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A Supplemental Tables and Figures

Table OA1: Covariance Matrix of Earnings Equation Parameters: LEHD Data 0.5% Sample,
(10, 10, 10) Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

lnw XβAKM θAKM ψAKM µAKM εAKM XβGibbs θGibbs ψGibbs µGibbs εGibbs

lnw 1.949 0.920 0.629 0.278 0.078 0.056 0.919 0.551 0.327 0.045 0.107
XβAKM 0.920 1.989 −1.022 0.029 −0.001 0.001 0.693 0.151 0.075 −0.005 0.006
θAKM 0.629 −1.022 1.599 0.056 0.000 0.000 0.135 0.315 0.112 0.038 0.029
ψAKM 0.278 0.029 0.056 0.194 0.000 0.000 0.085 0.087 0.126 −0.029 0.010
µAKM 0.078 −0.001 0.000 0.000 0.080 0.000 0.007 0.000 0.016 0.044 0.011
εAKM 0.056 0.001 0.000 0.000 0.000 0.056 0.004 0.000 0.000 0.000 0.052
XβGibbs 0.919 0.693 0.135 0.085 0.007 0.004 0.701 0.146 0.090 −0.017 0.000
θGibbs 0.551 0.151 0.315 0.087 0.000 0.000 0.146 0.707 0.003 −0.305 0.000
ψGibbs 0.327 0.075 0.112 0.126 0.016 0.000 0.090 0.003 0.485 −0.251 0.000
µGibbs 0.045 −0.005 0.038 −0.029 0.044 0.000 −0.017 −0.305 −0.251 0.619 0.000
εGibbs 0.107 0.006 0.029 0.010 0.011 0.052 0.000 0.000 0.000 0.000 0.107

Table entries are means of the covariance between the indicated variables across 9, 968 draws from the Gibbs sampler
described in the text using the estimation sample, with number of person-year observations 395,930.
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Table OA2: Regression of Structural Earnings Decomposition Components on AKM Estimates of
Earnings Decomposition Components

XβGibbs θGibbs ψGibbs µGibbs εGibbs

XβAKM 0.2600 0.0402 0.0129 0.2791 0.0159
(.0010) (.0031) (.0017) (.0113) (.0004)

θAKM 0.2389 0.2094 0.0559 0.2116 0.0265
(.0021) (.0105) (.0022) (.0071) (.0008)

ψAKM 0.3305 0.3812 0.6308 −0.2547 0.0413
(.0012) (.0475) (.0438) (.0181) (.0020)

µAKM 0.0944 0.0006 0.2012 0.5519 0.1374
(.0005) (.0001) (.0114) (.0137) (.0028)

εAKM 0.0637 −0.0007 −0.0002 −0.0048 0.9359
(.0003) (.0001) (.0000) (.0002) (.0003)

Constant 7.2656 −0.2421 −0.0344 −2.2883 −0.1258
(.0574) (.0186) (.0015) (.0774) (.0035)

Results from running a regression of the earnings components estimated under the endogenous mobility model on
earnings components estimated using the AKM decomposition. The reported values are the mean parameter estimate
and the correlated-draw Monte Carlo standard errors across 9,968 draws from the Gibbs sampler using the estimation
sample, with number of person-year observations 395,930.
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Table OA3: Observed Covariate Parameters: AKM and Structural Estimates

(1) (2)
AKM Model Structural Model

Variable Estimate Mean (MCSE)

age 0.5555 0.6321 (.0064)
age2 −0.1864 −0.2087 (.0023)
age3 0.0277 0.0311 (.0003)
age4 −0.0016 −0.0018 (.0000)

female× age −0.2534 0.0031 (.0021)
age2 0.0866 −0.0091 (.0010)
age3 −0.0136 0.0019 (.0002)
age4 0.0008 −0.0001 (.0000)

black× age −0.2226 0.0157 (.0025)
age2 0.0788 −0.0160 (.0019)
age3 −0.0127 0.0035 (.0004)
age4 0.0008 −0.0002 (.0000)

hispanic× age 0.0644 0.0369 (.0063)
age2 −0.0323 −0.0173 (.0050)
age3 0.0065 0.0042 (.0012)
age4 −0.0004 −0.0002 (.0001)
sixq2 0.8851 0.7553 (.0069)
sixq3 1.6680 1.6226 (.0088)
sixq4 2.0301 2.1874 (.0115)
sixq5 2.3843 2.6303 (.0120)
sixq6 2.6301 2.7496 (.0103)

sixqleft −0.1161 −0.0629 (.0037)
sixqright −0.1054 −0.0301 (.0042)
sixq4th −0.3500 0.0882 (.0009)

sixqinter 0.2688 −0.3877 (.0030)
yr2000 0.0233 0.0044 (.0007)
yr2001 0.0308 −0.0020 (.0008)
yr2002 0.0494 −0.0089 (.0012)
yr2003 0.0611 −0.0097 (.0014)

σ 0.3277 (.0039)

