Supplementary Appendix

ESM (Electronic Supplementary Material)

associated with, but not printed with, the journal paper

Recursive modular modelling methodology for

lumped-parameter dynamic systems

by

Renato Maia Matarazzo Orsino*

Proceedings of the Royal Society A, July 21, 2017

Recursive modular modelling methodology applied to a 3RR mechanism

In order to illustrate the application of the modular methodology presented in the paper "Recursive modular modelling methodology for lumped - parameter dynamic systems", highlighting its generality and the advantages of applying it to complex system, the modeling of a 3RR according to this approach is discussed in detail in this Supplementary Appendix. The reader is also invited to check the modeling of this mechanism presented in [1] in which a computational package for planar mechanisms based on a non-recursive form of the modular methodology is applied.

For the sake of clarity, the figures already presented in the paper to introduce a possible hierarchical description for this system are repeated in this Supplementary Appendix (see Figures 1-3).

The $3\underline{R}RR$ mechanism is assumed to be planar, mounted in a horizontal plane fixed with respect to an inertial reference frame. A coordinate system can be defined with axes x and y being tangent to the plane and axis z being orthogonal to it. The origin can be set so that it coincides with the center of the platform \mathcal{L} in the reference configuration of the system. This coordinate system is also assumed to remain fixed with respect to an inertial reference frame.

^{*}Offshore Mechanics Laboratory, Department of Mechanical Engineering, Escola Politecnica, University of Sao Paulo, Brazil. (renato.orsino@gmail.com)

Figure 1: 3<u>R</u>RR parallel mechanism (system \mathcal{M}) partitioned in 4 modules.

Figure 2: Generic active $\underline{R}R$ kinematic chain $(\mathcal{H}_{\mathbb{K}})$ partitioned in 3 modules.

Figure 3: Hierarchical description of the $3\underline{R}RR$ parallel mechanism.

Adopt the following conventions for the constant parameters of the system:

- $l_{\mathscr{U}}$ and $l_{\mathscr{B}}$ respectively denote the distances between the centres of the revolute joints in the extremities of the bars \mathscr{U}_{K} and \mathscr{B}_{K} (K = A, B, C); $l_{\mathscr{L}}$ denotes the distance between the centre of the triangular platform \mathscr{L} and the centre of any revolute joint in one of its vertices.
- $\bar{\alpha}_{\mathbb{K}}$ denotes the angle (measured counterclockwise) between the line joining the center of the triangular platform \mathscr{L} to the centre of the revolute joint linked to the chain $\mathscr{H}_{\mathbb{K}}$ ($\mathbb{K}=\mathbb{A},\mathbb{B},\mathbb{C}$) and the x axis when the mechanism is in the reference configuration.
- \bar{x}_{K} and \bar{y}_{K} denote the Cartesian coordinates of the fixed centres of the active revolute joints of the kinematic chains \mathcal{H}_{K} (K = A, B, C).
- $m_{\mathscr{B}}$ and $m_{\mathscr{L}}$ respectively denote the masses of the bars $\mathscr{B}_{\mathbb{K}}$ ($\mathbb{K} = \mathbb{A}, \mathbb{B}, \mathbb{C}$) and of the platform \mathscr{L} .
- I_ℬ and I_ℒ respectively denote the moments of inertia with respect to
 the centres of mass (which are supposed to coincide with the geometric
 centres) of the bars ℬ_K (K = A, B, C) and of the platform ℒ.
- $J_{\mathscr{A}}$ and $J_{\mathscr{U}}$ respectively denote the moments of inertia of the rotors of the actuators \mathscr{A}_{K} and of the bars \mathscr{U}_{K} (K = A, B, C) with respect to the centres of the active revolute joints constituted by these subsystems.
- κ_m and κ_e respectively denote the motor torque constant and the back emf constant, β denotes the viscous damping of the rotors, λ the inductance of the armature windings and ρ the associated electrical resistance of actuators \mathcal{A}_K (K = A, B, C).
- η denotes the speed ratio in the reducers of the actuators \mathcal{A}_K (K = A, B, C).

