Supporting Information

Elucidating the Copper-Hägg Iron Carbide Synergistic Interactions for Selective CO Hydrogenation to Higher Alcohols

Yongwu Lu,^{†, \otimes} Riguang Zhang,^{‡, \otimes} Baobao Cao,[§] Binghui Ge,[†] Franklin (Feng) Tao,[⊥] Junjun Shan,[⊥] Luan Nguyen,[⊥] Zhenghong Bao,[†] Tianpin Wu,[#] Jonathan W. Pote,[†] Baojun Wang,^{‡,*} and Fei Yu^{†,*}

[†]Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, United States

[‡]Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P.R. China

[§]School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China

¹Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, P.R. China

[⊥]Department of Chemical and Petroleum Engineering and Department of Chemistry, University of Kansas, Lawrence, KS 66045, United States

[#]X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States

* To whom correspondence should be addressed: Baojun Wang (<u>wangbaojun@tyut.edu.cn</u>); Fei Yu (<u>fyu@abe.msstate.edu</u>).

[®]Yongwu Lu and Riguang Zhang contributed equally to this work.

Figure S1. SEM images of 3DOM Cu₂Fe₁ catalyst under different magnifications.

Figure S2. XRD pattern of fresh 3DOM Cu-Fe catalysts. (a) 3DOM Cu₁Fe₂, (b) 3DOM Cu₁Fe₁, (c) 3DOM Cu₂Fe₁, and (d) 3DOM Cu₃Fe₁.

Figure S3. XPS spectra. (a) Cu 2p and (b) Fe 2p of fresh 3DOM Cu₁Fe₂, 3DOM Cu₁Fe₁, 3DOM Cu₂Fe₁, and 3DOM Cu₃Fe₁ catalysts.

Figure S4. HRTEM image. (a) High-resolution TEM of fresh 3DOM Cu_2Fe_1 catalyst. (b) The corresponding indexed selected-area electron diffraction (SAED) pattern.

Figure S5. Gas chromatography-mass spectrometry (GC–MS) analysis of (a) aqueous and (b) liquid organic products from CO hydrogenation over 3DOM Cu_2Fe_1 catalyst. (Note: C_n , hydrocarbons; C_nOH , 1-alcohols).

Figure S6. The Anderson–Schulz–Flory (ASF) plots. (a and b) The ASF plots for 1-alcohols and hydrocarbons distributions of 3DOM Cu-Fe catalysts, respectively. (Reaction conditions: P = 700 psig, T = 200 °C, GHSV = 2000 h⁻¹, H₂/CO =1.0, time-on-stream of 120 h). (c and d) The ASF plots for 1-alcohols and hydrocarbons distributions of 3DOM Cu₂Fe₁ catalyst at different reaction temperatures (200–280°C), respectively. (Reaction conditions: P = 700 psig, GHSV = 2000 h⁻¹, H₂/CO =1.0, time-on-stream of 120 h). Note: The ASF chain growth probability α of products are calculated according to the equation of $\ln\left(\frac{W_n}{n}\right) = n \ln \alpha + \ln\frac{(1-\alpha)^2}{\alpha}$, where *n* is the number of carbon atoms in products, W_n is the weight fraction of products containing *n* carbon atoms, and $1-\alpha$ is the probability of chain termination.¹

Figure S7. XRD patterns of fresh and reduced of (5wt.%)Rh/SiO₂ catalyst.

Figure S8. The evolution of Cu/(Cu+Fe) atomic ratio on surface of 3DOM Cu₂Fe₁ catalyst using *in situ* AP-XPS (with *in situ* O₂ pretreatment). The error of measurement of peak area is $\pm 5\%$ of the corresponding peak area.

Figure S9. In situ studies of surface chemistry using AP-XPS for 3DOM Cu_2Fe_1 catalyst (without O_2 pretreatment) at different temperatures in H_2 and CO with a molar ratio of 1:1 at mbar pressure range. (a) Cu 2p, (b) Cu LMM, (c) Fe 2p and (d) C 1s.

Figure S10. In situ $k^3\chi(k)$, Fourier transforms of $[k^3\chi(k)]$ (R-space plot), and Re[$\chi(q)$] (Å⁻³) (q-space plot) spectra for the experimental Cu K-edge EXAFS signal of the 3DOM Cu₂Fe₁ catalyst at RT (a, c, e) and 300°C (b, d, f) under CO+H₂ (H₂/CO = 1) gas and the fit (3DOM Cu₂Fe₁ CO+H₂@RT: Δk =2.0–11.0 Å⁻¹ and ΔR =1.0–4.0 Å; 3DOM Cu₂Fe₁ CO+H₂@300°C: Δk =2.5–12.0 Å⁻¹ and ΔR =1.7–5.1 Å).

Figure S11. *In situ* $k^3\chi(k)$, Fourier transforms of $[k^3\chi(k)]$ (R-space plot), and Re[$\chi(q)$] (Å⁻³) (q-space plot) spectra for the experimental Fe K-edge EXAFS signal of the 3DOM Cu₂Fe₁ catalyst at RT(a, c, e) and 300 °C (b, d, f) under CO+H₂ (H₂/CO = 1) gas and the fit (3DOM Cu₂Fe₁ CO+H₂@RT: Δk =3.4–12.6 Å⁻¹ and ΔR =1.0–4.0 Å; 3DOM Cu₂Fe₁ CO+H₂@300°C: Δk =2.8–12.1 Å⁻¹ and ΔR =1.0–3.0 Å).

Side view

Figure S12. The χ -Fe₅C₂(510) surface morphology and its adsorption sites. The purple and gray balls denote Fe and C atoms, respectively.

The χ -Fe₅C₂(510) surface model. χ -Fe₅C₂ has a monoclinic structure with C2/c crystallographic symmetry,² including 20 Fe and 8 C atoms per unit cell. Our calculated lattice parameters (a = 11.588 Å, b = 4.579 Å, c = 5.059 Å, and β =97.7°) and magnetic moment (1.73 µB) agree well with the previous experimental data.^{3,4} Zhao *et al.*⁵ proved that χ -Fe₅C₂(510) surface with α =2.50 (α = Fe/C ratio) had low surface energy under synthesis gas pretreatment. Pham *et al.*⁶ discovered that χ -Fe₅C₂(510) exhibited the largest percentage among the exposed crystal facets and the lowest surface energy among the stoichiometric terminations of 11 facets. Pham *et al.*⁷ further revealed that CH₄ formation was unfavorable on χ -Fe₅C₂(510), and the reactions of C+CH and CH+CH were found the most likely coupling pathways in terms of the carbide mechanism. The surface morphology and adsorption sites of χ -Fe₅C₂(510) is illustrated in **Figure S12**.

Figure S13. The most stable adsorption configuration of reactants, products and possible intermediates involved in CO hydrogenation to the formation of C₂ hydrocarbon and oxygenates on χ -Fe₅C₂(510) surface. Purple balls: Fe atoms; grey balls: C atoms on surface; dark green balls: C atoms involved in reactions; red balls: O atoms; white balls: H atoms.

The adsorption energy $(E_{ads}/kJ \cdot mol^{-1})$ and key geometrical parameters (Å) of reactants and possible intermediates species involved in CO hydrogenation to the formation of C₂ hydrocarbons and oxygenates on χ -Fe₅C₂(510) surface are listed in **Table S7**. All possible elementary reactions involved in CO hydrogenation to the formation of C₂ hydrocarbons and oxygenates together with the activation energy (*E*_a) and reaction energy (ΔH) on χ -Fe₅C₂(510) surface are listed in **Table S8**.

Figure S14. The potential energy diagram of CO activation together with the initial state (ISs), transition state (TSs) and final states (FSs) on χ -Fe₅C₂(510) surface. Bond lengths in Å. See **Figure S13** for color coding.

