;

and for any r 6= 0,

tr,α(Q,Θ) =
∏
j:rj=1

P(Rj = rj | Q,Θ,α) =
∑
r′�r

P(R = r′ | Q,Θ,α).

In particular, for r = ej with 1 ≤ j ≤ J ,

tej ,α(Q,Θ) = P(Rj = 1 | Q,Θ,α) = θj,α.

Let Tr,?(Q,Θ) be the row vector corresponding to r. Then we know that for j = 1, · · · , J ,

Tej ,?(Q,Θ) = Θj,?. In addition, for any r 6= 0, we can write

Tr,?(Q,Θ) =
⊙
j:rj=1

Tej ,?(Q,Θ), (A.1)

where � is the element-wise product of the row vectors. By definition, multiplying the T -

matrix by the distribution of attribute profiles p results in a vector containing the marginal

probabilities of successfully answering each subset of items correctly. The rth entry of this

vector is

Tr,?(Q,Θ)p =
∑

α
tr,α(Q,Θ)pα = P(R � r | Q,Θ,p).

There is a one-to-one mapping between the T -matrix and the vectors P(R = r | Q,Θ,p),
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r ∈ {0, 1}J . Therefore, to show the identifiability of Q, we only need to prove that if

T (Q,Θ)p = T (Q̄, Θ̄)p̄, (A.2)

then we must have Q ∼ Q̄. We follow this argument and present the proof in the following

four steps.

Step 1. Without loss of generality, we arrange the rows of Q such that it takes the form

of condition C1. For notational convenience, we write tej ,α(Q,Θ) and tej ,α(Q̄, Θ̄) as tej ,α

and t̄ej ,α, respectively. By the definition of the T -matrix, tej ,α = θj,α and t̄ej ,α = θ̄j,α for

any j ∈ {1, · · · , J} and α ∈ {0, 1}K .

Consider the 2K × 2K T -matrix, T (Q1:K,?,Θ1:K,?), where Q1:K,? is submatrix of Q with

the first K rows and Θ̄1:K is the submatrix of Θ with the first K rows. Under C1, we know

Q1:K,? = IK . Take

θ̃ = (θ1,e1 , · · · , θK,eK )>.

Under (2), the row transformed T -matrix T (Q1:K,?,Θ1:K−θ̃1>) takes an upper-left triangular

form (up to column swapping) with nonzero diagonal elements as follows:

α = 02K e1 · · ·
∑K−1

k=1 ek 12K

02K

e1

...∑K−1
k=1 ek

12K



1 1 · · · 1 1

(te1,0 − θ1,e1) 0 · · · (te1,
∑K−1

k=1 ek
− θ1,e1) 0

...
...

... 0 0∏K−1
k=1 (tek,0 − θk,ek)

∏K−1
k=1 (tek,e1 − θk,ek) 0 0 0∏K

k=1(tek,0 − θk,ek) 0 0 0 0


2K×2K

.

Therefore T (Q1:K,?,Θ1:K−θ̃1>) is of full rank 2K , which implies the full rank of T (Q1:K,?,Θ1:K)

by Proposition 3 of Xu (2017). Similarly we know T (Q(K+1):(2K),?,Θ(K+1):(2K),?) also has full
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rank 2K .

From above, for any attribute profile α, we can choose a 2K-dimensional vector uα such

that

u>α · T (Q1:K,?,Θ1:K,?) = (0>, 1︸︷︷︸
column α

, 0>). (A.3)

We next show T (Q̄1:K,?, Θ̄1:K,?) and T (Q̄(K+1):(2K),?, Θ̄(K+1):(2K),?) also have full rank 2K .

Without loss of generality, we focus on T (Q̄(K+1):(2K),?, Θ̄(K+1):(2K),?). If it is not of full rank,

then there exists a 2K-dimensional vector x 6= 0 such that

x> · T (Q̄(K+1):(2K),?, Θ̄(K+1):(2K),?) = 0>.

Since T (Q(K+1):(2K),?,Θ(K+1):(2K),?) is of full rank, there must exist a nonzero element of

vector x> · T (Q(K+1):(2K),?,Θ(K+1):(2K),?); we denote the corresponding column index as α∗.

Then, for a vector uα∗ chosen as in (A.3), we have

[{u>α∗ · T (Q1:K,?,Θ1:K,?)} � {x> · T (Q(K+1):(2K),?,Θ(K+1):(2K),?)}] · p 6= 0

while

[{u>α∗ · T (Q̄1:K,?, Θ̄1:K,?)} � {x> · T̄ (Q(K+1):(2K),?, Θ̄(K+1):(2K),?)}] · p̄ = 0,

which contradicts Equation (A.2). This proves the full rank of T (Q̄(K+1):(2K),?, Θ̄(K+1):(2K),?).

For uα in (A.3), u>α · T (Q1:K,?,Θ1:K,?) · p 6= 0. From Equation (A.2),

u>α · T (Q̄1:K,?, Θ̄1:K,?) · p̄ 6= 0.

Therefore, there must exist at least one nonzero element in u>α · T (Q̄1:K,?, Θ̄1:K,?); we index

one such column with π(α) and write the nonzero value as buα. Then we know buα 6= 0

and p̄π(α) 6= 0. Furthermore, there exists a set of [π(α);α ∈ {0, 1}K ] such that it is a one-

to-one mapping from [α;α ∈ {0, 1}K ] to [π(α);α ∈ {0, 1}K ] due to the result that both

4



T (Q1:K,?,Θ1:K,?) and T (Q̄1:K,?, Θ̄1:K,?) are of full rank. We choose this set of π(α)’s in the

following proof.

We further choose a vector vα such that

v>α · T (Q̄(K+1):2K,?, Θ̄(K+1):2K,?) = (0>, 1︸︷︷︸
column π(α)

, 0>).

It follows that

{u>α · T (Q̄1:K,?, Θ̄1:K,?)} � {v>α · T (Q̄(K+1):2K,?, Θ̄(K+1):2K,?)} (A.4)

= (0>, bu,α︸︷︷︸
column π(α)

, 0>) 6= 0>.

Therefore, (A.4) · p̄ = buαp̄π(α) 6= 0. From Equation (A.2),

[{u>α · T (Q1:K,?,Θ1:K,?)} � {v>α · T (Q(K+1):2K,?,Θ(K+1):2K,?)}] · p 6= 0;

therefore, the column α of v>α · T (Q1:K,?,Θ1:K,?) is nonzero and we denote the value as bvα.