Num. Obs. 60,123,894 395,930

Table entries are parameters on time-varying characteristics included in both the AKM model and the structural en-
dogenous mobility model. Column (1) reports parameter estimates from the fit of the AKM model to the LEHD
analysis population. Columns under (2) report the posterior means and Monte Carlo Standard Errors for parameters
on the indicated control variable based on 9,968 draws from the Gibbs sampler.
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Table OA4: Serial correlation in structural residuals

Correlation Coeff. MCSE

ρt,t−1 0.1153 0.0054
ρt,t−2 −0.0294 0.0060
ρt,t−3 −0.0805 0.0067

Each row reports the posterior mean and MCSE across 9,968 draws from the Gibbs sampler of the within-worker
correlation in the unexplained residual portion of earnings from the endogenous mobility model.
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Table OA5: Mean Log Earnings Net of Observed Characteristics for Workers Who Change Jobs
in 2001 by Quartile of Firm Effect for Origin and Destination Firms, 1999–2003

Transition 1999 2000 2001 2002 2003
Cell

1 to 1 0.587 0.604 0.642 0.645 0.647
1 to 2 0.625 0.614 0.975 1.017 1.041
1 to 3 0.726 0.703 1.353 1.387 1.411
1 to 4 0.799 0.746 1.803 1.821 1.853
2 to 1 1.017 1.030 0.756 0.765 0.759
2 to 2 1.208 1.239 1.264 1.264 1.273
2 to 3 1.354 1.356 1.585 1.602 1.622
2 to 4 1.496 1.488 1.996 2.013 2.041
3 to 1 1.449 1.437 0.741 0.770 0.760
3 to 2 1.567 1.577 1.367 1.394 1.398
3 to 3 1.806 1.834 1.857 1.845 1.860
3 to 4 1.997 2.004 2.205 2.205 2.236
4 to 1 2.025 2.042 0.727 0.723 0.717
4 to 2 2.025 2.045 1.378 1.413 1.430
4 to 3 2.124 2.182 1.964 1.960 1.967
4 to 4 2.403 2.491 2.487 2.443 2.456

The table entries are means of log earnings net of the effect of observed time-varying characteristics for a specific year
and transition cell. The sample is the LEHD analysis population described in Section 5.1.1 who change jobs exactly
once between 1999 and 2003, and where the year of job transition is 2001. This sample follows 566,300 workers
across 183,100 unique firms for a total of 2,832,000 person-year observations. Each job is assigned to a quartile based
on the estimated AKM firm effect. The “Transition Cell” column indicates the quartile of the origin and destination
job. Figure 4 displays a selection of these transition summaries.
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Figure OA1: Mean change in the AKM residual within origin/destination firm effect decile. Leg-
end is for destination firm types.
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(a) Structural Worker Effect, θ
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(b) Structural Firm Effect, ψ
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(c) Structural Match Effect, µ

Figure OA2: Posterior distribution of wage equation parameters. The solid line indicates the
posterior mean. Dashed lines indicate the 5th and 95th percentiles.
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B Formal Test of Endogenous Mobility
To implement the tests, we discretize estimated person effects, firm effects, and residuals onto
a fixed support. The quantiles that define the support points are calculated from a point-in-time
snapshot of the distribution of dominant jobs in progress as of April 1, 2002. That distribution is
restricted to full-time, full-year jobs held by individuals age 18-70. Finally, in testing, we use all
465 million dominant job observations for workers 18-70 that occur between 1999 and 2002. Test
1, the match effects test, uses data for about 104 million job changers during 1999-2004, inclusive.
Test 2, the productive workforce test, uses data for about 4 million firms alive in 2001.

B.1 Data Preparation and Definitions
Given the fitted values from the AKM decomposition, we select the sample of individuals and
employers active at the beginning of 2002, quarter 2 (April 1, 2002). For this sample, we compute
deciles from the estimated θ̂i, ψ̂J(i,t), and ε̂it as described above. Using the estimated deciles, we
discretize each component of the decomposition onto 10 fixed points of support. We adopt the
following notation:

Q (z) = a denotes quantile a for z ∈ {θ, ψ, ε}

and
]Q (z) denotes then number of quantiles for z ∈ {θ, ψ, ε} .

In the tests presented below, we use deciles, so ]Q (z) = 10.

B.2 Test Statistic 1: Match Effects Test
Under the hypothesis of exogenous mobility, the match effect for a given individual–employer pair
can be estimated using the average residual for the most recent completed job at j by i. We denote
these match effects as εit−1 for those individuals who change employers between periods t− 1 and
t. Formally,

εit−1 =

∑
{s|J(i,s)=j∧s<t∧J(i,s)6=J(i,t)}

ε̂is∑
1 {s|J (i, s) = j ∧ s < t ∧ J (i, s) 6= J (i, t)}

An individual for whom εit−1 > 0 received wage payments while employed at J (i, t− 1) = j that
exceeded their expected value, again under the hypothesis of exogenous mobility. The opposite is
true for individuals for whom εit−1 < 0.