CO activation. Three possible elementary reactions (**Table S8**) on χ -Fe₅C₂(510) surface are examined: (**R1.1**) CO direct dissociation; (**R1.2**) CO hydrogenation to CHO; (**R1.3**) CO hydrogenation to COH. As shown in **Figure S14**, when CO and H are co-adsorbed on χ -Fe₅C₂(510) surface, the catalytic activity towards CO hydrogenation to COH is rather low. However, CO direct dissociation and CO hydrogenation to CHO are more favorable than CO hydrogenation to COH. Meanwhile, CO direct dissociation and CO hydrogenation to CHO are kinetically competitive due to their close activation barriers (128.7 vs. 121.4 KJ·mol⁻¹); whereas CO direct dissociation is favorable thermodynamically than CO hydrogenation to CHO ($-35.9 vs. 84.4 \text{ KJ} \cdot \text{mol}^{-1}$). Thus, C and CHO are the major products of CO initial step, CH_x (x = 1-3) formation starts with C and CHO intermediates.

Figure S15. The potential energy diagram of CH and CH₂O formation together with the ISs, TSs and FSs on χ -Fe₅C₂(510) surface. Bond lengths in Å. See **Figure S13** for color coding.

CH Formation. C and CHO are the dominant products for CO initial step on χ -Fe₃C₂(510) surface. Thus, starting from C+H, CHO and CHO+H, five possible pathways with six elementary reactions (**R1.4–R1.9**) are responsible for CH formation (**Table S8**). Moreover, CHO hydrogenation to CH₂O (**R1.10**) is also considered. As illustrated in **Figure S15**, with respect to CO+H species, among five CH formation pathways, C hydrogenation to CH has the highest barrier of 128.7 kJ·mol⁻¹ with the reaction energy of -0.2 kJ·mol^{-1} , which is more favorable both thermodynamically and kinetically than the other four pathways, suggesting that C hydrogenation to form CH via **TS1.1** (128.7 kJ·mol⁻¹) is dominantly responsible for CH formation, which is kinetically competitive with CHO hydrogenation to CH₂O via **TS1.10** (135.5 kJ·mol⁻¹). Whereas CH formation is favorable thermodynamically than CHO hydrogenation to CH₂O. In addition, our results indicate that C+C coupling reaction has a high activation barrier of 150.3 kJ·mol⁻¹ with reaction energy of 118.9 kJ·mol⁻¹, which is higher than that of C hydrogenation to CH reaction with the activation barrier and reaction energy of 106.1 and 35.7 kJ·mol⁻¹, suggesting that C prefers hydrogenation to CH rather than C+C coupling.

Figure S16. The potential energy diagram of CH₂ and CH₃O formation together with the ISs, TSs and FSs on χ -Fe₅C₂(510) surface. Bond lengths in Å. See **Figure S13** for color coding.

CH₂ **formation**. C and CHO prefer hydrogenation to CH and CH₂O, respectively. Starting from the initial states of CH+H, CHO+H and CH₂O, five possible pathways with six elementary reactions (**R1.11–1.16**) are responsible for CH₂ formation (**Table S8**). Meanwhile, CH₂O hydrogenation to CH₃O (**R1.17**) is also considered. As presented in **Figure S16**, with respect to CO+H species, among five possible pathways of CH₂ formation, both CH hydrogenation and CH₂O dissociation with H-assisted dominantly contribute to CH₂ formation with the highest barriers of 128.7 and 135.5 kJ·mol⁻¹, respectively. However, CH hydrogenation to CH₂ (83.2 *vs.* 124.5 kJ·mol⁻¹). Moreover, CH₂ formation is also more favorable than CH₂O hydrogenation to CH₃O or CH₂OH, in which CH₂O prefers hydrogenation to CH₃O rather than CH₂OH.

Figure S17. The potential energy diagram of CH₃ and CH₃OH formation together with the ISs, TSs and FSs on χ -Fe₅C₂(510) surface. Bond lengths in Å. See **Figure S13** for color coding.

CH3 formation. Starting from the initial states of CH₂+H, CH₂O+H, and CH₃O, four possible pathways (**R1.18–1.21**) are responsible for CH₃ formation (**Table S8**). CH₃O hydrogenation to CH₃OH (**R1.22**) is also considered. As illustrated in **Figure S17**, with respect to CO+H species, among four CH₃ formation pathways, CH₂ hydrogenation to CH₃ has only the highest barrier of 128.7 kJ·mol⁻¹, which is dominantly responsible for CH₃ formation is more favorable than CH₃OH formation.

Figure S18. The potential energy diagram of the most favorable route for the formation of CH_x (x = 1-3) species and CH_3OH on χ -Fe₅C₂(510) surface.

Brief Summary of CH*_x* (x = 1-3) and CH₃OH. Starting from CO+H species, Figure S18 presents the potential energy diagram for the most favorable formation pathways of CH*_x* (x = 1-3) species and CH₃OH. For CH formation, the reaction pathway of C+H→CH is more favorable than CHO→CH+O; for CH₂ formation, the pathways of C+H→CH+H→CH₂ and CHO+H→CH₂O+H→CH₂+OH are two parallel pathways; for CH₃ formation, the pathway of C+H→CH+H→CH₂ and CHO+H→CH₂+H→CH₃ is the most favorable. The pathway of CH₃OH formation is CHO+H→CH₂O+H→CH₃O+H→CH₃OH. CH (black line) and CH₃ (blue line) formation have the same highest barrier of 128.7 kJ·mol⁻¹. CH₂ formation (red line) via two parallel pathways have the highest barrier of 128.7 and 135.5 kJ·mol⁻¹. CH₂ formation (pink line) had the highest barrier of 248.2 kJ·mol⁻¹, which is much higher than those of CH_x species formation, suggesting that CH_x species formation is much more favorable than CH₃OH formation. In addition, Cao *et al.*⁸ demonstrated that CH₃OH formation was also unfavorable on χ -Fe₅C₂(001) surface.

Therefore, among all CH_x (x = 1-3) species, CH is the dominant existence form on χ -Fe₅C₂(510) surface, which originates from CO direct dissociation into C, followed by C hydrogenation to CH. Moreover, CH hydrogenation also contributes to the formation of CH₂ and CH₃ species on χ -Fe₅C₂(510) surface. However, as menthioned behind, our results show that once CH₂ and CH₃ species are formed on χ -Fe₅C₂(510), both of them would dissociate into CH species among all reactions related to CH_x (x = 2, 3) species, which further comfirm that CH is the most favorable CH_x species.

The Formation of C₂-Hydrocarbons and C₂-Oxygenates. CH is the dominant species on χ -Fe₅C₂(510) surface. Moreover, CH₂ and CH₃ species can also be formed by CH hydrogenation. Thus, all possible reactions related to CH, CH₂ and CH₃ species including the dissociation, hydrogenation, coupling, and CO/CHO insertion are studied. **Figures S19–21** display the potential energy profile of these reactions related to CH, CH₂ and CH₃ species, respectively.

Figure S19. The potential energy diagram of the reactions related to CH species together with the ISs, TSs and FSs on χ -Fe₅C₂(510) surface. Bond lengths in Å. See **Figure S13** for color coding.

As illustrated in **Figure S19**, among all reactions related to CH species (**Table S8**), CH coupling to C₂H₂ (**R1.24**) is the most favorable with the activation barrier and reaction energy of 35.9 and $-1.0 \text{ kJ} \cdot \text{mol}^{-1}$, respectively. The second is CH dissociation into C and H atoms (**R1.23**), this reaction has an activation barrier of 70.4 kJ·mol⁻¹ with reaction energy of $-35.7 \text{ kJ} \cdot \text{mol}^{-1}$. CH hydrogenation to CH₂ (**R1.11**), CO insertion into CH to form CHCO (**R1.25**), are less favorable due to their high activation barriers of 109.0 and 144.5, respectively. Furthermore, CHO insertion into CH to form CHCO (**R1.26**) is difficult to occur due to its high activation barriers of 166.8 kJ·mol⁻¹ with reaction energy of 149.0 kJ·mol⁻¹.

Figure S20. The potential energy diagram of the reactions related to CH₂ species together with the ISs, TSs and FSs on χ -Fe₅C₂(510) surface. Bond lengths in Å. See **Figure S13** for color coding.