In particular, we have

{u>α · T (Q1:K,?,Θ1:K,?)} � {v>α · T (Q(K+1):2K,?,Θ(K+1):2K,?)} (A.5)

= (0>, bv,α︸︷︷︸
column α

, 0>) 6= 0>.

Then for any item j > 2K, under Q and model parameters (Θ,p),

Tej ,?(Q,Θ)� {u>α · T (Q1:K,?,Θ1:K,?)}

�{v>α · T (Q(K+1):2K,?,Θ(K+1):2K,?)} = (0>, tej ,αbv,α︸ ︷︷ ︸
column α

, 0>). (A.6)
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Similarly, under Q̄ and model parameters (Θ̄, p̄),

Tej ,?(Q̄, Θ̄)� {u>α · T (Q̄1:K,?, Θ̄1:K,?)}

�{v>α · T (Q̄(K+1):2K,?, Θ̄(K+1):2K,?)} = (0>, t̄ej ,π(α)bu,α︸ ︷︷ ︸
column π(α)

, 0>); (A.7)

From Equation (A.2), we have (A.5) · p = (A.4) · p̄ 6= 0 and (A.6) · p = (A.7) · p̄. Therefore,

tej ,α = {(A.6) · p}/{(A.5) · p} = {(A.7) · p̄}/{(A.4) · p̄} = t̄ej ,π(α).

From assumption C2, we know π(0) = 0. Furthermore, for α � α′ and α 6= α′, the

column α′ of v>α · T (Q(K+1):2K,?,Θ(K+1):2K,?) must be zero. Since otherwise, from a similar

argument as above, we have {u>α′ · T (Q1:K,?,Θ1:K,?)}� {v>α · T (Q(K+1):2K,?,Θ(K+1):2K,?)} has

only one nonzero element and it corresponds to column α′; and {u>α′ · T (Q̄1:K,?, Θ̄1:K,?)} �

{v>α ·T (Q̄(K+1):2K,?, Θ̄(K+1):2K,?)} has only one nonzero element and it corresponds to column

π(α). Then for any j > 2K, from Equation (A.2), we would have

tej ,α′ = t̄ej ,π(α) = tej ,α,

which contradicts assumption C2.

Step 2. Assumption C2 implies that for any h ∈ {1, . . . , K}, there is a 2K-dimensional

vector mh such that

m>h · T (Q(2K+1):J,?,Θ(2K+1):J,?) = ( 0︸︷︷︸
column 0

, ∗, . . . , ∗, 1︸︷︷︸
column eh

, ∗, . . . , ∗),

where ‘∗’ denotes some unspecified value. From Step 1, we know

m>h · T (Q̄(2K+1):J,?, Θ̄(2K+1):J,?) = ( 0︸︷︷︸
column 0

, ∗, . . . , ∗, 1︸︷︷︸
column π(eh)

, ∗, . . . , ∗).
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Also for the v vector chosen in Step 1, we know the ehth element of v>eh·T (Q(K+1):2K,?,Θ(K+1):2K,?)

must be nonzero. For simplicity, we write the nonzero value as bvh.

We choose a J-dimensional vector

θ∗ =
(
te1,e1 , . . . , teh−1,eh−1

, 0, teh+1,eh+1
, . . . , teK ,eK , 0>J−K

)>
.

From Proposition 3 of Xu (2017), (A.2) implies

T (Q,Θ− θ∗1>)p = T (Q̄, Θ̄− θ∗1>)p̄.

In addition,

T∑K
k=1 ek−eh,?

(Q,Θ− θ∗1>)

=

{ ∏
k=1,...,K;
k 6=h

(tek,0 − tek,ek)

︸ ︷︷ ︸
column 0

, 0>,
∏

k=1,...,K;
k 6=h

(tek,eh − tek,ek)

︸ ︷︷ ︸
column eh

, 0>
}
. (A.8)

Therefore, we have the following two equations:

T∑K
k=1 ek−eh,?

(Q,Θ− θ∗1>)� {m>h · T (Q(2K+1):J,?,Θ(2K+1):J,?)} (A.9)

� {v>eh · T (Q(K+1):2K,?,Θ(K+1):2K,?)} =

{
0>, bvh ·

∏
k=1,...,K;
k 6=h

(tek,eh − tek,ek)

︸ ︷︷ ︸
column eh

, 0>
}

;

T∑K
k=1 ek,?

(Q,Θ− θ∗1>)� {m>h · T (Q(2K+1):J,?,Θ(2K+1):J,?)} (A.10)

� {v>eh · T (Q(K+1):2K,?,Θ(K+1):2K,?)} =

{
0>, teh,eh · bvh ·

∏
k=1,...,K;
k 6=h

(tek,eh − tek,ek)

︸ ︷︷ ︸
column eh

, 0>
}
.
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Similarly for (Q̄, Θ̄, p̄), we have equations:

T∑K
k=1 ek−eh,?

(Q̄, Θ̄− θ∗1>)� {m>h · T (Q̄(2K+1):J,?, Θ̄(2K+1):J,?)} (A.11)

� {v>eh · T (Q̄(K+1):2K,?, Θ̄(K+1):2K,?)} =

{
0>,

∏
k=1,...,K;
k 6=h

(t̄ek,eh − tek,ek)

︸ ︷︷ ︸
column π(eh)

, 0>
}

;

T∑K
k=1 ek,?

(Q̄, Θ̄− θ∗1>)� {m>h · T (Q̄(2K+1):J,?, Θ̄(2K+1):J,?)} (A.12)

� {v>eh · T (Q̄(K+1):2K,?, Θ̄(K+1):2K,?)} =

{
0>, t̄eh,π(eh) ·

∏
k=1,...,K;
k 6=h

(t̄ek,eh − tek,ek)

︸ ︷︷ ︸
column π(eh)

, 0>
}
.

Under C2, (A.9) 6= 0. From Equation (A.2), we have (A.10) · p = (A.12) · p̄ and (A.9) · p =

(A.11) · p̄ 6= 0. Therefore, for 1 ≤ h ≤ K,

teh,eh = {(A.10) · p}/{(A.9) · p} = {(A.12) · p̄}/{(A.11) · p̄} = t̄eh,π(eh)

Similarly, teK+h,eh = t̄eK+h,π(eh).