B.2.1 Derivation of the Match Effects Test Statistic

To form a test statistic that captures the potential for εit−1 to be predictive of the next employer type,
we count all (i, t) pairs where J (i, t− 1) 6= J (i, t) (job changers) in quantiles of the components
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θ̂i, ψ̂J(i,t−1), ψ̂J(i,t), and εit−1:

nabcd =
∑

{i,t|J(i,t−1)6=J(i,t)}

1


Q
(
θ̂i

)
= a ∧

Q
(
ψ̂J(i,t−1)

)
= b ∧

Q
(
ψ̂J(i,t)

)
= c ∧

Q (εit−1) = d


. (B-1)

The joint probability of observing nabcd is

πabcd = Pr
{
Q (θi) = a ∧Q

(
ψJ(i,t−1)

)
= b ∧Q

(
ψJ(i,t)

)
= c ∧Q (εit−1) = d

}
.

Exogenous mobility implies that the match effect from period t− 1 should not be predictive of the
transition from ψJ(i,t−1)to ψJ(i,t) for an individual with θi. This hypothesis can be formalized as
conditional independence of the outcome(

Q (θi) = a ∧Q
(
ψJ(i,t−1)

)
= b ∧Q

(
ψJ(i,t)

)
= c
)

from Q (εit−1) = d. In terms of the joint probabilities we compute

X2
ν1

= Test (πabcd = πabc+π+++d) (B-2)

where the subscript + denotes the marginal distribution with respect to the indicated dimension,
and degrees of freedom are given by

ν1 =
(
# (Q (θi))×#Q

(
ψJ(i,t−1)

)
×#Q

(
ψJ(i,t)

)
− 1
)
× (#Q (εit−1)− 1) .

B.2.2 Computation of the Match Effects Test

We compute the test statistic (B-2) by direct calculation of the chi-squared statistic from the 4-way
contingency table defined by the discretized earnings heterogeneity under the conditional indepen-
dence assumption πabcd = πabc+π+++d. The population of job changers consists of individuals i
for whom J (i, t− 1) 6= J (i, t) for t = 1999, ..., 2003. The entire population of individuals and
employers was used to compute the quantiles of the θ̂i, ψ̂J(i,t−1), ψ̂J(i,t), and εit−1 distributions.
Then the counts (B-1) were tabulated using all observations in the job-changer population and
used to compute the relevant marginal frequencies for the test.

B.3 Test Statistic 2: Productive Workforce Test
Our second test considers the implications of exogenous mobility for the employer’s choice of
workforce distributions over θi. The average amount by which wages deviate from their expecta-
tions, under exogenous mobility, for a given workforce at a point in time can be computed as the
average residual for all employees at J (i, t) = j in year t
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ε̃jt =

∑
{i|J(i,t)=j}

ε̂it∑
1 {i|J (i, t) = j}

.

An employer for whom ε̃jt > 0 has paid higher than expected wages in period t; and the opposite is
true for ε̃jt < 0. Although there could be many reasons for this, we will refer to ε̃jt as a measure of
workforce productivity. However, the exogenous mobility hypothesis is silent about the meaning
of ε̃jt. What matters is its relationship to the within-employer distribution of θi. If ε̃js is predictive
of the within-employer distribution of θi for some period t > s, given ψj , then exogenous mobility
fails because the distribution of future employment depends on residuals in the theoretical AKM
decomposition.

To implement this test, consider two periods s < t and all employers with strictly positive
employment in period s. Compute the counts

nabc|s =
∑
j

1
{
Q
(
ψj
)

= a ∧Q (ε̃js) = c
}
×

∑
{i|J(i,s)=j∧Q(ψj)=a}

Q (θi) = b


and

nabc|t =
∑
j

1
{
Q
(
ψj
)

= a ∧Q (ε̃js) = c
}
×

∑
{i|J(i,t)=j∧Q(ψj)=a}

Q (θi) = b

 .

Note that the two counts are not independent because they condition on the same distribution of
employers alive in period s. Let

πabc|s = Pr
{
Q
(
ψj
)

= a ∧ (Q (θi) = b|s) ∧Q (ε̃js) = c
}

and
πabc|t = Pr

{
Q
(
ψj
)

= a ∧ (Q (θi) = b|t) ∧Q (ε̃js) = c
}
.