As shown in **Figures S20–21**, among all reactions related to CH₂ and CH₃ species, the calculation results indicate that CH₂ and CH₃ prefer dissociation into CH and CH₂ species with the activation barriers of 25.6 and 39.0 kJ·mol⁻¹, respectively. This means that once CH₂ and CH₃ species are formed, both of them would dissociate into CH species. This result further confirms that CH is the most favorable CH_x species on χ -Fe₅C₂(510) surface. In addition, previous studies demonstrated that CH and CH₂ species are the most favorable CH_x species on χ -Fe₅C₂(010) surface,⁹ as well as CH and CH₃ are the most favorable CH_x species on χ -Fe₅C₂(001) surface.¹⁰ Furthermore, CHO insertion into CH₂/CH₃ to form CH₂CHO/CH₃CHO (**R1.30/R1.35**) are difficult to occur due to their high activation barriers of 155.6 and 216.5 kJ·mol⁻¹ with reaction energy of 49.2 and 144.1 kJ·mol⁻¹, respectively.

The above-mentioned results indicate that starting from the most favorable CH species, CH coupling to C_2H_2 is the most favorable reaction to form C_2 -hydrocarbons rather than its dissociation to C (**TS1.23**), hydrogenation to CH₂ (**TS1.11**), or being inserted by CO/CHO (**TS1.25**, **TS1.26**) to form C₂-oxygenates on χ -Fe₅C₂(510) surface.

Figure S21. The potential energy diagram of the reactions related to CH₃ species together with the ISs, TSs and FSs on χ -Fe₅C₂(510) surface. Bond lengths in Å. See **Figure S13** for color coding.

Figure S22. The optimal CO hydrogenation reaction pathway and transition states (TSs) on χ -Fe₅C₂(510) surface. (a) The optimal reaction pathway for CO hydrogenation on χ -Fe₅C₂(510) surface (unit: kJ·mol⁻¹). (b) Top view of TSs involved in the reaction shown in panel (a). Bond lengths in Å. See **Figure S13** for color coding.

CO hydrogenation on χ -Fe₅C₂(510). The reaction pathway for CO hydrogenation on χ -Fe₅C₂(510) is presented in Figure S22. On χ -Fe₅C₂(510), CO direct dissociation via TS1.1 and CO hydrogenation to CHO via TS1.2 are more favorable than CO hydrogenation to COH (Figure S14). Meanwhile, CO direct dissociation (TS1.1, 128.7 kJ·mol⁻¹) and CO hydrogenation to CHO (TS1.2, 121.4 kJ·mol⁻¹) are kinetically competitive due to their close activation barriers. C and CHO are thus the major intermediates of CO activation. Starting from the initiate states of C+H, CHO, and CHO+H, C hydrogenation to CH via TS1.4 is more favorable than the other pathways (Figure S15). This suggests that C hydrogenation is dominantly responsible for CH formation (TS1.1, 128.7 kJ·mol⁻¹), which is kinetically competitive with CH₂O formation via **TS1.10** (135.5 kJ·mol⁻¹). Starting from the initiate states of CH+H, CHO+H, and CH₂O, both CH hydrogenation (**TS1.11**) and CH₂O dissociation with H-assisted significantly contribute to CH₂ formation (**Figure S16**). Furthermore, CH₂ formation is more favorable than CH₃O (**TS1.17**) or CH₂OH (**TS1.15**), in which CH₂O prefers hydrogenation to CH₃O rather than CH₂OH (**Figure S16**). Starting from the initial states of CH₂+H, CH₂O+H, and CH₃O, CH₂ hydrogenation (**TS1.18**) mainly results in CH₃ formation, which is more favorable than CH₃OH formation via **TS1.22** (**Figure S17**). CH is thus the most favorable CH_x(*x*=1–3) species on χ -Fe₅C₂(510) (**Figure S18**). Additionally, CH formation (**TS1.1**, **TS1.4**) is more favorable than CH₃OH formation (**TS1.2**, **TS1.10**, **TS1.17**, **TS1.22**), suggesting that χ -Fe₅C₂(510) exhibits higher selectivity to CH instead of CH₃OH (**Figures S18** and **Figure S22**).

CH coupling to C₂H₂ via **TS1.24** is the most favorable reaction rather than its dissociation to C, hydrogenation to CH₂, or being inserted by CO/CHO to C₂-oxygenates on χ -Fe₅C₂(510) (**Figure S19**). CH₂ prefers dissociation into CH species rather than hydrogenation to CH₃, coupling to C₂H₄ (**TS1.28**), or being inserted by CO/CHO to C₂-oxygenates (**Figure S20**). CH₃ prefers dissociation into CH₂ species instead of hydrogenation to CH₄ (**TS1.32**), coupling to C₂H₆ (**TS1.33**), or being inserted by CO/CHO to C₂-oxygenates (**Figure S21**). Once CH₂ and CH₃ species are formed on χ -Fe₅C₂(510), both would dissociate to CH species, which further confirm that CH is the most favorable CH_x (x = 1-3) species. The calculation results are in excellent agreement with the experimental results^{11,12} and DFT calculations^{5,6,13} that χ -Fe₅C₂ exhibits good catalytic performance for CO dissociation¹⁴ and carbon-chain propagation for Fe-based FTS catalysts. Thus, CH is the most favorable species on χ -Fe₅C₂(510), and χ -Fe₅C₂(510) mainly contributes to the formation of C₂H₂ via CH coupling (**Figure S22**, **Supplementary Movie 1**).

Figure S23. Structural information for the adsorption of CH_x (x = 1-3), H and CO species, as well as the transition states for CO insertion into CH_x (x = 1-3) on $Cu^0 - \chi$ -Fe₅C₂(510) and χ -Fe₅C₂(510) surface. Purple, red, white and orange balls denote Fe, O, H and Cu atoms, respectively. Gray and dark green balls present the C atoms of χ -Fe₅C₂(510) surface and the C atoms of adsorbed species, respectively.

Figure S24. The potential energy diagram of the reactions related to CH together with the ISs, TSs and FSs on $Cu^0 - \chi$ -Fe₅C₂(510). Bond lengths are in Å. See **Figure S23** for color coding.

For CH species (**Figure S24**), CH coupling to C_2H_2 via **TS2.1** is the most favorable reaction, which has the smallest activation barrier and reaction energy of 20.1 and –96.1 kJ·mol⁻¹, respectively; in **TS2.1**, two CH species are adsorbed at two 3-fold Fe sites, respectively; the C–C distance decreases to 2.052 Å from 2.499 Å in CH+CH. The second favorable reaction is CH hydrogenation to CH₂ via **TS2.2**, this elementary reaction has an activation barrier of 33.0 kJ·mol⁻¹ with a reaction energy of –0.2 kJ·mol⁻¹; since this reaction is the reverse reaction of CH₂ dissociation into CH and H, **TS2.2** is the same with **TS2.7** in **Figure S25**. The third is CO insertion into CH to CHCO via **TS2.3**, this elementary reaction has an activation barrier of 64.8 kJ·mol⁻¹ with a reaction energy of 9.4 kJ·mol⁻¹; in **TS2.3**, CH is adsorbed at the 3-fold Fe site, and CO is adsorbed at the Cu–Fe bridge B₁2 site of Fe–Cu interface; the C–C distance decreases to 1.740 Å from 2.474 Å in CH+CO. Finally, CH dissociation into C and H atoms via **TS2.4** is difficult to occur due to the high activation barrier of 135.4 kJ·mol⁻¹ with a reaction energy of 86.9 kJ·mol⁻¹; in **TS2.4**, C and H are adsorbed at the 3-fold F2 Fe site and the top T4 Fe sites, respectively; the C–H distance is 1.575 Å.

Figure S25. The potential energy diagram of the reactions related to CH₂ together with the ISs, TSs and FSs on Cu⁰- χ -Fe₅C₂(510). Bond lengths are in Å. See **Figure S23** for color coding.