Furthermore, we can choose a vector m0 such that the following equations hold:

m>0 · T (Q(2K+1):J,?,Θ(2K+1):J,?) = ( 1︸︷︷︸
column 0

, ∗, . . . , ∗, 0︸︷︷︸
column eh

, ∗, . . . , ∗);

m>0 · T (Q̄(2K+1):J,?, Θ̄(2K+1):J,?) = ( 1︸︷︷︸
column 0

, ∗, . . . , ∗, 0︸︷︷︸
column π(eh)

, ∗, . . . , ∗).

Then a similar argument gives teh,0 = t̄eh,0 for any h ∈ {1, . . . , 2K}.

Step 3. For vector veh+ej chosen as in Step 1, we know

v>eh+ej
· T (Q̄(K+1):2K,?, Θ̄(K+1):2K,?) = (0>, 1︸︷︷︸

column π(eh+ej)

, 0>).
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From Step 1, we know the (eh + ej)th element of v>eh+ej
· T (Q(K+1):2K,?,Θ(K+1):2K,?) must

be nonzero; for simplicity, we denote the value as bvhj. In addition, in the last paragraph of

Step 1 we proved that the ehth and ejth elements of v>eh+ej
· T (Q(K+1):2K,?,Θ(K+1):2K,?) are

zero.

For any j 6= h such that 1 ≤ j ≤ K, we take a J-dimensional vector

θ∗ =
(
te1,e1 , . . . , teh−1,eh−1

, teh,0, teh+1,eh+1
, . . . , tej−1,ej−1

, tej ,0, tej+1,ej+1
, . . . , teK ,eK , 0

>
J−K

)>
.

We have

T∑K
k=1 ek−ej ,?

(Q,Θ− θ∗1>)

=

{
0>, (teh,eh − teh,0)

∏
k=1,··· ,K,
k 6=h,j

(tek,eh − tek,ek)

︸ ︷︷ ︸
column eh

, 0>, (teh,ej − teh,0)
∏

k=1,··· ,K,
k 6=h,j

(tek,ej − tek,ek)

︸ ︷︷ ︸
column ej

,

0>, (teh,eh+ej − teh,0)
∏

k=1,··· ,K,
k 6=h,j

(tek,eh+ej − tek,ek)

︸ ︷︷ ︸
column eh+ej

, 0>
}
.

Therefore for (Q,Θ,p), we have

T∑K
k=1 ek−ej ,?

(Q,Θ− θ∗1>)� {v>eh+ej
· T (Q(K+1):2K,?,Θ(K+1):2K,?)}

=

{
0>, bvhj · (teh,eh+ej − teh,0)

∏
k=1,··· ,K,
k 6=h,j

(tek,eh+ej − tek,ek)

︸ ︷︷ ︸
column eh+ej

, 0>
}
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and

T∑K
k=1 ek,?

(Q,Θ− θ∗1>)� {v>eh+ej
· T (Q(K+1):2K,?,Θ(K+1):2K,?)}

=

{
0>, (tej ,eh+ej − tej ,0) · bvhj · (teh,eh+ej − teh,0)

∏
k=1,··· ,K,
k 6=h,j

(tek,eh+ej − tek,ek)

︸ ︷︷ ︸
column eh+ej

, 0>
}
.

Similarly for (Q̄, Θ̄, p̄), we have

T∑K
k=1 ek−ej ,?

(Q̄, Θ̄− θ∗1>)� {v>eh+ej
· T (Q̄(K+1):2K,?, Θ̄(K+1):2K,?)}

=

{
0>, (t̄eh,π(eh+ej) − teh,0)

∏
k=1,··· ,K,
k 6=h,j

(t̄ek,π(eh+ej) − tek,ek)

︸ ︷︷ ︸
column π(eh+ej)

, 0>
}

;

and

{v>eh+ej
· T (Q̄(K+1):2K,?, Θ̄(K+1):2K,?)} � T∑K

k=1 ek,?
(Q̄, Θ̄− θ∗1>)

=

{
0>, (t̄ej ,π(eh+ej) − tej ,0)(t̄eh,π(eh+ej) − teh,0)

∏
k=1,··· ,K,
k 6=h,j

(t̄ek,π(eh+ej) − tek,ek)

︸ ︷︷ ︸
column π(eh+ej)

, 0>
}
.

From (A.2), the above equations imply

tej ,eh+ej = t̄ej ,π(eh+ej)

for 1 ≤ h, j ≤ K and j 6= h. Similarly teK+j ,eh+ej = t̄eK+j ,π(eh+ej). Furthermore, a similar

argument implies for any α � ej and α 6= ej,

tej ,α = t̄ej ,π(α) and teK+j ,α = t̄eK+j ,π(α).

Step 4. Consider any j and h such that K + 1 ≤ j ≤ 2K and 1 ≤ h ≤ K. Take a
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J-dimensional vector

θ∗ =
(
te1,e1 , . . . , teh−1,eh−1

, teh,0, teh+1,eh+1
, . . . , teK ,eK , 0>J−K

)>
.

From Step 3, we have the following equations:

T∑K
k=1 ek,?

(Q,Θ− θ∗1>) =

{
0>, (teh,eh − teh,0)

∏
k=1,··· ,K;

k 6=h

(tek,eh − tek,ek)

︸ ︷︷ ︸
column eh

, 0>
)

;

Tej+
∑K

k=1 ek,?
(Q,Θ− θ∗1>) =

{
0>, tej ,eh(teh,eh − teh,0)

∏
k=1,··· ,K;

k 6=h

(tek,eh − tek,ek)

︸ ︷︷ ︸
column eh

, 0>
}

;

T∑K
k=1 ek,?

(Q̄, Θ̄− θ∗1>} =

{
0>, (t̄eh,π(eh) − teh,0)

∏
k=1,··· ,K;

k 6=h

(t̄ek,π(eh) − tek,ek)

︸ ︷︷ ︸
column π(eh)

, 0>
}

;

Tej+
∑K

k=1 ek,?
(Q̄, Θ̄− θ∗1>) =

{
0>, t̄ej ,π(eh)(t̄eh,π(eh) − teh,0)

∏
k=1,··· ,K;

k 6=h

(t̄ek,π(eh) − tek,ek)

︸ ︷︷ ︸
column π(eh)

, 0>
}
.