Then, the statistic for testing the conditional independence of the within-employer distribution over
θi with respect to the residual is

X2
ν2

= Test

(
ln

(
πabc|s
πabc|t

)
= ln

(
πab+|s
πab+|t

))
(B-3)

with degrees of freedom ν2 = (#Q (θi)− 1)×(#Q (ε̃js)− 1)+
(
#Q

(
ψj
)
− 1
)
×(#Q (θi)− 1)×

(#Q (ε̃js)− 1).
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B.3.1 Derivation of the Productive Workforce Test Statistic

To see why the test in equation (B-3) is correct, consider the log-linear model

ln

(
πabc|s
πabc|t

)
=

(
µa|s − µa|t

)
+
(
µb|s − µb|t

)
+
(
µc|s − µc|t

)
+
(
γab|s − γab|t

)
+
(
γac|s − γac|t

)
+
(
γbc|s − γbc|t

)
+
(
ρabc|s − ρabc|t

)
where the notation is as follows:

• µz|t denotes main effects of z ∈
{
Q
(
ψj
)
, Q (θi) , Q (ε̃js)

}
in period t,

• γyz|t denotes 2-way interactions of (y, z) ∈
{
Q
(
ψj
)
, Q (θi) , Q (ε̃js)

}
in period t,

• ρxyz|t denotes 3-way interactions of (x, y, z) ∈
{
Q
(
ψj
)
, Q (θi) , Q (ε̃js)

}
in period t.

The change in main effects of Q
(
ψj
)

from period s to t,
(
µa|s − µa|t

)
, must be 0 since the

population of employers is restricted to be identical in both periods. Similarly, the change in main
effects of Q (ε̃js) ,

(
µc|s − µc|t

)
, must be 0 since the workforce productivity distribution is only

measured at period s. The change in interaction of Q
(
ψj
)

and Q (ε̃js) ,
(
γac|s − γac|t

)
, must also

be 0 for the same reason.
This leaves two sets of parameters that are unconstrained by the null hypothesis–the change

in main effects of Q (θi),
(
µb|s − µb|t

)
, with df = (#Q (θi)− 1) and the change in interaction of

Q
(
ψj
)

and Q (θi),
(
γab|s − γab|t

)
, with df =

(
#Q

(
ψj
)
− 1
)
× (#Q (θi)− 1). The parameters

affected by the null hypothesis are the change in interaction of Q (θi) and Q (ε̃js),
(
γbc|s − γbc|t

)
,

with df = (#Q (θi)− 1) × (#Q (ε̃js)− 1) and the change in interaction of Q
(
ψj
)
, Q (θi) and

Q (ε̃js),
(
ρabc|s − ρabc|t

)
, with df =

(
#Q

(
ψj
)
− 1
)
× (#Q (θi)− 1) × (#Q (ε̃js)− 1). Under

the null hypothesis
(
γbc|s − γbc|t

)
= 0 and

(
ρabc|s − ρabc|t

)
= 0 with df = ν2 = (#Q (θi)− 1) ×

(#Q (ε̃js)− 1) +
(
#Q

(
ψj
)
− 1
)
× (#Q (θi)− 1)× (#Q (ε̃js)− 1).

B.3.2 Computation of the Productive Workforce Test Statistics

We use the method of moments for test (B-3). The observations are firms j with positive employ-
ment in s. For each firm compute

xj =


nj1t
nj+t
− nj1s

nj+s
nj2t
nj+t
− nj2s

nj+s

...
nj(#Q(θi)−1)t

nj+t
−

nj(#Q(θi)−1)s

nj+s


where

njqt =
∑

{i|J(i,t)=j}

1 (Q (θi) = q) .

App. 11



and xj is [(#Q (θi)− 1)× 1] . For each value of a and c compute the vector of means and the
covariance matrix

x̄ac =

∑
{j|Q(ψj)=a∧Q(ε̃js)=c}

nj+sxj

∑
{j|Q(ψj)=a∧Q(ε̃js)=c}

nj+s

Vac =

∑
{j|Q(ψj)=a∧Q(ε̃js)=c}

nj+s (xj − x̄ac) (xj − x̄ac)′

∑
{j|Q(ψj)=a∧Q(ε̃js)=c}

nj+s
.

N =
∑
j

1 (j|∃i : J (i, s) = j)

For each value of a compute the expected mean under the null hypothesis

x̄a =

∑
{j|Q(ψj)=a}

nj+sxj

∑
{j|Q(ψj)=a}

nj+s
.

Then,
X2
ν2

= N
∑
a,c

(x̄ac − x̄a)′ V −1ac (x̄ac − x̄a) .

Under the null hypothesis, X2
ν2

follows a chi-square distribution with ν2 degrees of freedom.

C Posterior Distribution of the Parameter Vector
The posterior distribution of ρ given (Y, Z) is

p (ρ|Y, Z) ∝ £ (ρ|Y, Z)
1

σν0+1
exp

(
− s

2
0

σ2

) L∏
`=1

π
1
L
−1

a`

M∏
m=1

π
1
M
−1

bm (C-1)

×
L∏
`=1

M∏
m=0

Q∏
q=1

(
π

1
Q
−1

q|`m γ
1
2
−1

`mq

(
1− γ`mq

) 1
2
−1

M∏
m′=0

δ
1

M+1
−1

m′|`mq

)
.

This distribution factors into posterior distributions for the model parameters that are independent,
conditional on the latent data, from which we sample.