For CH₂ species, as presented in **Figure S25**, CH₂ coupling to C₂H₄ via **TS2.5** has the smallest activation barrier of 14.0 kJ·mol⁻¹ with a reaction energy of $-97.9 \text{ kJ} \cdot \text{mol}^{-1}$; in **TS2.5**, two CH₂ are adsorbed at the 3-fold F2 Fe and the Fe–Fe bridge sites, respectively; the C–C distance decreases to 2.013 Å from 2.810 Å in CH₂+CH₂.

The second is CO insertion into CH₂ to CH₂CO via **TS2.6**, this elementary reaction has an activation barrier of 32.5 kJ·mol⁻¹ with a reaction energy of 7.8 kJ·mol⁻¹; in **TS2.6**, CH₂ is adsorbed at the 3-fold F3 Fe site, and CO is adsorbed at the 3-fold F₁1 site of Fe–Cu interface with the C–C distance decreases to 1.824 Å from 2.428 Å in CH₂+CO.

Compared to CO insertion, CH₂ dissociation into CH and H via **TS2.7** has the comparable activation barrier of 33.2 kJ·mol⁻¹; in **TS2.7**, CH and H are adsorbed at the 3-fold F2 Fe site and the top T4 Fe site with the C–H distance of 1.649 Å. Moreover, CH₂ hydrogenation to CH₃ via **TS2.8** has the activation barrier of 36.8 kJ·mol⁻¹ with the reaction energy of -33.0 kJ·mol⁻¹; since this reaction is the reverse reaction of CH₃ dissociation into CH₂ and H, **TS2.8** is the same with **TS2.10** in **Figure S26**.

In addition, as shown **Figures S25–26**, since both CH and CH₂ are the most favorable CH_x species on $Cu^0 - \chi$ -Fe₅C₂(510) surface, CH₂ coupling with CH to CHCH₂ has also been considered. Our calculation results show that CH coupling with CH₂ via **TS2.9** has an activation barrier of 45.3 kJ·mol⁻¹ with a reaction energy of $-56.6 \text{ kJ} \cdot \text{mol}^{-1}$; in **TS2.9**, CH and CH₂ are adsorbed at 3-fold F3 Fe site and 3-fold F1 Fe site, respectively, and the C–C distance decreases to 1.920 Å from 2.574 Å in CH+CH₂.

The above results show that CH_2 coupling to C_2H_4 via **TS2.5** is the most favorable; then, CH_2CO is formed via **TS2.6** by CO insertion into CH_2 . However, under the real Fischer–Tropsch synthesis conditions, CO as the reactant is the abundant surface species, for example, CO adsorption reaches 0.5 ML on Cu(100) surface¹⁵ and different Fe surfaces¹⁶ under high temperature and pressure. Thus, although CH_2 coupling is faster than CO insertion in the view of kinetics, CO insertion into CH_2 to C_2 -oxygenate (CH_2CO) can be accelerated due to the abundant coverage of CO and the small activation barrier difference of 18.5 kJ·mol⁻¹ between CH_2 coupling and CO insertion reactions.

Figure S26. The potential energy diagram of the reactions related to CH₃ together with the structures (ISs, TSs and FSs on Cu⁰ $-\chi$ -Fe₅C₂(510) surface. See **Figure S23** for color coding.

As shown in **Figure S26**, among all reactions related to CH_3 species, CH_3 prefers dissociation to CH_2 via **TS2.10** with an activation barrier and reaction energy of 69.7 and 33.0 kJ·mol⁻¹, respectively; in **TS2.10**, CH_2 is adsorbed at the F2 Fe site, and H is adsorbed at the T4 Fe site; the C–H distance is 1.609 Å.

Then, CH₃ hydrogenation to CH₄ via **TS2.11** needs to overcome an activation barrier of 79.9 kJ·mol⁻¹ with a reaction energy of -23.3 kJ·mol⁻¹; in **TS2.11**, both CH₃ and H are adsorbed at the T4 Fe site via both Fe–C and Fe–H bonds; the C–H distance decreases to 1.569 Å from 2.949 Å in CH₃+H.

CO insertion into CH₃ to CH₃CO via **TS2.12** has an activation barrier of 114.4 kJ·mol⁻¹ with a reaction energy of 31.5 kJ·mol⁻¹. In **TS2.12**, CH₃ is adsorbed at the 3-fold F3 Fe site, and CO is adsorbed at the 3-fold F₁ site of Fe–Cu interface; the C–C distance decreases to 1.767 Å from 3.115 Å in CH₃+CO.

Further, CH₃ coupling to C₂H₆ via **TS2.13** is difficult to occur due to the high activation barrier of 131.0 $kJ \cdot mol^{-1}$. In **TS2.13**, two CH₃ are adsorbed at two Fe–Fe bridge sites with the C–C distance of 1.881 Å.

The above results show that CH₃ coupling to C₂H₆ via **TS2.13** and CO insertion into CH₃ to CH₃CO via **TS2.12** are difficult to occur due to the high activation barriers (131.0 and 114.4 kJ·mol⁻¹); namely, CH₃ species cannot contribute to the formation of C₂-hydrocarbons and C₂-oxygenates. As a result, once CH₃ appears over Cu⁰– χ -Fe₅C₂(510) surface, it prefers dissociation to CH₂ species.

Figure S27. (a) Calculated partial density of state for χ -Fe₅C₂ projected at C and Fe sites and total densities of state for χ -Fe₅C₂. (b) Density of states of bulk Fe, χ -Fe₅C₂ and Rh. The green dash line is the Fermi level.

The χ -Fe₅C₂ phase has a monoclinic structure with *C*2/*c* crystallographic symmetry, and the Fe–Fe distances in bulk χ -Fe₅C₂ (2.52 and 2.71 Å) are 2%–9% larger than those (2.48Å) in the metal Fe.² The calculated density of states (**Figure S27**) shows that χ -Fe₅C₂ is metallic in nature, where Fe is a cation with a Bader charge of 0.40 *e*, and C is anion with Bader charge of –0.99*e*.

	Chain growth probability (α) for various catalysts						
	3DOM Fe	3DOM Cu ₁ Fe ₂	3DOM Cu ₁ Fe ₁	3DOM Cu ₂ Fe ₁	3DOM Cu ₃ Fe ₁		
1-alcohols	0.83	0.75	0.78	0.81	0.76		
Hydrocarbons	0.86	0.80	0.82	0.83	0.81		

Table S1. The chain growth probability (α) of 1-alcohols and hydrocarbons (including olefins and paraffins) over 3DOM Cu-Fe catalysts at 200 °C.

Table S2. The chain growth probability (α) of 1-alcohols and hydrocarbons (including olefins and paraffins) over 3DOM Cu₂Fe₁ catalyst at different temperatures (200–280°C).

	Chain growth probability (α) for 3DOM Cu ₂ Fe ₁ catalysts						
	200 °C	220 °C	240 °C	260 °C	280 °C		
1-alcohols	0.81	0.78	0.74	0.71	0.70		
Hydrocarbons	0.83	0.80	0.78	0.75	0.73		

Catalysts ^a	H ₂ /CO	Т	Р	GHSV	Xco ^e	$\mathbf{S}_{\mathrm{MeOH}}{}^{f}$	$S_{C_{2+}Oxy}$ ^g	S _{HC} ^h	$S_{CO_2}^{i}$	$r_{C_{2+}OH}{}^{j}$	Ref.
		(°C)	(psig)	(h^{-1})	(%)	(%)	(%)	(%)	(%)		
3DOM Cu ₂ Fe ₁	1	260	700	2000	58.4	5.2	26.1(26.1)	57.2	11.5	5.65	This work
Rh(5)/SiO2 ^b	1	260	700	2000	6.3	1.8	28.5(11.2)	68.9	0.8	0.63	—
Rh(1.5)/SiO ₂	2	270	435	4000	5.0	1.4	15.3(8.90)	81.8	0	N.A.	17
Rh(5.6)Mn(1.7)/SiO2	1.9	256	1200	7500 ^c	2.62	1.5	34.3(12.4)	64.2	0	N.A.	18
Rh(1.5)Mn(0.4)/SiO2	2	270	435	4000	17.0	0.8	46.1(19.5)	52.4	0.7	N.A.	17
Rh(3)Mn(1)/SiO2	2	285	290	N.A.	36.4	0	42.9(14.6)	54.1	0	N.A.	19
Rh(1.5)Mn(1.5)	2	300	435	10000 d	28.2	0.6	58 2(22 9)	39.8	14	N A	20
Li(0.07)Fe(0.1)/SiO ₂	2	500	-55	10000	20.2	0.0	50.2(22.7)	57.0	1.7	11.71.	20

Table S3. Catalytic performance of 3DOM Cu_2Fe_1 catalysts in comparison to silica-supported Rh-based catalysts.