Then Equation (A.2) implies tej ,eh = t̄ej ,π(eh). Similarly tej−K ,eh = t̄ej−K ,π(eh).

For any j, h1 and h2 such that K + 1 ≤ j ≤ 2K and 1 ≤ h1 6= h2 ≤ K, take

θ∗ = (θ∗1, · · · , θ∗K , 0>J−K)
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such that θ∗i = tei,ei for i /∈ {h1, h2} and θ∗i = tei,0 for i ∈ {h1, h2}. Then we have

tej ,eh1+eh2

=
[Tej+

∑K
k=1 ek,?

(Q,Θ− θ∗1>)� {v>eh1+eh2
· T (Q(K+1):2K,?,Θ(K+1):2K,?)}]p

[T∑K
k=1 ek,?

(Q,Θ− θ∗1>)� {v>eh1+eh2
· T (Q(K+1):2K,?,Θ(K+1):2K,?)}]p

=
[Tej+

∑K
k=1 ek,?

(Q̄, Θ̄− θ∗1>)� {v>eh1+eh2
· T (Q̄(K+1):2K,?, Θ̄(K+1):2K,?)}]p̄

[T∑K
k=1 ek,?

(Q̄, Θ̄− θ∗1>)� {v>eh1+eh2
· T (Q̄(K+1):2K,?, Θ̄(K+1):2K,?)}]p̄

= t̄ej ,π(eh1+eh2 )
.

Similarly, tej−K ,eh1+eh2
= t̄ej−K ,π(eh1+eh2 )

. Furthermore, a similar argument implies for any

α � ej, tej ,α = t̄ej ,π(α) and tej−K ,α = t̄ej−K ,π(α).

The results in Steps 1–4 imply T (Q,Θ) is the same as T (Q̄, Θ̄) up to the chosen mapping

π(·). This also indicates that such a one-to-one mapping π(·) is unique under (2). This

further implies Q ∼ Q̄.

Proof of Proposition 1

The proof follows from a similar argument in Shen et al (2012). We first define a complexity

measure for a family of probability density (mass) functions F . Let H(·,F) be the bracketing

Hellinger metric entropy of F . Specifically, for a finite set of pairs of functions S(ε, n) =

{(f l1, fu1 ), · · · , (f ln, fun )}, it is called a Hellinger ε-bracketing of F if the L2-norm ‖(f li )1/2 −

(fui )1/2‖ ≤ ε for any i = 1 · · · , n, and for any f ∈ F , there exist an i such that f li ≤ f ≤ fui .

Then the bracketing Hellinger metric entropy of H(·,F) is defined to be the logarithm of the

cardinality of the ε-bracketing with the smallest size, i.e., H(·,F) = log min{n : S(ε, n)}.

To show the consistency result, we apply Theorem 2 in Shen et al (2012) by checking the

required technical conditions.

First, we need to show the size of the parameter space is well controlled under the

Hellinger metric. Specifically, we show that for some constant c, any ε < 1 and any t such

that ε/24 < t ≤ ε, H(t,BS) ≤ c log(J2K)|S| log(2ε/t), where S and BS = FS ∩ {h(η, η0) ≤
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2ε} are defined as follows. The η = (B,p) denotes model parameters B and p, and η0

denotes the true model parameters. The h(η, η0) is defined as the Hellinger distance between

the two probability distribution mass functions P (R | η) and P (R | η0) under η and η0,

respectively. The S is an an index set indicating the nonzero elements of parameter vector

B and the cardinality of S, denoted by |S|, is ≤ M0, where M0 denotes the number of

nonzero coefficients in the true parameter vector B0. The set FS is the set of square root

probability mass functions {P 1/2(R | η) : BSc = 0} under the sparsity structure introduced

by Sc.

To prove the above result, we only need to show that H(t,BS) = O(1) log(2ε/t) uniformly

for any S, ε and t. For any η1 and η2 in the small neighborhood BS of η0, we write

h2(η1, η2) =
∑

r∈{0,1}J
[P 1/2(R = r | η1)− P 1/2(R = r | η2)]2

=
∑
r

{[ ∑
α∈{0,1}K

p1,αP (R = r | α, η1)
]1/2
−
[ ∑
α∈{0,1}K

p2,αP (R = r | α, η2)
]1/2}2

=
∑
r

{∑
α∈{0,1}K p1,αP (R = r | α, η1)−

∑
α∈{0,1}K p2,αP (R = r | α, η2)[∑

α p1,αP (R = r | α, η1)
]1/2

+
[∑

α p2,αP (R = r | α, η2)
]1/2 }2

.

Under the assumption of C3, the denominator terms in the above display are bounded and

therefore,

h2(η1, η2) = Θ(1)
∑
r

{ ∑
α∈{0,1}K

p1,αP (R = r | α, η1)−
∑

α∈{0,1}K
p2,αP (R = r | α, η2)

}2

.

Here we write aN = Θ(1) if 0 < lim infN→∞ aN ≤ lim supN→∞ an <∞. Under the identifia-

bility conditions,

h2(η1, η2) = Θ(1)‖T (B1)p1 − T (B2)p2‖ = Θ(1)‖η1 − η2‖2.

This implies that H(t,BA) is controlled by the size of the corresponding local parameter

13



space of η under the L2 norm. We know that the t-bracketing entropy under the L2 norm is

controlled by O(log(ε/t)); therefore, H(t,BA) = O(1) log(2ε/t) holds.

We further verify the following condition, which indicates that the truncated L1 penalty

approximates the L0 function well enough. For the truncated L1 penalty, define Bτ+ =

{βj,k1···khI(βj,k1···kh ≥ τ), for any 1 ≤ j ≤ J, 1 ≤ h ≤ K and 1 ≤ k1 < · · · < kh ≤ K}

and ητ+ = {Bτ+,p}. We aim to prove the following inequality hols for small τ and some

constants d1, d2, d3 > 0,

− log{1− h2(η, η0)} ≥ −d1 log{1− h2(ητ,+, η0)} − d3(J2K)τ d2 , (A.13)

which is the Assumption B in Shen et al. (2012). To show (A.13), note that

|h2(η, η0)− h2(ητ,+, η0)|

≤
∑
r

|P 1/2(R = r | η)− P 1/2(R = r | ητ,+)|

×|P 1/2(R = r | η) + P 1/2(R = r | ητ,+)− 2P 1/2(R = r | η0)|

= O(1)
∑
r

|P (R = r | η)− P (R = r | ητ,+)|

= O(1)
∑
r

∑
α

pα|P (R = r | α, η)− P (R = r | α, ητ,+)|

= O(1)J2Kτ

whereO(1) does not depend on τ and the above result holds uniformly for η in a neighborhood

of η0. Further note that for small τ ,

| log{1− h2(η, η0)} − log{1− h2(ητ,+, η0)}| ≤ O(1)|h2(η, η0)− h2(ητ,+, η0)|.

