From Secure Business Process Modeling
to Design-Level Security Verification
(Artifact Paper)

Qusai Ramadan*, Mattia Salnitrif, Daniel Striiber*, Jan Jiirjens"‘i and Paolo GiorginiT
*University of Koblenz-Landau, Koblenz, Germany
Email: {qramadan, strueber, juerjens}@uni-koblenz.de
TUniversity of Trento, Trento, Italy
Email: {mattia.salnitri, paolo.giorgini} @unitn.it
! Fraunhofer-Institute for Software and Systems Engineering ISST, Dortmund, Germany

Abstract—We present the artifact submission for our paper of
the same name, to be presented at the MoDELS conference 2017
in Austin, TX. Our submission includes the model transformation
from SecBPMN2 to UMLsec models as well as four example
SecBPMIN2 models from the Air Traffic Management System
case study. We explain the process of using the transformation,
and the verification of the generated UMLsec models using the
CARiSMA tool.

I. INTRODUCTION

In this paper, we present the artifact submission for our
paper of the same name [I], to be presented at the MoD-
ELS conference 2017 in Austin, TX. Our submission in-
cludes the model transformation from SecBPMN2 [2] to
UMLsec [3] models as well as four example SecBPMN2
models from the Air Traffic Management System case
study. The models created for the case study are pro-
vided online at https://figshare.com/account/
projects/23464/articles/5223928 We explain the
process of using the transformation, and the verification of the
generated UMLsec models using the CARiISMA [4] tool.

In Fig.1, we show an artifact-centric representation of the
process for applying our framework, including two automated
tasks. The first one is an automated model transformation
from SecBPMN2 models to corresponding UMLsec structural

Trace Model

Output

SecBPMN2 to
UMLsec
Transformation

Output
SecBPMN2 Models | nput P

(.bpmn)

UMLsec Models
(.uml)

Input

Includes
Includes
Transformation Rules CARiISMA
(-henshin) Verification
Rules Orchestration Output
(Java) Final Report
(-txt)

Fig. 1: Process with involved tasks and artifacts

diagrams (i.e., deployment and class diagrams), using the
model transformation language Henshin and its associated
toolset [5], [6]. This task is implemented using a set of
transformation rules (.henshin files) and some Java code for
rules orchestration. The rules are defined graphically and
applied to the input models (i.e., SecBPMN models) via an
interpreter engine provided by Henshin. The output of this task
is a UMLsec model, and a trace model. The trace model links
the SecBPMN2 and UMLsec models. Using the trace models,
one can check whether a UMLsec security stereotype is in
place for each security annotation specified in the SecBPMN2
model.

In the second task, we use CARiISMA to automatically
verify the generated UML models against UMLsec policies.
The output of this process is a text file that summarizes the
results of the verification process. More details about how to
use our approach are provided in Sect. II

REFERENCES

[1] Q. Ramadan, M. Salnitri, D. Striiber, J. Jiijens, and P. Giorgini, “From
Secure Business Process Modeling to Design-Level Security Verification,”
(Accepted).

[2] M. Salnitri, F. Dalpiaz, and P. Giorgini, “Designing secure business
processes with SecBPMN,” Software & Systems Modeling, pp. 1-21,
2016.

[3] J. Jurjens, Secure systems development with UML. Springer Science &
Business Media, 2005.

[4] “CARISMA,” https://rgse.uni-koblenz.de/carisma/.

[5] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin:
advanced concepts and tools for in-place EMF model transformations,” in
International Conference on Model Driven Engineering Languages and
Systems. Springer, 2010, pp. 121-135.

[6] D. Striiber, K. Born, K. D. Gill, R. Groner, T. Kehrer, M. Ohrndorf,
and M. Tichy, “Henshin: A usability-focused framework for emf model
transformation development,” in International Conference on Graph
Transformations, 2017, pp. 125-141.

