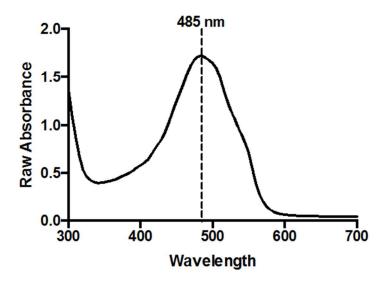
Supporting Information:

Anti-Cancer Therapeutic Alginate-Based Tissue Sealants for Lung Repair

Spencer L. Fenn^{1,2}, Patrick N. Charron³, Rachael A. Oldinski^{2,3,4,5}*

⁴Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, 05405;

*Contact/Corresponding Author:


Rachael A. Oldinski 33 Colchester Ave Burlington, VT 05405 <u>oldinski@uvm.edu</u> 802-656-3338

¹Department of Biomedical Engineering, Tufts University, Medford, MA, 02155

²Bioengineering Program, College of Engineering and Mathematical Sciences, and Larner College of Medicine, University of Vermont, Burlington, VT, 05405;

³Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, 05405;

⁵Department of Orthopaedics and Rehabilitation, Larner College of Medicine, University of Vermont, Burlington, VT, 05405.

Figure S1. Verification of the peak absorbance of doxorubicin hydrochloride was performed via a spectral sweep at 1 mg/mL in PBS (pH 7.4). The peak absorbance is shown at 485 nm wavelength which was be used for the execution of a standard curve and subsequent drug-release assays.