Therefore, (A.13) holds with d1 = d2 = 1 and d3 is taken as some big constant.
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Another key condition that is used in Shen et al (2012) is that

inf
{η:|S|≤M0,S�S0}

− log{1− h2(η, η0)}
max{|S0\S|, 1}

≥ d0
log(J2K)

N
, (A.14)

where d0 is a constant and |S0\S| denotes the size of the set difference between S0 and

S. Note that inf{η:|S|≤M0,S�S0}
− log{1−h2(η,η0)}
max{|S0\S|,1} ≥ (2M0)

−1 inf{η:|S|≤M0,S�S0} h
2(η, η0). From the

proof of the identifiability result (Theorem 1), we can obtain that under the identifiability

conditions, there exists a constant δ > 0 such that inf{η:|S|≤M0,S�S0} h
2(η, η0) ≥ δ. Therefore,

(A.14) holds.

With the above conditions satisfied, we apply Theorem 2 in Shen et al. (2012) and obtain

that for all small τ , there exists a constant such that

P (B̂ 6= B̂0) ≤ exp{−c1N + c2};

this further implies that

P (Q̂ � Q0) ≤ exp{−c1N + c2}

and
√
N(η̂S0 − η0,S0) weakly converges to the limiting distribution of the oracle maximum

likelihood estimator
√
N(η̂0,S0 − η0,S0), which is a normal distribution with mean zero and

covariance being the inverse of the Fisher information matrix.

Proof of Proposition 2

From the proof of the identifiability result, we can obtain the consistency of the model

parameter estimators that ‖η̂−η0‖ → 0 in probability. In particular, when N−1/2λ→ 0, the

likelihood-based estimators η̂ satisfies

∑
r

∣∣∣N−1 N∑
i=1

I(Ri = r)− P(R = r | η̂)
∣∣∣→ 0.
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By the law of large number,

N−1
N∑
i=1

I(Ri = r)→ P(R = r | η0)

almost surely for any response vector r as the sample size N → ∞. Therefore we have∑
r |P(R = r | η0) − P(R = r | η̂)| → 0 almost surely. Then the proof of the identifiability

result can be applied and we have the consistency of the model parameters up to column

swapping.

We further show the convergence rate of η̂ − η0 is N−1/2. Under the condition that

N−1/2λ→ 0, for η in a small neighborhood of η0,

MN(η;R) :=
1

N

[
− lN(η;R) + λ

J∑
j=1

∑
1≤h≤K

1≤k1<···<kh≤K

Jτ (βj,k1···kh)
]

converges uniformly to the same limit of − 1
N
lN(η;R) by the uniform law of large number. We

use M0(η) to denote the limit process, which is the expectation of the negative log-likelihood

of a single observation. By Taylor’s expansion and C3, M0(η) − M0(η0) = Θ(‖η − η‖2).

Furthermore, Taylor’s expansion implies that for sufficiently small δ,

E sup
‖η−η‖≤δ

|MN(η;R)−MN(η0;R)−M0(η) +M0(η0)| = O(δN−1/2).

Therefore, Theorem 3.2.5 in van der Vaart and Wellner (1996) gives the convergence rate

η̂ − η0 = Op(N
−1/2).

We next show the normality result. We reparameterize η = η0 + N−1/2u for some

real vector u. Then for any true β0;j,k1···kh = 0 and the corresponding u element uj,k1···kh ,

Jτ (β0;j,k1···kh + N−1/2uj,k1···kh) − Jτ (β0;j,k1···kh) = min{N−1/2λτ−1|uj,k1···kh|, λ} diverges to ∞

under the assumption that λ → ∞ and N−1/2λτ−1 → ∞. For any β0;j,k1···kh 6= 0 and the

corresponding uj,k1···kh , we have Jτ (β0;j,k1···kh + N−1/2uj,k1···kh)− Jτ (β0;j,k1···kh)→ 0 in proba-

bility. Therefore, N [MN(η0 +N−1/2u;R)−MN(η0;R)] converges to the limit distribution of
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−lN(η0 +N−1/2u;R)+ lN(η0;R) if uj,k1···kh = 0 for any β0;j,k1···kh = 0, and diverges otherwise.

Following the epi-convergence results of Geyer (1994), we then have the asymptotic normality

of N−1/2(η̂S0−η0,S0) and its asymptotic equivalent to the distribution of N−1/2(η̂0,S0−η0,S0).

We further show the selection consistency. From the above result, if β0;j,k1···kh 6= 0,

then β̂j,k1···kh → β0;j,k1···kh 6= 0 in probability. On the other hand, if β0;j,k1···kh = 0 and

β̂j,k1···kh 6= 0, by the Karush-Kuhn-Tucker (KKT) conditions and under the assumptions in

the proposition, we know N−1/2∂lN(η;R)/∂βj,k1···kh |η=η̂ = N−1/2λ/τ → ∞ in probability;

however, this contradict the fact that N−1/2∂lN(η;R)/∂βj,k1···kh|η=η̂ = Op(1). Therefore,

we have if β0
j,k1···kh = 0, β̂0

j,k1···kh = 0 in probability. This gives P (Ŝ � S0) → 0 and

P (Q̂ � Q0)→ 0.

Proof of Proposition 3

We prove the consistency of the IC procedure to select the true Q-matrix. Note that Ŝ(λ,τ)

is an index set of a finite dimensional vector B̂(λ,τ) and therefore there are finite number of

possible S’s. Further from Proposition 2, we know there exists one pair of (λN , τN) such that

P (Ŝ(λN ,τN ) ∼ S0)→ 1. Therefore to prove the consistency, we only need to show that

IC(S0, cN) < IC(S, cN)

for any S � S0

This follows from the classic argument of proving the consistency of an information

criterion (e.g., Nishii, 1988). First consider the case when S0 is a subset of S. From the

identifiability result, we have the consistency of the model parameter estimators that ‖η̂∗S −

η0‖ → 0 in probability. Therefore using Taylor’s expansion, we can obtain that η̂∗S − η0 =

Op(N
−1/2) and lN(η̂∗S;R)− lN(η0;R) = Op(1). This further implies that

lN(η̂∗S;R)− lN(η̂0;R) = Op(1)
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and therefore IC(S, cN)− IC(S0, cN)→∞ if cN →∞.