To characterize these distributions, we introduce new notation. The matrix G = [X ABK] is
the full design of observed characteristics, ability, productivity, and match types given the observed
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and latent data. The term ν, which appears in the posterior of σ, is ν = N + ν0 − (L + M + Q).
The sum of squared log earnings residuals is

s2 =

lnw −G

ˆ
α
θ
ψ
µ



T lnw −G

ˆ
α
θ
ψ
µ




ν
. (C-2)

The remaining parameters are sampled from Dirichlet posteriors, denoted by D.
Key to estimation are various counts from the completed data. na` is the count of workers with

ability type `. nbm is the number of employers in productivity type m. nk|abq is the number of
matches observed in quality type q. nseplmq is the number of observations in which a worker in ability
type ` separates from an employer in productivity type m when match quality was q. Finally,
ntransm′|`mqis the number of transitions by workers in ability type ` from a match with an employer in
productivity type m and match quality type q to an employer in productivity type m′.

The posterior distribution of the wage equation parameters is
α
β
θ
ψ
µ

 |σ ∼ N


ˆ
α
β
θ
ψ
µ

, σ2
(
GTG

)−1
 (C-3)

where
ˆ
α
β
θ
ψ
µ

 =
(
GTG

)−1
GTw,

and

σ2 ∼ IG

(
ν

2
,

2

νs2

)
. (C-4)

The posterior distributions for the latent heterogeneity types are Dirichlet:

πa ∼ D

(
na1 +

(
1

L

)
, . . . , naL +

(
1

L

))
; (C-5)

πb ∼ D

(
nb1 +

(
1

M

)
, . . . , nbM +

(
1

M

))
; (C-6)

πk|ab ∼ D

(
nk|ab1 +

(
1

Q

)
, . . . , nk|abQ +

(
1

Q

))
. (C-7)
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The posterior distributions of the separation and assignment parameters of the mobility model are
also Dirichlet:

γlmq ∼ D

(
nsep`mq +

(
1

2

)
, nstay`mq +

(
1

2

))
; (C-8)

δb|lmq ∼ D

(
ntrans0|`mq +

(
1

M + 1

)
, . . . , ntransM |`mq +

(
1

M + 1

))
. (C-9)

D The Mobility Model in Steady-State
The stationary distribution of the mobility model gives a steady-state distribution of employment
spells across worker, employer, and match types. This, it turns out, is a model for the realized
mobility network, characterized in the data by the design matrix of employer effects, F , and the
associated cross-product term, DTF . We also interpret it as a characterization of the selection
model – the process by which particular matches are selected from the set of all possible matches.

The stationary distribution is simple to characterize: define λ`,m,q to be the expected number
of matches in steady-state between workers of type ` and employers of type m on matches with
quality q. Now define the diagonal matrix

Λ = diag([λ111, λ112, . . . , λLMQ]T ). (D-1)

Note that Λ does not account for transitions to non-employment. For exposition, suppose L =
M = Q = 2 so Λ is 8 × 8. In estimation, we let L, M , and Q vary and report results for the case
L = Q = M = 10.

In steady-state, observed log earnings data lnw are drawn from a discrete distribution propor-
tional to Λ. Net of the statistical residual, and the effect of observed time-varying characteristics,
Xβ, the potential outcomes lnw −Xβ − ε are completely characterized by an LMQ× 1 vector,
ỹ with

ỹ`,m,q = α + θ` + ψm + µq. (D-2)

The model therefore specifies

• Potential Outcomes: ỹ, and

• Selection Process: Λ.

Define a set of indicator matrices analogous to the person, employer, and match design matri-
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ces. For the 2× 2× 2 model, this matrix is simply

[
D̃ F̃ G̃

]
=



1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 1
0 1 1 0 1 0
0 1 1 0 0 1
0 1 0 1 1 0
0 1 0 1 0 1


. (D-3)

The notation D̃,F̃ , and G̃ highlights the connection between these reduced-dimension objects and
the design matrices of worker and employer effects in the full data AKM model.

Net of Xβ and ε, the earnings data are sampled from a distribution proportional to

Λỹ = Λ
(
D̃θ + F̃ψ + G̃µ

)
(D-4)

and the full cross-product matrix is

[
D̃ F̃ G̃

]T
Λ
[
D̃ F̃ G̃

]
=

D̃TΛD̃ D̃TΛF̃ D̃TΛG̃

F̃ TΛD̃ F̃ TΛF̃ F̃ TΛG̃

G̃TΛD̃ G̃TΛF̃ G̃TΛG̃

 . (D-5)

Notice that the upper-left block of the cross-product matrix in (D-5) is a model for the Laplacian
of the realized mobility network, which is random noise around this steady-state distribution.

E Estimation and Data Details

E.1 Parallelization of Employer Updates through Graph Coloring
To speed computation of the employer updates, we exploit the conditional independence restriction
in the update formula, equation (13). For any employers, j and j′, we say j and j′ are degree-
one connected if any worker was observed to move from j directly to j′ in the sample. The set,
N (j), is the set of all employers, j′, that are degree-one connected to j. Equation (13) implies
that if j′′ is not in N (j) and j is not in N (j′′), then Pr [bj = m|a, b−j, k, Y, ρ] is independent of
Pr [bj′′ = m|a, b−j′′ , k, Y, ρ] and, therefore, conditional on the rest of the latent data, the latent type
of j and j′′ can be updated at the same time (in parallel).

