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1. DERIVING THE PHASE SENSITIVITY

We consider two input modes a and b, as shown in Fig. S1. Mode
a is seeded with a coherent state, where

〈
â†

0 â0
〉
= |α|2 is the seed

photon number, and mode b is seeded with a vacuum state [1].
The input modes, described by~v, undergo a squeezing operation
Û, as shown in Fig. S1, where for a squeezing parameter r,

Û~v =


cosh(r) 0 0 sinh(r)

0 cosh(r) sinh(r) 0

0 sinh(r) cosh(r) 0

sinh(r) 0 0 cosh(r)




â0

â†
0

b̂0

b̂†
0

 . (S1)

The probe (seeded) arm undergoes a phase shift eiφ. We treat
loss in terms of beam splitters of transmission ηj, as shown
in Fig. S1, where each beam splitter also injects vacuum noise,
described by the mode operators ĉ0, d̂0, ê0, and f̂0. For the full
SU(1,1) interferometer, the beams undergo a second squeezing
operation of squeezing parameter s (typically s = r). For the
truncated SU(1,1) interferometer, s = 0. At the output of the
second squeezer, the modes of the upper (probe) and lower

(conjugate) arms are described by the operators â f and b̂ f , where

â f = iê0

√
1− ηp2 +

√
ηp2

{
cosh(s)

[
iĉ0

√
1− ηp1+

√
ηp1

(
â0eiφcosh(r) + eiφsinh(r)b̂†

0

) ]
+

− sinh(s)
[√

ηc1

(
â0sinh(r) + cosh(r)b̂†

0

)
− i
√

1− ηc1d̂†
0

]}
,

(S2)

and

b̂ f = i f̂0
√

1− ηc2 +
√

ηc2

{
cosh(s)

[
id̂0
√

1− ηc1+

√
ηc1

(
b̂0cosh(r) + sinh(r)â†

0

) ]
+

− sinh(s)
[√

ηp1

(
b̂0e−iφsinh(r) + e−iφcosh(r)â†

0

)
+

− i
√

1− ηp1 ĉ†
0

]}
. (S3)

This document provides supplementary information to "Phase sensing beyond the standard 
quantum limit with a variation on the SU(1,1) interferometer," https://doi.org/10.1364/
optica.4.000752. The sensitivity of an SU(1,1)-type phase measurement device depends on 
both the phase-sensing quantum state and the choice of detection scheme. Here, we provide a 
theoretical framework for analyzing the phase sensitivity of the full and truncated SU(1,1) 
interferometers using both intensity and homodyne detection schemes, as summarized in the main 
article. We show that homodyne detection is optimal for a seeded SU(1,1)-type phase 
measurement device. We also discuss the effect of losses on the measured phase sensitivity as well 
as our experimental techniques for verifying the standard quantum limit. © 2017 Optical Society 
of America 
https://doi.org/10.1364/optica.4.000752.s001
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Fig. S1. A schematic of the model used to derive the phase
sensitivity. A coherent state and a vacuum state undergo a
squeezing operation of squeezing parameter r. The probe (up-
per) arm undergoes a phase shift φ. Loss is modeled using
beamsplitters of reflectivity 1− ηj. In the full SU(1,1) interfer-
ometer, the beams undergo a second squeezing operation of
squeezing parameter s. Homodyne detection is characterized
by a classical amplification Aj and a phase φj.

We then give the detector for the probe (conjugate) arm a
classical amplification Ap (Ac) and a homodyne phase φp (φc).
For the truncated SU(1,1) interferometer, we take Ap = Ac = 1.

A. Quadrature detection
For homodyne detection, we define the quadrature operators

ĵp = Ap

(
e−iφp â f + eiφp â†

f

)
and ĵc = Ac

(
e−iφc b̂ f + eiφc b̂†

f

)
for

the probe and conjugate arms, respectively. The joint quadrature
operator is Ĵ = ĵp + ĵc. The sensitivity ∆φ is then calculated with
the inputs and the operator transformations in Eqs. S2 and S3
from the variance (see Eq. (1) in the main paper)(

∆2φ
)

J
=

〈
J2〉− 〈J〉2∣∣∂φ 〈J〉

∣∣2 . (S4)

To compare the truncated SU(1,1) interferometer (s = 0) and the
full SU(1,1) interferometer (s = r), we consider Ap = Ac = 1,
ηp1 = ηc1 = η, and ηp2 = ηc2 = 1. For the truncated SU(1,1)
interferometer, Eq. S4 becomes

∆2φtSUI =

sech2(r)
[
1− η + η cosh(2r) + η cos(φp − φ + φc)sinh(2r)

]
2|α|2η sin2(φp − φ)

.