On the other hand, if the index set S0 is not a subset of S, by the proof of the identifiability

theorem, there exists some δ > 0 such that

N−1{lN(η̂0;R)− lN(η̂∗S;R)} = Θ(1)‖T (B̂∗S)p̂∗S − T (Q, B̂0)p̂0‖ ≥ δ.

This implies that IC(S, cN)− IC(S0, cN)→∞ if cN/N → 0. This completes the proof.
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A.2 Computation method

The log-likelihood function lN(B,p;R) in Equation (7) is the marginal log-likelihood taking

the form

lN(B,p;R) =
N∑
i=1

log

 ∑
α∈{0,1}K

pα

J∏
j=1

θ
Rij

j,α (1− θj,α)(1−Rij)

 ,

where θj,α is a function of βj specified by the diagnostic model assumption. The log-

likelihood lN(B,p;R) involves the summation over the latent variables α and direct op-

timization of it over B is computationally challenging.

Instead we use the EM algorithm. In particular, the log-likelihood of the complete data,

denoted by (R,A) = (Ri,αi; i = 1, · · · , n), as a function of B = (β1, ...,βJ) is:

lN(B;R,A) =
N∑
i=1

J∑
j=1

[
Rij log θj,αi

+ (1−Rij) log(1− θj,αi
)
]
.

In the E-step, we compute the expectation of lN(B;R,A) with respect to the posterior

distributions of αi, i = 1, · · · , N . Let (B∗,p∗) be the parameter values in the previous step

estimation (or the initial value in first step). For the ith subject, we write the posterior

distribution of αi as P ∗iα = P (αi = α | Ri, B
∗,p∗), for any α ∈ {0, 1}K . Then the

conditional expectation of the complete data log-likelihood lN(B,p;R,A) is:

Q(B | R, B∗,p∗) :=
J∑
j=1

Qj(βj | R, B∗,p∗)

:=
N∑
i=1

∑
α∈{0,1}K

P ∗iα

J∑
j=1

[
Rij log θj,α + (1−Rij) log(1− θj,α)

]
.

In the M-step, we find the maximizer of the TLP regularized Q(B | R, B∗,p∗), i.e., −Q(B |

R, B∗,p∗) + λ
∑J

j=1

∑
1≤h≤K

1≤k1<···<kh≤K
Jτ (βj,k1···kh). This can be done by minimizing each βj
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independently with respect to the following objective function

β̂j = arg min
βj

Hj(βj), (A.15)

where

Hj(βj) := −Qj(βj | R, B∗,p∗) + λ
∑

1≤h≤K
1≤k1<···<kh≤K

Jτ (βj,k1···kh).
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Figure A.1: Truncated L1 function and difference of convex decomposition when τ = 1

To solve the optimization problem in (A.15), we first implement the Difference of Convex

(DC) decompositions for the nonconvex penalty function Jτ (·) as shown in the right plot of

Figure A.1, i.e., Jτ (β) = J1,τ (β)− J2,τ (β) where J1,τ (β) = |β|
τ

and J2,τ (β) = max( |β|
τ
− 1, 0).

We then apply the algorithm proposed by Shen et al. (2012) and write the objective function

Hj(βj) as the difference of two convex functions Hj(βj) = Hj,1(βj)−Hj,2(βj) by defining

Hj,1(βj) = −Qj(βj | R, B∗,p∗) + λ
∑

1≤h≤K
1≤k1<···<kh≤K

J1,τ (βj,k1···kh)

and

Hj,2(β) = λ
∑

1≤h≤K
1≤k1<···<kh≤K

J2,τ (βj,k1···kh).

20



We start the iterative minimization of Hj(βj) by first solving the initial Lasso problem

β̂(0) = arg minβj
Hj,1(βj). Then at the m ≥ 1 step, we solve for the following weighted Lasso

problem:

β̂
(m)
j = arg min

βj

{
−Qj(βj | R, B∗,p∗) +

λ

τ

∑
1≤h≤K

1≤k1<···<kh≤K

|βj,k1···kh|I(|β̂(m−1)
j,k1···kh| ≤ τ)

}
.

The update is repeated until the objective function converges. To solve the initial Lasso

and the weighted Lasso problems in the maximization step, we use the coordinate descent

method similar to the algorithm solving regularized generalized linear models discussed by

Friedman et al. (2010). We will then check the KKT conditions, and if they are not satisfied

we go back and update the entire parameter again. In the M-step, we update βj from j = 1

to J sequentially and the EM update is performed until convergence.

With the above EM algorithm, we can get a set of candidate estimators B̂ = (β̂1, · · · , β̂J)

for a set of tuning parameters (τ, λ). For each B̂, we obtain the corresponding candidate

Q-matrix. Then we refit these Q-restricted models and select the Q-matrix that has the

minimal BIC value as the final estimator.

Remark 1 (Initial values selection). Under the saturated model setting without restrictions

of the Q-matrix, the number of item parameters is J × 2K. In this case the EM algorithm

may stops at some local maximum especially when the penalty is large. One solution to

this problem is to use different starting points. However, the method becomes less efficient

and often requires much computation time when the number of attributes K becomes larger.

Alternatively, we propose a fast pre-screening method to get a reasonable starting point. We

choose a set of tuning parameter λ’s and conduct the initial screening in the following steps:

1. For each λ, solve the following L1 regularized likelihood for the additive LCDM (main
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effect model) using the above EM algorithm, i.e.,

(β̂1, ...β̂J) = arg min
β1,...,βJ

−
N∑
i=1

∑
α∈{0,1}K

{
pα

J∏
j=1

θ
Rij

j,α (1− θj,α)1−Rij

}
+ λ

J∑
j=1

K∑
k=1

|βj,k|;

where logit(θj,α) = βj0 +
∑K

k=1 βjkαk. Note the total number of item parameters of this

model is only J × (K + 1).

2. For the candidate Q-matrices Q̂(λ), choose the Q-matrix with least number of 1’s and

no all-0 rows or columns. Then we refit the Q-restricted model under the selected Q

via EM and use the estimated parameters as starting value of the proposed method.