To fully exploit the network structure and conditional independence assumptions, we need
groups of employers such that no two employers are degree-one connected. In the language of
graph theory, this problem is equivalent to graph coloring in which the task is to color each node
of a graph so that no two degree-one connected nodes have the same color, and to do so using the
fewest colors possible.

For a general graph, the problem of finding the minimum number of colors is intractable. For
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our task, it is sufficient to find a coloring that yields a small number of partitions relative to the
highest degree node in the data (well over 1,000). To that end, we implement the greedy sequential
coloring algorithm described in Gebremedhin et al. (2005). Briefly, the algorithm sorts network
nodes from highest to lowest degree (that is, sorting employers in descending order by the number
of job-to-job separations). The first node is assigned a color at random. For every other node, we
assign the least frequent color that has not already been applied to one of its neighbors. If there is
no such color, we add a new color to the list and continue.

In our data, this algorithm yields a coloring that partitions employers into 24 non-intersecting
subsets. We update the employer types in parallel within each subset, and in sequence across the
subsets. Our partition is well below the algorithmic worst-case guarantee: a coloring with as many
colors as the highest-degree node in the graph, which is much greater than 1,000.

E.2 Calculation of Monte Carlo Standard Errors
When reporting results, we report Monte Carlo standard errors (MCSE) in place of, or in addition
to, the posterior standard deviation. Unsurprisingly, we observe substantial autocorrelation across
draws from the Gibbs sampler. The MCSE are computed using time-series methods that account
for uncertainty about the location of the posterior distribution associated with autocorrelation in the
chain. Using MCSE provides a practical and rigorous method for combining information across in-
dependent runs of the Gibbs sampler (we use three). The MCSE also fully exploit the information
within each sample, while addressing within-thread autocorrelation, relative to more conventional
ad hoc approaches like thinning the sample. Our ability to do so is all the more important given the
computational burden of each draw. Even with the parallelization described in Section E.1, draw-
ing from the Gibbs sampler is very time-consuming. Here, we describe implementation choices
that affect our analysis. We refer the reader interested in the theoretical and practical details of
computing the MCSE to the survey by Geyer (2011).

In calculating the MCSE, we implement the multivariate extension developed in Kosorok
(2000) of initial sequence methods originally proposed by Geyer (1992). There are three variants
of the initial sequence method, all of which exploit reversibility of the Markov Chain to determine
the largest lag to include when computing the autocorrelation coefficient. The values reported in
our tables are estimates from the initial positive sequence method, which are the most conserva-
tive. The other two methods, which we also implement, are the initial monotone and initial convex
sequence methods. There is no meaningful difference across the estimates. In practice, we com-
pute the univariate MCSE for each parameter due to numerical instability in the auto-covariance
matrices.

E.3 Details of Variable Construction
Here we describe how the analysis variables are constructed from the LEHD microdata. Note
that the raw UI records that supply the LEHD infrastructure are quarterly earnings records. Our
analysis data are at the job-year level. Our key dependent variable, annual earnings, is constructed
by summing all quarterly earnings records (converted to base year 2000 dollars using CPI-U) for

App. 16



the same job (worker matched to firm) over the year in question. To deal with outliers in earnings,
we Winsorize at the 0.01 and 99.99 percentiles.

Demographic characteristics of the worker are linked from the National Individual Character-
istics File (NICF). These characteristics originate from Social Security records and other sources,
including Census 2000 and the American Community Survey. These characteristics, and their
construction, are described in Abowd et al. (2009), and subsequent internal research.

We also construct controls for the sequence of earnings records observed over the year. These
controls address the problem that jobs that end mid-year will mechanically have lower earnings
than jobs that last all year, even if the rate at which labor market earnings are acquired remains
constant. These are based on a bit string, called sixqwindow, that records the observed pattern of
quarters with positive earnings for a given job-year combination. The variable sixqwindow also
records whether the worker was observed employed on the current job at the end of the preceding
year and in the start of the subsequent year. So, for example, sixqwindow=000011 for a job that
started in the last quarter of the current year and continued into the first quarter of the next year.
Likewise, sixqwindow=110000 for a job on which a worker was employed at the end of the last
year, and also reported earnings into the first quarter of the current year. As a final example, a job
which is continuing from the preceding year, and continuing into the next year, and in which the
worker was employed all year will have sixqwindow=111111.

There are 60 feasible values of sixqwindow (since strings of the form x0000y are ruled out).
We summarize the salient information from these strings in a set of ten indicator variables. These
are

• sixq1 is an indicator equal to 1 if the sum of entries in sixqwindow is equal to 1, and
zero otherwise.

• sixq2 is an indicator equal to 1 if the sum of entries in sixqwindow is equal to 2, and
zero otherwise.