^{*a*}: The values shown in brackets are used as weight percent. ^{*b*}: Catalyst was prepared by using an impregnation method. ^{*c*}: Space velocity in L L_{cat}⁻¹ h⁻¹. ^{*d*}: Space velocity in mL g_{cat}^{-1} h⁻¹. ^{*e*}: X_{CO} denotes CO conversion. ^{*f*}: S_{MeOH} denotes the selectivity to methanol. ^{*s*}: S_{C₂₊Oxy} denotes the selectivity to C₂₊ oxygenates. The selectivity to higher alcohols (C₂₊OH) is expressed in brackets. ^{*h*}: S_{HC} denotes the selectivity to hydrocarbons. ^{*i*}: S_{CO₂} denotes the selectivity to CO₂. ^{*j*}: r_{c_2+OH} denotes the formation rate of higher alcohols in mmol g_{cat}^{-1} h⁻¹.

Sample after reduction ^{<i>a</i>}	$\frac{S_{BET}}{(m^2 g^{-1})}$	V_{pore}^{d} $(\text{cm}^{3}\text{ g}^{-1})$	d _{pore} ^e (nm)	$r_{C_{2}+OH}$ (mmol g _{cat} ⁻¹ h ⁻¹)	Intrinsic activity f (mmol m ⁻² h ⁻¹)
3DOM Cu	8.69	0.025	11.5	0	0
3DOM Cu ₁ Fe ₂	74.7	0.358	19.2	1.76	2.4×10^{-2}
3DOM Cu ₁ Fe ₁	88.6	0.393	17.7	2.37	2.7×10^{-2}
3DOM Cu ₂ Fe ₁	86.2	0.483	22.4	5.65	6.6×10^{-2}
3DOM Cu ₃ Fe ₁	74.3	0.450	24.2	3.52	4.7×10^{-2}
3DOM Fe	139.2	0.557	16.0	0.11	7.9×10^{-4}
3DOM PM-Cu ₂ Fe ₁ ^b	49.4	0.202	12.9	0.10	2.0×10^{-3}

Table S4. The texture characteristics, the formation rate of $C_{2+}OH$, and the intrinsic activity of the reduced catalyst samples.

^{*a*} The reduction conditions: 300°C, 10 psig, H₂/CO =1.0, GHSV = 2000 h⁻¹, and time-on-stream of 48 h. ^{*b*} The physical mixture (PM) of 3DOM Cu and 3DOM Fe catalyst, denoted as 3DOM PM-Cu₂Fe₁. ^{*c*} BET specific surface areas evaluated in P/P_0 from 0.05 to 0.99, $\pm 2.0 \ (m^2 g^{-1})$. ^{*d*} Total pore volumes estimated based on the volume adsorbed at P/P_0 of 0.989, $\pm 0.005 \ (cm^2 g^{-1})$. ^{*e*} Pore sizes derived from the adsorption branches of the isotherms by using the BJH method, $\pm 0.5 \ \text{nm}$. ^{*f*} Intrinsic activity is defined as $r_{C_2+OH}/S_{\text{BET}}$, where r_{C_2+OH} is the formation rate of C₂₊OH, S_{BET} is the BET surface area of the reduced catalyst.

Table S5. The Mössbauer fitted parameters of the reduced 3DOM catalysts measured at 27°C. (The reduction conditions: 300°C, 10 psig, H₂/CO =1.0, GHSV = 2000 h⁻¹, and time-on-stream of 48 h). Experimental uncertainties: Isomer shift: IS \pm 0.01mm s⁻¹; Quadrupole splitting: QS \pm 0.01mm s⁻¹; Hyperfine field: \pm 0.1T; Spectra contribution: \pm 3.0%. (Note: super-paramagnetic (spm)).

Sample	IS	QS	Hyperfine field	Dhase	Spectra
Sample	(mm s ⁻¹)	(mm s ⁻¹)	(T)	rnase	contribution (%)
3DOM Fe	0.25	0.09	22.0	χ-Fe ₅ C ₂ (II)	32.9
	0.15	0.10	18.8	χ -Fe ₅ C ₂ (I)	24.1
	0.23	0.08	10.9	χ -Fe ₅ C ₂ (III)	24.1
	0.33	1.06		Fe ³⁺ (spm)	18.9
3DOM Cu ₁ Fe ₂	0.26	0.08	22.2	χ -Fe ₅ C ₂ (II)	29.3
	0.15	0.12	18.7	χ -Fe ₅ C ₂ (I)	24.5
	0.22	0.10	10.6	χ-Fe ₅ C ₂ (III)	25.8
	0.31	1.06		Fe ³⁺ (spm)	20.4
3DOM Cu ₁ Fe ₁	0.27	0.04	22.2	χ -Fe ₅ C ₂ (II)	29.5
	0.16	0.12	18.5	χ -Fe ₅ C ₂ (I)	24.3
	0.23	0.11	10.7	χ-Fe ₅ C ₂ (III)	25.5
	0.31	1.06		Fe ³⁺ (spm)	20.7
3DOM Cu ₂ Fe ₁	0.26	0.05	22.1	χ -Fe ₅ C ₂ (II)	27.0
	0.20	0.05	18.1	χ -Fe ₅ C ₂ (I)	31.1
	0.21	0.07	10.5	χ-Fe ₅ C ₂ (III)	20.4
	0.32	1.07		Fe ³⁺ (spm)	21.5
3DOM Cu ₃ Fe ₁	0.28	0.04	22.0	χ -Fe ₅ C ₂ (II)	26.2
	0.15	0.11	18.1	χ -Fe ₅ C ₂ (I)	24.9
	0.22	0.12	10.5	χ -Fe ₅ C ₂ (III)	24.5
	0.31	1.07		Fe ³⁺ (spm)	24.4

Table S6. Coordination environment (coordination numbers, bond lengths and their mean squared disorder values) of Cu and Fe atoms of 3DOM Cu₂Fe₁ catalyst under *in situ* CO+H₂ (H₂/CO = 1) reduction in different temperatures. All results correspond to the room temperature at which EXAFS data were collected. The last column contains the best fit values of the photoelectron energy origin correction.