Description of SecBPMN2 to UMLsec Transformation,”

/ e/modelsl7/blob/

(71

/github. n/grammarwar
ramadan/README .md.



https://figshare.com/account/projects/23464/articles/5223928
https://figshare.com/account/projects/23464/articles/5223928
https://rgse.uni-koblenz.de/carisma/
https://github.com/grammarware/models17/blob/master/ramadan/README.md
https://github.com/grammarware/models17/blob/master/ramadan/README.md

II. USAGE

Prerequisite. To be able to execute our project, we
recommend using Eclipse Neon, Modeling Tools distribu-
tion from https://www.eclipse.org/downloads/
packages/eclipse-modeling-tools/neonr, with
an installed nightly build of Henshin and CARiSMA.
These softwares plug-ins can be installed on your Eclipse
(Help —Install New Software...) from the the follwing
update sites: for CARISMA wuse http://carisma.
umlsec.de/updatesite, while for Henshin one can use
http://download.eclipse.org/modeling/emft/
henshin/updates/release. From the CARISMA up-
date site, please only install the main features (BPMN2 and
UML2 support).

Performing the transformation. To execute the transfor-
mation from SecBPMN2 to UMLsec models, please mind
the following instructions. More details are available in
the ReadMe file https://github.com/grammarware/
modelsl7/blob/master/ramadan/README . md.

e Download and import our project package
"myexample” to your local Eclipse workspace
https://figshare.com/account/projects/
23464 /articles/5223919, via File — Import —
From Archive File...

« Right click on the main class
src/my.example/BpmnToUml.java — RUN As JUnit
Plug-in Test to perform the transformation. By default,
our transformation takes the examplel.bpmn file as input.
To change the input file, first copy the name of one of
the BPMN files that are provided in the myexample —
src — my.example directory. Second, find line 91 (public
static final String EXAMPLE = "examplel.bpmn'';)
in the BpmnToUml.java file (line no. xyz)and replace
the file name "examplel” with the name of the selected
BPMN file.

o After executing the BpmnToUml java, you should see
console output informing you about the generation pro-
cess. The process could take a few minutes, and there
might be some warnings/error messages related to the
underlying plug-ins. As these do not concern us, we can
ignore them. The process is finished when the following
line is printed to the console: Saved result in "examplel-
generated-result.uml".

e The results of the transformation process (.uml file)
will be stored to the myexample/src/my.example/ direc-
tory. The name of the UML file is examplel-generated-
result.uml. You may have to refresh your Package Ex-
plorer (press F5) to see it.

Performing the verification. In this step, we use

CARiSMA checks to verify the generated UML models
against UMLsec security policies.

« Right click on the myexample project — New — Other
— CARiISMA — Analysis — Next in the dialog, select
the file that is generated from the last step (i.e., examplel-
generated-result.uml) and then click finish.

« From the dialog, click on add checks to the list icon —

select the check that you want to perform (e.g., secure
links UMLsec check and secure dependency UMLsec
check) then click run. For «abac» policy, you have to
select both RABACsec: Create transformation input and
RABACsec: Use transformation input checks. The former
allows you to select the role that you want to verify
his accessibility to the system operations, while the later
return the set of operations that the selected role has
an access to them. More details about the execution of
CARiSMA checks are provided in the ReadMe file [7].
Other information can also be found in the user manual
of CARiISMA. After installing CARiSMA, the manual is
available under: Help — Help Contents — CARiSMA.
The result of the verification is provided in the Analysis
Results view. One can also right click on the result and
select create a report for selected analysis. The report will
be stored to the myexample/src/my.example/ directory.


https://www.eclipse.org/downloads/packages/eclipse-modeling-tools/neonr
https://www.eclipse.org/downloads/packages/eclipse-modeling-tools/neonr
http://carisma.umlsec.de/updatesite
http://carisma.umlsec.de/updatesite
http://download.eclipse.org/modeling/emft/henshin/updates/release
http://download.eclipse.org/modeling/emft/henshin/updates/release
https://github.com/grammarware/models17/blob/master/ramadan/README.md
https://github.com/grammarware/models17/blob/master/ramadan/README.md
https://figshare.com/account/projects/23464/articles/5223919
https://figshare.com/account/projects/23464/articles/5223919

	Introduction
	References
	Usage