• sixq3--sixq6 are defined equivalently to the above.

• sixqleft is equal to 1 if sixqwindow has a continuous list of zeros from the right and
ones from the left.

• sixqright is equal to 1 if sixqwindow has a continuous list of ones from the right and
zeros from the left.

• sixqinter is equal to 1 if sixqwindow has a continuous list of ones interrupted by a
single sequence of zeros.

• sixq4th is equal to 1 if sixqwindow indicates the worker was employed in the fourth
quarter of the year.

These variables are effective in dealing with differences in job attachment over the year. An-
other option is to use the same information to convert the earnings data into an annualized level that
measures the earnings a worker would earn if they accrued earnings at the same rate through the
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entire year. The latter approach requires ad hoc assumptions about when jobs tend to end within
the quarter. By contrast, we can see exactly how the endogenous mobility model treats such cases
from the coefficient estimates in Table OA3. For example, consider the contrast between a job-year
observation for which the worker is continuously employed relative to a job-year observations for
which the worker is employed through the third quarter. In terms of the estimated parameters, the
worker employed full time full year will have sixq6=1, sixqleft=1, sixqright=1 (and all other job
attachment dummies=0). By contrast, the worker employed through the second quarter will have
sixq3=1 and sixqleft=1 (and all other attachment dummies=0). Assuming all else is the same, the
difference in predicted log earnings is 0.5321. That is, earnings on a job that ends during the third
quarter are predicted to be 60 percent as large a job that lasts all year and continues into the next.
The 60 percent figure captures the fact that jobs with reported earnings in the third quarter likely
do not last to the end of the quarter.

E.4 Details of Selecting the Number of Latent Types
Following the guidance in Gelman, Carlin, Stern, Dunson, Vehtari and Rubin (2013, p. 536), our
intention was to select a specification in which the number of latent types is an upper bound and
let the data reveal the number of occupied types. To that end, through an initial model selection
step, we selected the number of latent worker, firm, and match types to make the unexplained
variation in the structural earnings model as close as possible to the residual variance from the
AKM decomposition. We also favored specifications that are a priori symmetric in the number
of latent types. This process resulted in our preferred specification with ten latent types for each
dimension of heterogeneity. As discussed in the text, it appears ex post that while there is mass
in each of the latent worker and match types, only four of the latent firm types have support. The
missing categories are effectively collapsed in the posterior summaries.

An alternative procedure is to use a formal model selection criterion. For non-singular models
like ours, the literature cautions that the Akaike, Bayesian, and Deviance Information Criteria are
either technically infeasible, or not theoretically well-justified (Watanabe 2013; Gelman, Carlin,
Stern, Dunson, Vehtari and Rubin 2013). The recommended alternative is the Watanabe-Akaike
Information Criterion (WAIC) as it is both fully Bayesian, computationally tractable, and formally
connected to cross-validation. See Gelman, Hwang and Vehtari (2013) for complete details.

We applied the WAIC to models with 3, 5, 7, and 10 latent types on each dimension. For the
model selection exercise, we draw 1000 samples under each specification and compute the WAIC
based on a 1-in-25 thinned subsample after a 500 sample burn-in. The results appear in Table OA6.

The WAIC is lowest for the model with 5 latent heterogeneity types and highest for our pre-
ferred model with 10 latent types. The model with 10 types has non-trivially higher likelihood
than the others. These findings are consistent with our view that the model with 10 latent types
represents an upper bound on the number for our purpose of fitting the existing data.

Figures OA3 and OA4 show the estimated wage components and distribution across latent types
respectively for the models with 5, 7, and 10 latent types. These figures indicate that the pattern
of model estimates is broadly consistent across specifications. It is only when we go to the model
with 10 types that it becomes evident that several of the latent firm types are not filled. Again,
these categories are effectively collapsed when the data are postprocessed to generate posterior

App. 18



Table OA6: Likelihood and Watanabe-Akaike Information Criterion under Different Specifications

Model WAIC Likelihood

L,M,Q = 3 1, 174, 843 −431, 720
L,M,Q = 5 1, 109, 066 −363, 529
L,M,Q = 7 1, 139, 649 −367, 601
L,M,Q = 10 1, 153, 349 −337, 972

summaries. To instead perform an exhaustive model selection search using WAIC would require
us to separately fit the model under each of the 1000 possible combinations of types. It is therefore
infeasible. Given the goals of our analysis, the methodological literature and the data both support
our choice to model 10 latent types as an explicit upper bound.
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(a) Structural Worker Effect, θ
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(b) Structural Firm Effect, ψ
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(c) Structural Match Effect, µ
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(d) Structural Worker Effect, θ
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(e) Structural Firm Effect, ψ
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(f) Structural Match Effect, µ
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(g) Structural Worker Effect, θ
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(h) Structural Firm Effect, ψ
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(i) Structural Match Effect, µ