3DOM Cu ₂ Fe ₁	CO+H ₂	Scatter	$N \times S_0^2$	R (Å)	$\sigma^2(\text{\AA}^2)$	ΔE (eV)
catalyst						
Cu K-edge	RT	Cu–O	1.72 <u>+</u> 1.09	1.942 <u>+</u> 0.042	0.0015 <u>+</u> 0.0033	7.4 <u>+</u> 1.8
		Cu–Cu	3.44 <u>+</u> 2.18	2.849 <u>+</u> 0.054	0.0074 <u>+</u> 0.0094	7.4 <u>+</u> 1.8
	50 °C	Cu–O	0.97 <u>±</u> 0.24	1.896 <u>+</u> 0.036	0.0056 <u>+</u> 0.0059	2.8 <u>+</u> 0.5
		Cu–Cu	1.95 <u>+</u> 0.49	2.963 <u>+</u> 0.148	0.0032 <u>+</u> 0.0184	2.8 <u>+</u> 0.5
	100 °C	Cu–O	0.98 <u>+</u> 0.27	1.890 <u>+</u> 0.043	0.0056 <u>±</u> 0.0064	2.2 <u>±</u> 0.7
		Cu–Cu	1.96 <u>+</u> 0.55	2.918 <u>+</u> 0.640	0.0029 <u>+</u> 0.0573	2.2 <u>±</u> 0.7
	150 °C	Cu–O	1.01 <u>+</u> 0.94	1.908 <u>+</u> 0.152	0.0055 <u>+</u> 0.0229	3.5 <u>+</u> 0.2
		Cu–Cu	2.01 <u>+</u> 1.88	2.933 <u>+</u> 0.439	0.0030 <u>+</u> 0.0283	3.5 <u>+</u> 0.2
	200 °C	Cu–O	1.88 <u>+</u> 1.71	1.948 <u>+</u> 0.028	0.0014 <u>+</u> 0.0069	-0.6 <u>±</u> 0.1
		Cu–Cu	3.75 <u>+</u> 3.42	2.854 <u>+</u> 0.112	0.0081 <u>±</u> 0.0265	-0.6 <u>±</u> 0.1
	250 °C	Cu–Cu	8.88 <u>+</u> 4.21	2.563 <u>+</u> 0.031	0.0079 <u>+</u> 0.0034	-1.8 <u>±</u> 0.1
	300 °C	Cu–Cu	7.48 <u>±</u> 1.10	2.543 <u>+</u> 0.008	0.0094 <u>+</u> 0.0013	3.8 <u>+</u> 1.2
	350 °C	Cu–Cu	6.47 <u>+</u> 4.38	2.570 <u>+</u> 0.026	0.0076 <u>±</u> 0.0048	10.3 <u>+</u> 1.0
	400 °C	Cu–Cu	6.86 <u>+</u> 4.87	2.568 <u>+</u> 0.024	0.0080 <u>+</u> 0.0054	9.6 <u>+</u> 1.4
Fe K-edge	RT	Fe _{oct} –O	3.10 <u>+</u> 0.38	1.932 <u>+</u> 0.011	0.0081 <u>±</u> 0.0017	-7.8 <u>±</u> 1.4
-		Fetet-Fetet	9.30 <u>+</u> 1.13	3.319 <u>+</u> 0.011	0.0054 <u>+</u> 0.0011	-7.8 <u>±</u> 1.4
	50 °C	Fe _{oct} –O	3.23 <u>+</u> 1.30	1.928 <u>+</u> 0.021	0.0094 <u>+</u> 0.0042	–7.9 <u>±</u> 0.6
		Fetet-Fetet	9.68 <u>+</u> 3.90	3.310 <u>+</u> 0.023	0.0023 <u>+</u> 0.0043	–7.9 <u>±</u> 0.6
	100 °C	Fe _{oct} –O	2.59 <u>+</u> 0.79	1.923 <u>+</u> 0.015	0.0062 <u>+</u> 0.0026	-8.4 <u>±</u> 1.1
		Fetet-Fetet	7.76 <u>+</u> 2.36	3.300 <u>+</u> 0.017	0.0003 <u>+</u> 0.0027	-8.4 <u>±</u> 1.1
	150 °C	Fe _{oct} –O	2.67 <u>±</u> 0.75	1.928 <u>+</u> 0.015	0.0070 <u>+</u> 0.0026	-8.0 ± 0.8
		Fetet-Fetet	8.00 <u>+</u> 2.25	3.304 <u>+</u> 0.015	0.0006 <u>+</u> 0.0025	-8.0 <u>±</u> 0.8
	200 °C	Fe _{oct} –O	2.34 <u>+</u> 0.74	1.910 <u>+</u> 0.016	0.0045 <u>+</u> 0.0025	-13.6 <u>+</u> 1.2
		Fetet-Fetet	7.01 <u>+</u> 2.23	3.272 <u>+</u> 0.019	0.0007 <u>±</u> 0.0029	-13.6 ± 1.2
	250 °C	Fe _{oct} –O	2.83 <u>+</u> 0.84	1.935 <u>+</u> 0.017	0.0081 <u>±</u> 0.0029	-7.1 <u>+</u> 0.5
		Fetet-Fetet	8.50 <u>+</u> 2.53	3.321 <u>+</u> 0.021	0.0021 <u>±</u> 0.0034	-7.1 <u>±</u> 0.5
	300 °C	Fe–C	4.41 <u>+</u> 0.96	1.645 <u>+</u> 0.054	0.0458 <u>+</u> 0.0113	-3.1 <u>±</u> 0.8
		Fe–Fe	4.41 <u>±</u> 0.96	2.578 <u>+</u> 0.041	0.0137 <u>+</u> 0.0024	-3.1 <u>±</u> 0.8
	350 °C	Fe–C	5.61 <u>±</u> 1.43	1.679 <u>+</u> 0.032	0.0514 <u>+</u> 0.0054	-0.7 ± 0.2
		Fe–Fe	5.61 <u>±</u> 1.43	2.611 <u>+</u> 0.019	0.0140 <u>+</u> 0.0020	-0.7 ± 0.2
	400 °C	Fe–C	5.54 <u>±</u> 1.70	1.738 <u>+</u> 0.047	0.0287 <u>±</u> 0.0082	-8.2 ± 1.0
		Fe–Fe	5.54 ± 1.70	2.577 ± 0.020	0.0159 ± 0.0024	-8.2 ± 1.0

Note: Cu K-edge (RT to 200°C): $\Delta k=2.0-11.0 \text{ Å}^{-1}$ and $\Delta R=1.0-4.0 \text{ Å}$; Cu K-edge (250 to 400°C): $\Delta k=2.5-12.0 \text{ Å}^{-1}$ and $\Delta R=1.7-5.1 \text{ Å}$; Fe K-edge (RT to 250°C): $\Delta k=3.4-12.6 \text{ Å}^{-1}$ and $\Delta R=1.0-4.0 \text{ Å}$; Fe K-edge (300 to 400°C): $\Delta k=2.8-12.1 \text{ Å}^{-1}$ and $\Delta R=1.0-3.0 \text{ Å}$. $\Delta N=\pm 10\%$. N: coordination number; S_0^2 : amplitude reduction factor; R: bonding distance; σ^2 : Debey-Waller factor; ΔE : edge energy shift. Reference data: Cu–O and Cu–Cu bond distance in CuO = 1.951 and 2.901 Å, respectively. Cu–Cu bond distance in Cu metal = 2.553 Å. Fe_{oct}–O and Fe_{tet}–Fe_{tet} bond distance in Fe₃O₄ = 1.935 and 3.482 Å, respectively. Fe–C and Fe–Fe bond distance in χ -Fe₅C₂ = 1.696 and 2.520 Å, respectively.

Species	$E_{ m ads}$	Configuration	$d_{ ext{Fe-C}}$	$d_{ m Fe-O}$	$d_{ m Fe-H}$
С	707.3	4F2	1.839, 1.863, 1.901,		
			1.926		
Н	292.5	3F8			1.751, 1.768, 1.806
0	652.5	3F7		1.868, 1.878,	
				1.908	
OH	410.8	3F7		1.987,	
				2.041,2.050	
CO	190.5	4F2	1.971, 2.000		
СН	706.0	4F2	1.928, 1.971, 2.038,		
			2.062		
CH_2	447.5	4F2	1.941, 2.069, 2.073,		1.716
			2.221		
CH ₃	233.2	3F7	2.130, 2.183, 2.211		
CHO	294.3	4F2	1.977, 1.979	1.919, 2.039	
CH ₂ O	166.1	4F2	2.233, 2.274	2.229, 2.292	1.863
CH ₃ O	310.1	2F2		1.919, 1.940	
COH	354.1	4F2	1.945, 1.983, 2.076,		
			2.105		
CHOH	301.1	1F3	1.821		
CH ₂ OH	200.2	3F7	2.030, 2.250	2.136	
CH ₃ OH	65.8	1F3		2.070	
CHCO	349.1	4F2	1.944, 2.014, 2.100,		
			2.208, 2.242		
CH ₂ CO	291.5	4F2	1.960, 2.032, 2.103	1.957	
CH ₃ CO	198.2	4F2	1.999, 2.006	1.914, 2.041	
CHCHO	443.7	4F2	1.973, 1.975, 2.036,	1.879	
			2.320		
CH ₂ CHO	253.1	4F2	2.050, 2.108, 2.313	1.887	
CH ₃ CHO	63.1	2F2		2.007, 2.099	
CH_4	1.6		2.533		
C_2H_2	266.5	2F1	1.933, 1.969, 1.989,		
			2.123, 2.136		
C_2H_4	102.6	4F2	2.023, 2.083, 2.281,		
			2.320		
C_2H_6	2.9		2.756, 3.760		

Table S7. The adsorption energy $(E_{ads}/kJ \cdot mol^{-1})$ and key geometrical parameters (Å) of reactants, products, and possible intermediates species involved in CO hydrogenation to the formation of C₂-hydrocarbons and C₂-oxygenates on χ -Fe₅C₂(510) surface.