(S5)

In the case where φ = 0 and φc = π/2, Eq. S5 reduces to Eq. 3
in the main paper. In the case η = 1, Eq. (S4) gives rise to curves
(i) and (v) in Fig. 2 of the main paper, where r = cosh−1(

√
G)

for gain G. In general, one can show that the minimum ∆2φtSUI
occurs for φc = π/2 and φp − φ = π/2, so that the optimal
sensitivity for the truncated SU(1,1) interferometer in this case is

∆2φtSUI =
sech2(r) [1− η + η cosh(2r)− η sinh(2r)]

2|α|2η
. (S6)

For the full SU(1,1) interferometer, Eq. S4 becomes

∆2φSUI =
(

2− 4η − sech2(r) + 2η
[
cosh(2r) + sech2(r)+

− 2cos(φ)sinh2(r)
]
+ η cos(φp + φc)cos(φ)sech(r)sinh(3r)+

tanh(r)
{

2η sin(φp + φc)sin(φ)+

− cos(φp + φc)
[
2− 2η + η cos(φ) + 2η cosh(2r)

]} )/
{

2|α|2η
[
cosh(r)sin(φp − φ) + sin(φc + φ)sinh(r)

]2 }. (S7)

One can numerically optimize over all φ, φp, and φc to show
that the optimal (minimum) ∆2φSUI is equivalent to that of the
truncated SU(1,1) interferometer for all r. For any φ, the local
oscillator phases φp and φc can be adjusted to achieve this opti-
mal phase sensitivity. In the special case where φ = 0, there is a
straightforward analytic solution, where Eq. S7 simplifies to

∆2φSUI =

sech2(r)(2η − 1) + 2(η − 1)
[
cos(φp + φc)tanh(r)− 1

]
2|α|2η

[
cosh(r)sin(φp) + sinh(r)sin(φc)

]2 . (S8)

In this case, the sensitivity is again optimized by detecting the
phase quadrature of each field, where φp = φc = π/2. The
optimal sensitivity for the full SU(1,1) interferometer in this case
is then ∆2φSUI = ∆2φtSUI from Eq. S6.

In addition, one can show that Eqs. S6 and S8 are bounded
from below by 1/FQ, where FQ is defined in Eq. 4 of the main
paper. In the limit where r → ∞, ∆2φSUI = ∆2φtSUI asymp-
totically approaches 1/FQ, which defines the best achievable
sensitivity.

B. Direct detection
For direct intensity detection, we define the number operators
n̂p = Ap â†

f â f and n̂c = Ac b̂†
f b̂ f for the probe and conjugate

arms, respectively, where we simply take Ap and Ac to be 1 or 0
depending on which detector(s) are on/off. We are interested
in the sum N̂ = n̂p + n̂c. The phase sensitivity using direct
detection is then calculated from the square root of the variance(

∆2φ
)

N
=

〈
N2〉− 〈N〉2∣∣∂φ 〈N〉

∣∣2 . (S9)

To derive the case of a single detector in the conjugate arm, we
take Ap = 0. In the case of no loss (ηp1 = ηc1 = ηp2 = ηc2 = 1),
the variance of the phase estimation using number detection in
the most sensitive (φ = 0) case for just the conjugate detector
with s = r and Ac = 1 is(

∆2φ
)

N,conj
=

csch2(2r)
|α|2 , (S10)

which gives rise to curve (iii) in Fig. 2 of the main paper. Equa-
tion (S10) is also equivalent to

(
∆2φ

)
J with Ap = 0 (only the

conjugate homodyne detector) at the point of optimal sensitivity,
corresponding to curve (ii) in Fig. 2 of the main paper.

For detecting both modes from the interferometer, we take
Ap = Ac = 1. In the case of no loss and s = r, the variance of the
phase estimation using number detection at the best operating
point is

(
∆2φ

)
N,probe+conj

=
csch4(2r)

[
2cosh(4r) +

√
cosh(8r)− 1

]
2|α|2 ,

(S11)
which gives rise to curve (iv) in Fig. 2 of the main paper.

C. Operating with the best sensitivity
To analyze the signal-to-noise ratio improvement (SNRI) as a
function of operating point, it is useful to determine the SNRI as
a function of the relative homodyne phases φp and φc. One can
show from Eq. S4 that

∆2φtSUI =
2η + (1− 2η) sech2 (r) + 2η cos

(
φp + φc

)
tanh (r)

2|α|2η sin2(φp)
.

(S12)
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In the special case where φc = π/2, this reduces to Eq. 3 in the
main paper. From Eq. S12 and the definitions of ∆2φcoh and
SNRI in the main paper, one obtains Fig. S2(a), which shows the
SNRI as a function of φp and φc for η = 1. Figure S2(b) shows
the corresponding

〈
jp
〉

and 〈jc〉. Thus, the best SNRI occurs
when φp and φc are locked to their phase quadratures (i.e., the
zero-crossings of

〈
jp
〉

and 〈jc〉), and when
〈

jp
〉

and 〈jc〉 have the
same slope. We investigate the SNRI as a function of operating
point in the main paper by locking φc to its phase quadrature
and scanning φp.