Figure OA3: Posterior distribution of earnings equation parameters. Dashed lines indicate ±2 ×
MCSE. The top row reports the specification with L = M = Q = 5 latent types. The second
row reports the specification with L = M = Q = 7 latent types. The second row reports the
specification with L = M = Q = 10 latent types.
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(a) Dist. of Worker Types (b) Dist. of Employer Types (c) Marginal Dist. of Match Types

(d) Dist. of Worker Types (e) Dist. of Employer Types (f) Marginal Dist. of Match Types

(g) Dist. of Worker Types (h) Dist. of Employer Types (i) Marginal Dist. of Match Types

Figure OA4: Posterior distribution of workers, employers, and matches across latent types. The
top row reports the specification with L = M = Q = 5 latent types. The second row reports the
specification with L = M = Q = 7 latent types. The second row reports the specification with
L = M = Q = 10 latent types.
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F Results using Extended Work Histories
We report results of estimating the structural model on an extended version of our main analysis
sample. Specifically, we augment the main analysis sample by attaching the complete work history
from 1990–2010 for each of the workers. This “extended work history” sample includes 1,778,490
person-year observations that cover 181,592 firms, and 389,718 matches. It is constructed to con-
tain the primary analysis sample from the main text as a strict subset. The results reported here are
based on 7, 922 draws from three parallel runs of the Gibbs sampler after removing a 300 iteration
burn-in. A complete archive of these results is available by request.
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(b) Structural Firm Effect, ψ
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(c) Structural Match Effect, µ

Figure OA5: Posterior distribution of earnings equation parameters. Dashed lines indicate the
region within 2×MCSE of the estimate.

Table OA7 reports the posterior mean and MCSE of the parameter governing the population
distribution of worker types, πA, the population distribution of employer type, πB, and the marginal
probability for match type, πK .

Table OA8 reports correlations, weighted by job duration, among earnings and its components
as estimated by least squares (labeled AKM) and from our structural endogenous mobility model
(labeled Gibbs). It is the analogue to Table 2 from the main text.

Table OA9 reports the results of estimating a firm-level regression of log revenue per worker
onto the estimated firm effect, the average worker effect, and the average match effect. It is the
analogue to Table 3 from the main text.
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Table OA7: Posterior Distribution of Worker, Firm, and Match Population Heterogeneity: Ex-
tended Work Histories

(1) (2) (3)
Worker Firm Match

Mean MCSE Mean MCSE Mean

πA1 0.0875 0.0078 πB1 0.2038 0.2668 πK1 0.0093
πA2 0.1317 0.0127 πB2 0.5985 0.2682 πK2 0.0249
πA3 0.1448 0.0032 πB3 0.0003 0.0001 πK3 0.0916
πA4 0.1379 0.0094 πB4 0.0003 0.0001 πK4 0.0616
πA5 0.0988 0.0103 πB5 0.0003 0.0001 πK5 0.0509
πA6 0.1005 0.0064 πB6 0.0002 0.0001 πK6 0.0620
πA7 0.0835 0.0052 πB7 0.0002 0.0000 πK7 0.1014
πA8 0.0695 0.0034 πB8 0.0159 0.0114 πK8 0.1572
πA9 0.0968 0.0067 πB9 0.0203 0.0129 πK9 0.3463
πA10 0.0490 0.0017 πB10 0.1602 0.0049 πK10 0.0948

Results from the strucutral model estimated using extended work histories. It is structured identically to Table 1 from
the main text.

Table OA8: Correlation Matrix of Earnings Equation Parameters: Extended Work Histories

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

lnw XβAKM θAKM ψAKM µAKM εAKM XβGibbs θGibbs ψGibbs µGibbs εGibbs

lnw 1.00
XβAKM 0.44 1.00
θAKM 0.39 −0.49 1.00
ψAKM 0.50 0.07 0.17 1.00
µAKM 0.34 0.03 0.00 −0.00 1.00
εAKM 0.20 −0.02 0.00 0.00 −0.00 1.00

XβGibbs 0.78 0.56 0.25 0.24 0.04 −0.02 1.00
θGibbs 0.50 0.14 0.38 0.27 0.00 0.00 0.25 1.00
ψGibbs 0.27 0.02 0.12 0.42 0.11 0.00 0.10 0.04 1.00
µGibbs 0.06 0.05 −0.05 −0.10 0.28 0.00 −0.00 −0.23 −0.74 1.00
εGibbs 0.27 0.00 0.02 0.08 0.17 0.78 0.00 0.00 0.00 0.00 1.00
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Table OA9: Regression of Log Revenue Per Worker on Structural and AKM Estimates of Earnings
Decomposition Components: Extended Work Histories

(1) (2)
Structural AKM

Coef Ste Coef Ste
Firm Avg. θ 0.2288 0.0119 0.0234 0.0059
ψ 0.2431 0.0082 0.6735 0.0133
Firm Avg. µ 0.2046 0.009 0.0158 0.0094
Firm Avg. Xβ 0.0343 0.0063 −0.0231 0.0045
Intercept 3.4898 0.0532 3.9476 0.0247
N 60, 116 60, 116
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