Table S8. The possible elementary reactions involved in CO hydrogenation to the formation of C₂-hydrocarbons and C₂-oxygenates together with the activation barrier (E_a) and reaction energy (ΔH) on χ -Fe₅C₂(510) surface.

	Elementary reactions	Transition states	$E_{\rm a}({\rm kJ}\cdot{ m mol}^{-1})$	$\Delta H(\text{kJ}\cdot\text{mol}^{-1})$
R1.1	CO→C+O	TS1.1	128.7	-35.9
R1.2	СО+Н→СНО	TS1.2	121.4	84.4
R1.3	СО+Н→СОН	TS1.3	188.2	83.8
R1.4	C+H→CH	TS1.4	106.1	35.7
R1.5	CHO→CH+O	TS1.5	61.0	-68.8
R1.6	CHO+H→CH+OH	TS1.6	84.6	-17.3
R1.7	СНО+Н→СНОН	TS1.7	167.2	125.8
R1.8	СНОН→СН+ОН	TS1.8	20.0	-143.1
R1.9	$CHOH+H\rightarrow CH+H_2O$	TS1.9	153.9	-81.2
R1.10	CHO+H→CH ₂ O	TS1.10	51.1	19.3
R1.11	$CH+H\rightarrow CH_2$	TS1.11	109.0	83.4
R1.12	$CHO+H\rightarrow CH_2+O$	TS1.12	77.2	-10.3
R1.13	$CH_2O \rightarrow CH_2+O$	TS1.13	75.3	-29.6
R1.14	$CH_2O+H\rightarrow CH_2+OH$	TS1.14	29.9	20.8
R1.15	$CH_2O+H\rightarrow CH_2OH$	TS1.15	172.9	109.3
R1.16	$CH_2OH \rightarrow CH_2 + OH$	TS1.16	29.4	-88.5
R1.17	CH ₂ O+H→CH ₃ O	TS1.17	64.8	15.6
R1.18	$CH_2+H\rightarrow CH_3$	TS1.18	44.7	5.6
R1.19	$CH_2O+H\rightarrow CH_3+O$	TS1.19	63.7	-64.6
R1.20	CH ₃ O→CH ₃ +O	TS1.20	139.1	-80.2
R1.21	$CH_{3}O+H\rightarrow CH_{3}+OH$	TS1.21	79.0	-29.7
R1.22	CH ₃ O+H→CH ₃ OH	TS1.22	128.9	74.9
R1.23	CH→C+H	TS1.23	70.4	-35.7
R1.24	$CH+CH\rightarrow C_2H_2$	TS1.24	35.9	-1.0
R1.25	CH+CO→CHCO	TS1.25	144.5	120.5
R1.26	СН+СНО→СНСНО	TS1.26	82.4	64.6
R1.27	$CH_2 \rightarrow CH+H$	TS1.27	25.6	-83.4
R1.28	$CH_2+CH_2 \rightarrow C_2H_4$	TS1.28	48.2	-31.9
R1.29	CH ₂ +CO→CH ₂ CO	TS1.29	113.3	61.7
R1.30	CH ₂ +CHO→CH ₂ CHO	TS1.30	71.2	-35.2
R1.31	$CH_3 \rightarrow CH_2 + H$	TS1.31	39.0	-5.6
R1.32	$CH_3+H\rightarrow CH_4$	TS1.32	79.4	32.4
R1.33	$CH_3+CH_3\rightarrow C_2H_6$	TS1.33	162.5	-3.0
R1.34	CH ₃ +CO→CH ₃ CO	TS1.34	137.3	24.2
R1.35	CH ₃ +CHO→CH ₃ CHO	TS1.35	132.1	59.7

Table S9. Calculated adsorption energies and geometric information for CO insertion into CH_x (x = 1-3) to C₂-oxygenates on Cu⁰- χ -Fe₅C₂(510) and χ -Fe₅C₂(510) surfaces, in comparison to that on Rh(111) surface reported by Zhao *et al.*²¹ *E*_H, *E*_{CO}, *E*_{CH}, *E*_{CH²} and *E*_{CH³} stand for the adsorption energies of H, CO, CH, CH₂ and CH₃, respectively. *E*_a is the activation barrier of CO insertion into CH_x (x = 1-3) reaction. *d*_{TS} is the distance between two C atoms in the transition states for CO insertion reactions. The corresponding geometry structures on Cu⁰- χ -Fe₅C₂(510) and χ -Fe₅C₂(510) are shown in **Figure S23**.

Parameters	$Cu^0 - \chi - Fe_5C_2(510)$	χ-Fe ₅ C ₂ (510)	Rh(111) ²¹
$E_{\mathrm{H}} (\mathrm{kJ} \cdot \mathrm{mol}^{-1})$	289.5	292.5	273.1
$E_{\rm CO} (\rm kJ \cdot mol^{-1})$	196.8	190.5	194.9
$E_{\rm CH} ({\rm kJ} \cdot { m mol}^{-1})$	658.2	706.0	660.0
$E_{\mathrm{CH2}}(\mathrm{kJ}\!\cdot\!\mathrm{mol}^{-1})$	423.2	447.5	413.0
$E_{\mathrm{CH}^3} (\mathrm{kJ} \cdot \mathrm{mol}^{-1})$	204.0	233.2	188.2
$E_{a}(CO+CH\rightarrow CHCO)$	64.8	144.5	129.3
$d_{\mathrm{TS}}(\mathrm{\AA})$	1.742	1.531	1.650
$E_{a}(CO+CH_{2}\rightarrow CH_{2}CO)$	32.5	113.3	120.6
$d_{ m TS}$ (Å)	1.824	1.520	1.790
$E_{a}(CO+CH_{3}\rightarrow CH_{3}CO)$	114.4	137.3	149.6
$d_{ m TS}({ m \AA})$	1.767	1.959	1.860

H	Elementary reactions	Transition states	$E_{a}(kJ \cdot mol^{-1})$	$\Delta H (\text{kJ} \cdot \text{mol}^{-1})$
R2.1	$CH+CH\rightarrow C_2H_2$	TS2.1	20.1	-96.1
R2.2	$CH+H\rightarrow CH_2$	TS2.2	33.0	-0.2
R2.3	СН+СО→СНСО	TS2.3	64.8	9.4
R2.4	СН→С+Н	TS2.4	135.4	86.9
R2.5	$CH_2+CH_2 \rightarrow C_2H_4$	TS2.5	14.0	-97.9
R2.6	$CH_2+CO\rightarrow CH_2CO$	TS2.6	32.5	7.8
R2.7	СН₂→СН+Н	TS2.7	33.2	0.2
R2.8	$CH_2+H\rightarrow CH_3$	TS2.8	36.8	-33.0
R2.9	$CH+CH_2 \rightarrow CHCH_2$	TS2.9	45.3	-56.6
R2.10	$CH_3 \rightarrow CH_2 + H$	TS2.10	69.7	33.0
R2.11	$CH_3+H\rightarrow CH_4$	TS2.11	79.9	-23.3
R2.12	CH ₃ +CO→CH ₃ CO	TS2.12	114.4	31.5
R2.13	$CH_3+CH_3\rightarrow C_2H_6$	TS2.13	131.0	-90.1
R2.14	CHCO+H→CH ₂ CO	TS2.14(TS1)	37.5	24.1
R2.15	СНСО+Н→СНСНО	TS2.15(TS2)	74.6	5.9
R2.16	CH ₂ CO+H→CH ₃ CO	TS2.16(TS3)	34.5	-3.1
R2.17	CH ₂ CO+H→CH ₂ CHO	TS2.17(TS4)	92.9	-66.1
R2.18	$CH_2CO+H\rightarrow CH_2COH$	TS2.18(TS5)	128.1	76.1
R2.19	CH ₃ CO+H→CH ₃ CHO	TS2.19(TS6)	47.1	-14.5
R2.20	CH ₃ CO+H→CH ₃ COH	TS2.20(TS7)	140.7	87.8
R2.21	CH ₃ CHO+H→CH ₃ CH ₂ O	TS2.21(TS8)	40.8	-28.4
R2.22	СН₃СНО+Н→СН₃СНОН	TS2.22(TS9)	155.8	36.2
R2.23	CH ₃ CH ₂ O+H→C ₂ H ₅ OH	TS2.23(TS10)	114.2	-11.1

Table S10. The possible elementary reactions involved in the reactions related to CH_x (x = 1-3) species and ethanol formations together with the activation barrier (E_a) and reaction energy (ΔH) on $Cu^0 - \chi$ -Fe₅C₂(510) surface.