Note that, though fast and straightforward, the above method cannot be used to estimate Q-

matrix directly and usually will not be consistent, especially when the true model has large

interaction effects like the DINA model. However, we find it useful in providing good initial

values by separating those items with fewer attributes from those with multiple ones. In

practice, the method can also be used to provide multiple initial points by repeatedly fitting

resampled data.
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A3 Additional Simulation Results

A3.1 Additional Simulation for Section 5.1

Estimation results of the parameters Θ = (θj,α)J×2K are presented in Figure A.2 with K ∈

{3, 4, 5}, ρ = 0 and N = 1000. For the TLP method, the θ̂’s are calculated from the refitted

β̂ values under the estimated model structure. For the true model, the θ’s are estimated

under the true Q-matrix and the true diagnostic model assumption. We report the box plots

of the squared-root mean squared errors (RMSEs) of θ̂’s. Figure A.2 and Table 3 in the main

text show that the proposed method gives similar estimation results to those under the true

model, which is consistent with the theoretical results in Propositions 1 and 2.

A3.2 Additional Simulation for Section 5.2

Table A.1 presents the simulation results for K = 3 and misspecification rate is 20%. The

cases with higher dimension of latent attributes K = 4 and K = 5 are presented in Table

A.2. In particular, we use the following design with ρ = 0:

K = 4

K = 5

⊗
DINA

LCDM

⊗
10% Misspecification

20% Misspecification

⊗
N = 1000

N = 2000

 .

We can see that the proposed method performs well and similar conclusions to the case with

K = 3 and missepcification level being 10% can be obtained.
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Figure A.2: Box plots of RMSEs of θ̂’s.
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DINA LCDM
Entry Vector Entry Vector

ρ N Total TPR FPR TPR FPR Total TPR FPR TPR FPR

0

500
Proposed

0.997 0.992 0.000 0.985 0.001 0.951 0.886 0.007 0.833 0.020
(0.994) (0.988) (0.001) (0.975) (0.002) (0.969) (0.937) (0.005) (0.900) (0.014)

GMDI 0.842 0.223 0.000 0.210 0.000 0.833 0.185 0.000 0.168 0.001

1000
Proposed

0.998 0.993 0.000 0.990 0.000 0.988 0.958 0.000 0.938 0.000
(0.997) (0.992) (0.000) (0.988) (0.001) (0.991) (0.983) (0.002) (0.970) (0.004)

GMDI 0.856 0.298 0.000 0.282 0.001 0.855 0.290 0.000 0.278 0.001

2000
Proposed

0.997 0.991 0.000 0.985 0.000 0.996 0.992 0.001 0.980 0.000
(0.996) (0.990) (0.001) (0.983) (0.001) (0.995) (0.991) (0.001) (0.980) (0.002)

GMDI 0.862 0.315 0.000 0.310 0.000 0.863 0.323 0.000 0.312 0.000

0.15

500
Proposed

0.995 0.985 0.000 0.975 0.001 0.950 0.876 0.006 0.825 0.019
(0.995) (0.986) (0.001) (0.978) (0.001) (0.965) (0.927) (0.005) (0.877) (0.013)

GMDI 0.840 0.214 0.000 0.205 0.001 0.835 0.202 0.000 0.180 0.001

1000
Proposed

0.999 0.996 0.000 0.993 0.000 0.990 0.969 0.000 0.953 0.001
(0.998) (0.994) (0.000) (0.988) (0.000) (0.995) 0.987) (0.001) (0.975) (0.001)

GMDI 0.852 0.294 0.001 0.270 0.003 0.853 0.284 0.000 0.270 0.001

2000
Proposed

0.998 0.994 0.000 0.990 0.000 0.999 0.998 0.000 0.995 0.000
(0.996) (0.992) (0.001) (0.985) (0.002) (0.998) (0.994) (0.000) (0.988) (0.000)

GMDI 0.860 0.312 0.001 0.307 0.003 0.862 0.307 0.000 0.310 0.000

0.25

500
Proposed

0.995 0.986 0.001 0.978 0.001 0.954 0.887 0.005 0.833 0.016
(0.993) (0.983) (0.001) (0.973) (0.002) (0.965) (0.922) (0.004) (0.877) (0.013)

GMDI 0.840 0.215 0.001 0.210 0.003 0.832 0.193 0.001 0.170 0.003

1000
Proposed

1.000 0.999 0.000 0.998 0.000 0.986 0.957 0.001 0.932 0.001
(0.998) (0.993) (0.000) (0.988) (0.000) (0.992) (0.983) (0.001) (0.968) (0.002)

GMDI 0.851 0.282 0.001 0.270 0.004 0.851 0.271 0.001 0.268 0.003

2000
Proposed

0.998 0.994 0.000 0.990 0.000 0.998 0.996 0.000 0.990 0.000
(0.998) (0.994) (0.000) (0.990) (0.001) (0.998) (0.994) (0.000) (0.988) (0.000)

GMDI 0.860 0.301 0.001 0.305 0.002 0.861 0.305 0.000 0.307 0.001

Table A.1: High misspecification rate detection results with K = 3. For the proposed method,
results after the first J0 = 4 steps are presented in brackets. “Total” is the proportion of correctly
estimated items with the initial baseline 0.8. “TPR” is true positive rate and “FPR” is the false
positive rate.
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Low Misspecification

Settings DINA LCDM
Entry Vector Entry Vector

K N Total TPR FPR TPR FPR Total TPR FPR TPR FPR

4

1000
Proposed

0.997 0.984 0.000 0.975 0.001 0.987 0.966 0.002 0.930 0.007
(0.996) (0.984) (0.001) (0.975) (0.002) (0.988) (0.960) (0.001) (0.915) (0.004)

GMDI 0.923 0.263 0.000 0.235 0.000 0.919 0.225 0.000 0.195 0.000

2000
Proposed

0.996 0.976 0.000 0.960 0.001 0.997 0.985 0.000 0.965 0.000
(0.995) (0.976) (0.001) (0.960) (0.001) (0.996) (0.988) (0.001) (0.965) (0.001)

GMDI 0.930 0.360 0.000 0.305 0.000 0.925 0.292 0.000 0.255 0.000

5

1000
Proposed

0.994 0.965 0.000 0.940 0.000 0.977 0.907 0.002 0.865 0.011
(0.994) (0.981) (0.001) (0.950) (0.002) (0.981) (0.942) (0.001) (0.860) (0.006)