2. DISCUSSION OF LOSSES

As was shown in Refs. [2, 3], the sensitivity of the full SU(1,1)
interferometer is inhibited by two types of losses: internal (ηp1,
ηc1) and external (ηp2, ηc2). Examples of external losses include
detector inefficiencies or imperfect visibility in homodyne detec-
tion, and internal losses include all losses inside and between
the 4WM processes, such as absorption, optical loss, and im-
perfect mode-matching in the second 4WM process. One can
show that internal and external losses have different effects on
the sensitivity, and that internal losses are more detrimental [2].
With ηp1 = ηc1 = ηint and ηp2 = ηc2 = ηext, the variance of
the phase estimation

(
∆2φ

)
J depends differently on ηint vs. ηext.

Specifically, for no external losses,(
∆2φ

)
J, ηext=1

=
e−rsech (r) [1 + tanh (r)− 2ηinttanh (r)]

2ηint|α|2
.

(S13)
For no internal losses,(

∆2φ
)

J, ηint=1
=

2

ηext|α|2 [1 + cosh (2r) + sinh (2r)]2
. (S14)

For a gain of 3.3 (r ≈ 1.2), |α|2
(
∆2φ

)
J, ηext=1=0.05 for ηint = 0.8,

and |α|2
(
∆2φ

)
J, ηint=1=0.02 for ηext = 0.8. Thus, the sensitivity

is more robust against external losses than internal losses. The
truncated SU(1,1) interferometer offers an advantage over the
full version in that it eliminates any internal loss associated
with the second 4WM process. A disadvantage of the truncated
SU(1,1) interferometer compared to the full version is that all
losses are internal, so that one must use high quantum efficiency
detectors and achieve high homodyne visibilities to minimize
loss.

3. VERIFYING THE SQL

We perform auxiliary experiments to compare the SNR mea-
sured with coherent beams to that expected for the truncated
Mach-Zehnder interferometer. For our two-homodyne setup, we
expect SNRcoh = (δφ)2Np, where δφ is the RMS amplitude of
the EOM phase modulation and Np = 2ηcohρP/eB, where ηcoh
is a loss parameter, ρ = 0.64 A/W is the responsivity for an ideal
(100 % quantum efficiency) detector at 795 nm, P = 400± 20 nW
is the power in the probe beam, e is the electric charge, and B
is the “equivalent noise bandwidth.” The loss parameter ηcoh
includes the detector quantum efficiency 0.9, the homodyne
visibility (≈ 0.95 for these experiments), and separation from
electronic noise (20 dB separation, hence negligible), from which
we expect ηcoh ≈ 0.8. This ηcoh (≈ 20 % loss) differs from the
loss parameter η = 0.65 in the main paper (≈ 35 % loss) because
it only accounts for detector loss, whereas η also includes losses
in the quantum state preparation. The apparent SNR shown on
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Fig. S2. (a) The SNRI as a function of HD phases φp and φc

in the case where |α|2 � 1 and r = 0.46, which corresponds
to 4 dB of squeezing. The legend defines the SNRI on a dB
scale. The regions of best phase sensitivity are shown in light
colors. (b) The probe and conjugate HD signals (

〈
jp
〉

and 〈jc〉)
as functions of the relative phases φp and φc considered in (a).
This shows that the best SNRI is achieved by locking φp and φc
to the zero crossing point with the same slope.

the spectrum analyzer trace (Fig. 4a in the main paper) needs
a correction to account for the different ways in which broad-
band and narrowband signals are processed (see for example
Ref. [4]) and the resolution bandwidth converted to bandwidth
to account for the filter function employed. We use the built-in
software corrections on the spectrum analyzer to determine the
corrected SNR in a bandwidth of 30 kHz.

In the case where δφ = 1.7 ± 0.2 mrad, we find that our
corrected SNRcoh ≈ 22.5 dB. Given the uncertainties in δφ,
P, and the spectrum analyzer calibration, this agrees with the
expected ηcoh ≈ 0.8. Thus we conclude that the measured SQL
agrees with the expected limit for a truncated Mach-Zehnder
interferometer.

In the data shown in Fig. 4 of the main paper, the homodyne
visibility was ≈ 98 %, and the electronic noise floor separation
was ≈ 18 dB, which corresponds to detector losses of ≈ 15%.
If the coherent state measurements could have been made with
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a perfect detector, then the SNRcoh would have increased by
≈ 1 dB, and the corresponding SNRI over the idealized SNRcoh
would still have been 3 dB.
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