Note: TS2.14(**TS1**) denotes that the transition state TS2.14 in the Supplementary Figures is numbered as the transition state **TS1** in the main text, the same as other transition states hereafter.

Supporting Information Methods.

Synthesis and Reduction of Rh/SiO₂ Catalyst. Rh(NO₃)₃ hydrate (CAS#10139-58-9, Molecular Weight of 288.92, Sigma-Aldrich) and silica dioxide (CAS#:112945-52-5, Molecular weight of 60.08, Sigma-Aldrich) was used in silica supported rhodium catalyst preparation. Silica dioxide was first ground and sieved to 30–50 mesh, washed using boiled distilled water for 3 times, and then calcined in air at 500 °C for 5 h before being used as a support. The (5wt%)Rh/SiO₂ catalyst was prepared by a wetness impregnation of the calcined silica dioxide (4.75g) with an aqueous solution of Rh(NO₃)₃ hydrate (0.70g) for 24 h, followed by drying at 110 °C overnight before being calcined in air at 500 °C for 5 h. Prior to catalytic reaction, the (5wt%)Rh/SiO₂ catalyst was in situ reduced with syngas (H₂/CO = 1) at atmospheric pressure and 500 °C for 5 h.

X-ray diffraction. XRD measurements were carried out by using an Ultima III X-ray diffractometer (Rigaku Americas, The Woodlands, TX) with Cu K α radiation ($\lambda = 0.154$ nm) operated at 40 kV and 44 mA at a rate of 0.08 ° min⁻¹.

X-ray Photoelectron Spectroscopy. XPS was recorded with a PHI 1600 XPS surface Analysis System (Physical Electronics, Eden Prairie, MN). The instrument used a PHI 10-360 spherical capacitor energy analyzer and an Omni Focus II small-area lens to focus the incident source to an 800 μ m diameter surface analysis area, using an achromatic Mg K α X-ray source (hu = 1253.6 eV) operating at 300 W and 15 kV. Survey spectra were gathered using an average of 10 scans with pass energy of 26.95 eV and running from 1100 to 0 eV. High-resolution spectra were gathered using an average of 15 scans with pass energy of 23.5 eV and a step size of 0.1 eV. The incident sample angle was held constant at 45°. XPS data was collected and averaged using PHI Surface Analysis software, Version 3.0 (Physical Electronics, Eden Prairie, MN). XPS data was analyzed by using Casa XPS software. The C1s peak of adventitious carbon (284.5 eV) was used as a reference for estimating the binding energy. The binding energies were given with an accuracy of ± 0.1 eV.

High Resolution Transmission Electron Microscopy. HRTEM images were obtained on a JEOL 2100 electron microscope (JEOL, Japan) operated at 200 kV. The catalyst samples were dispersed in ethanol and sonicated for 20 min and then deposited over a formvar Nickel grid.

The Textural Properties Measurement. The textural properties (BET specific surface areas, pore volume, pore size) of catalysts were measured with linear parts of the BET plot of the N₂ isotherms. Nitrogen adsorption/desorption isotherms at -196 °C were recorded using a Micromeritics ASAP 2010 porosimeter. The samples were outgassed in N₂ flow at 250 °C for 4 h before the measurement.

Supporting Information References

(1) Lu, Y.; Cao, B.; Yu, F.; Liu, J.; Bao, Z.; Gao, J. ChemCatChem 2014, 6, 473–478.

(2) Steynberg, P. J.; van de Berg, J. A.; Janse van Rensburg, W. J. Phys.: Condens. Matter 2008, 20, 064238.

- (3) Retief J. J. Powder Diffr., **1999**, 14, 130–132.
- (4) Hofer, L. J. E. & Cohn, E. M. J. Am. Chem. Soc., 1959, 81, 1576–1582.
- (5) Zhao, S.; Liu, X. -W.; Huo, C. -F.; Li, Y. -W.; Wang, J.; Jiao, H. J. Catal., 2012, 294, 47–53.
- (6) Pham, T. H., Duan, X., Qian, G., Zhou, X. & Chen, D. J. Phys. Chem. C 2014, 118, 10170–10176.

(7) Pham, T. H.; Qi, Y.; Yang, J.; Duan, X.; Qian, G.; Zhou, X.; Chen, D.; Yuan, W. ACS Catal., **2015**, *5*, 2203–2208.

(8) Cao, D. -B.; Li, Y. -W.; Wang, J.; Jiao, H. J. Mol. Catal. A: Chem., 2011, 346, 55–69.

- (9) Huo, C. -F.; Li, Y. -W.; Wang, J.; Jiao, H. J. Am. Chem. Soc., 2009, 131, 14713–14721.
- (10) Cao, D. -B.; Li, Y. -W.; Wang, J.; Jiao, H. J. Phys. Chem. C 2008, 112, 14883–14890.
- (11) Yang, C.; Zhao, H.; Hou, Y.; Ma, D. J. Am. Chem. Soc., 2012, 134, 15814–15821.
- (12) Herranz, T.; Rojas, S.; Pérez-Alonso, F. J.; Ojeda, M.; Terreros, P.; Fierro, J. L. G. J. Catal., 2006, 243, 199–211.
- (13) Olus Ozbek, M.; Niemantsverdriet, J. W. J. Catal., 2014, 317, 158-166.
- (14) Wang, D.; Chen, B.; Duan, X.; Chen, D.; Zhou, X. J. Energy Chem., 2016, 25, 911–916.
- (15) Truong, C. M.; Rodriguez, J. A.; Goodman, D. W. Surf. Sci., 1992, 271, L385–L391.
- (16) Wang, T.; Tian, X. X.; Li, Y. W.; Wang, J. G.; Beller, M.; Jiao, H. J. ACS Catal., 2014, 4, 1991–2005.

(17) Mao, W.; Su, J.; Zhang, Z.; Xu, X. -C.; Dai, W.; Fu, D.; Xu, J.; Zhou, X.; Han, Y. -F. *Chem. Eng. Sci.*, **2015**, *135*, 312–322.

(18) Mei, D.; Rousseau, R.; Kathmann, S. M.; Glezakou, V. -A.; Engelhard, M. H.; Jiang, W.; Wang, C.; Gerber, M. A.; White, J. F.; Stevens, D. J. J. Catal., **2010**, 271, 325–342.

(19) Liu, J.; Tao, R.; Guo, Z.; Regalbuto, J. R.; Marshall, C. L.; Klie, R. F.; Miller, J. T.; Meyer, R. J. *ChemCatChem* **2013**, *5*, 3665–3672.

- (20) Yu, J.; Mao, D.; Han, L.; Guo, Q.; Lu, G. Catal. Commun., 2012, 27, 1–4.
- (21) Zhao, Y.-H.; Sun, K.; Ma, X.; Liu, J.; Sun, D.; Su, H.-Y.; Li, W.-X. Angew. Chem. Int. Ed., **2011**, 50, 5335–5338.