GMDI 0.917 0.222 0.000 0.180 0.001 0.914 0.155 0.000 0.145 0.001

2000
Proposed

0.996 0.980 0.000 0.960 0.000 0.996 0.980 0.000 0.960 0.000
(0.994) (0.971) (0.001) (0.940) (0.001) (0.995) (0.982) (0.000) (0.955) (0.001)

GMDI 0.925 0.307 0.000 0.255 0.000 0.921 0.238 0.000 0.220 0.001

High Misspecification

Settings DINA LCDM
Entry Vector Entry Vector

K N Total TPR FPR TPR FPR Total TPR FPR TPR FPR

4

1000
Proposed

0.994 0.986 0.000 0.973 0.001 0.976 0.942 0.003 0.917 0.010
(0.992) (0.986) (0.001) (0.968) (0.002) (0.979) (0.960) (0.003) (0.917) (0.006)

GMDI 0.845 0.257 0.000 0.223 0.000 0.830 0.186 0.000 0.158 0.002

2000
Proposed

0.995 0.989 0.000 0.978 0.001 0.987 0.979 0.002 0.953 0.004
(0.995) (0.990) (0.000) (0.980) (0.002) (0.985) (0.966) (0.002) (0.935) (0.003)

GMDI 0.855 0.312 0.000 0.280 0.002 0.841 0.260 0.002 0.235 0.008

5

1000
Proposed

0.985 0.965 0.001 0.940 0.004 0.973 0.955 0.003 0.912 0.012
(0.985) (0.969) (0.002) (0.943) (0.005) (0.973) (0.954) (0.002) (0.892) (0.007)

GMDI 0.827 0.162 0.001 0.145 0.003 0.817 0.121 0.001 0.100 0.004

2000
Proposed

0.995 0.984 0.000 0.978 0.001 0.985 0.968 0.001 0.940 0.004
(0.990) (0.981) (0.002) (0.958) (0.002) (0.981) (0.963) (0.002) (0.922) (0.005)

GMDI 0.836 0.213 0.001 0.193 0.003 0.828 0.169 0.001 0.160 0.005

Table A.2: Misspecification detection results with K = 4 and 5. Results after the first J0 steps
are presented in brackets. “Total” is the proportion of correctly estimated items with the initial
baseline 0.9 or 0.8 for low or high misspecification. “TPR” is true positive rate and “FPR” is the
false positive rate.
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Bootstrap bagging method

We illustrate the performance of proposed bootstrap bagging method. We consider the case

with K = 3 and N = 500 under the LCDM. For each replicate in previous simulation, we

perform bootstrap bagging estimation.

Figure A.3 summarizes the bootstrap aggregating with different threshold values from

0 to 1. On the left, the blue curve represents the averaged TPR, i.e., the proportions of

misspecified entries that are correctly detected; the red curve is FPR, i.e., the proportion

of correct entries being falsely detected. The right plot shows the averaged numbers of the

true positive (TP) and the false positive (FP). In both plots, the dashed lines are the results

using the proposed method without bootstrap aggregating. Figure A.3 shows the TPR

(FPR) achieves maximum (minimum) at about s = 0.5 and therefore validates the choice

of the threshold s = 0.5. Furthermore, the bootstrap method with s = 0.5 improves the

stepwise detection method by reducing the overall false detection rates/numbers, especially

the number of false positive entries.
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Figure A.3: Bootstrap aggregating results. The x-axis is the threshold of bootstrap method. TPR
is the true positive rate; FPR is the false positive rate; TP is the true positive number of entries;
FPR is the false positive number of entries.

To further illustrate the improvement, Table A.3 presents the result from one replication
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where the sequential method has overestimated the misspecified entries. The right is the

true Q-matrix. The left presents the misspecified initial Q-matrix; by design the Q-vectors

for Item 2 and 19 are incorrect and the misspecified entries are identified using subscript “∗”.

The left also shows the entries detected by the sequential estimation approach are highlighted

in blue. We can see that it detects all misspecified entries but has two false discoveries (the

blue entries without “∗”, i.e, item 12 with attribute 1 and item 18 with attribute 2). The

bootstrap aggregated Q-matrix in the middle indicates only the starred entries should be

changed, where recall that a “1” entry is detected if the bootstrap average is < 0.5 and a

“0” entry is detected if > 0.5. This agrees with the true Q-matrix.

Initial Q-matrix Bootstrap Aggregation True Q-matrix

Item Attr1 Attr2 Attr3 Attr1 Attr2 Attr3 Attr1 Attr2 Attr3

1 1 0 0 1.00 0.00 0.00 1 0 0
2 0 0* 1* 0.01 1.00* 0.10* 0 1 0
3 0 0 1 0.00 0.00 1.00 0 0 1
4 1 0 0 1.00 1.00 0.02 1 0 0
5 0 1 0 0.00 1.00 0.00 0 1 0
6 0 0 1 0.00 0.00 1.00 0 0 1
7 1 0 0 1.00 0.00 0.00 1 0 0
8 0 1 0 0.00 1.00 0.02 0 1 0
9 0 0 1 0.00 0.01 1.00 0 0 1
10 1 1 0 0.99 1.00 0.02 1 1 0
11 1 0 1 1.00 0.00 1.00 1 0 1
12 0 1 1 0.07 1.00 1.00 0 1 1
13 1 1 0 1.00 1.00 0.00 1 1 0
14 1 0 1 1.00 0.01 1.00 1 0 1
15 0 1 1 0.00 1.00 1.00 0 1 1
16 1 1 0 1.00 0.99 0.00 1 1 0
17 1 0 1 1.00 0.00 1.00 1 0 1
18 1 1 1 0.88 0.79 0.98 1 1 1
19 0* 1 0* 0.95* 0.94 0.89* 1 1 1
20 1 1 1 1.00 0.94 1.00 1 1 1

Table A.3: Bootstrap aggregating for a case with K = 3, N = 500, ρ = 0 under LCDM. The
left is the initial Q-matrix with Item 2 and 19 misspecified. The middle matrix is the bootstrap
aggregated Q-matrix. Entries in blue are detections from the stepwise method; and entries with
“∗” are true misspecified entries (and also detections with bootstrap significance).
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