Define the following generalized coordinates for the system:

- x, y and θ respectively representing the Cartesian coordinates of the geometric centre (also centre of mass) of \mathcal{L} and the angle of rotation of this platform with respect to the reference configuration (measured counterclockwise).
- ϕ_{K} denoting the angle between the longitudinal direction of the bars \mathcal{U}_{K} (K = A, B, C) and the x axis.
- $x_{\mathbb{K}}$, $y_{\mathbb{K}}$, $\psi_{\mathbb{K}}$ respectively representing the Cartesian coordinates of the geometric centres (also centres of mass) of the bars $\mathcal{B}_{\mathbb{K}}$, and the angle between the longitudinal direction of these bars and the x axis.

Take as quasi-velocities for this model the time derivatives of the generalized coordinates along with the following extra variables:

- ω_{K} representing the angular velocities of the axes of the actuators \mathscr{A}_{K} (K = A, B, C).
- $i_{\rm K}$ representing the electrical current in the armature circuits of the actuators $\mathscr{A}_{\rm K}$ (K = A, B, C).

Let the higher order generalized variables be trivially defined. This mechanism is a holonomic system in which generalized variables up to order 2 are enough to describe both dynamic and constraint equations. Ordering the variables according to the order convention of the level 0 of the hierarchy shown in Figure 3, it can be stated that:

$$q^{\langle 0 \rangle} = (\phi_{A}, x_{A}, y_{A}, \psi_{A}, \phi_{B}, x_{B}, y_{B}, \psi_{B}, \phi_{C}, x_{C}, y_{C}, \psi_{C}, x, y, \theta)$$

$$(1)$$

$$q^{\langle 1 \rangle} = \left(\omega_{\rm A}, i_{\rm A}, \dot{\phi}_{\rm A}, \dot{x}_{\rm A}, \dot{y}_{\rm A}, \dot{\psi}_{\rm A}, \omega_{\rm B}, i_{\rm B}, \dot{\phi}_{\rm B}, \dot{x}_{\rm B}, \dot{y}_{\rm B}, \dot{\psi}_{\rm B}, \right.$$

$$\omega_{\rm C}, i_{\rm C}, \dot{\phi}_{\rm C}, \dot{x}_{\rm C}, \dot{y}_{\rm C}, \dot{\psi}_{\rm C}, \dot{x}, \dot{y}, \dot{\theta}) \tag{2}$$

$$q^{\langle 2 \rangle} = \dot{q}^{\langle 1 \rangle} \tag{3}$$

The equations of motion associated to this system can be written in the following form:

$$Mq^{\langle 2 \rangle} = f + \gamma_r$$
 (4)

with:

$$M = \operatorname{diag}\left(M_{\mathcal{H}}, M_{\mathcal{H}}, M_{\mathcal{H}}, M_{\mathcal{L}}\right) \tag{5}$$

$$M_{\mathcal{H}} = \operatorname{diag}\left(J_{\mathcal{A}}, \lambda, J_{\mathcal{U}}, m_{\mathcal{B}}, m_{\mathcal{B}}, I_{\mathcal{B}}\right) \tag{6}$$

$$M_{\mathscr{L}} = \operatorname{diag}\left(m_{\mathscr{L}}, m_{\mathscr{L}}, I_{\mathscr{L}}\right) \tag{7}$$

$$f = (f_{\mathcal{H}_{A}}, f_{\mathcal{H}_{B}}, f_{\mathcal{H}_{C}}, f_{\mathcal{L}})$$
(8)

$$f_{\mathcal{H}_{K}} = \left(-\beta \omega_{K} - \kappa_{m} i_{K}, -\kappa_{e} \omega_{K} - \rho i_{K} + v_{K}, 0, 0, 0, 0\right)$$

$$(9)$$

$$f_{\mathscr{L}} = (0, 0, 0) \tag{10}$$

In these equations, v_K represent the voltage sources of the actuators \mathcal{A}_K (K = A, B, C) which should be treated as control inputs. All frictional effects but the ones in the actuators were neglected. Also, once the mechanism is mounted in a horizontal plane, there are no terms in the equations associated to gravitational forces.

The constraint equations associated specifically to the Level 1 of the hierarchy can be expressed as follows (for K = A, B, C):

$$\dot{\phi}_{K} - \frac{\omega_{K}}{\eta} = 0 \tag{11}$$

$$x_{K} - \bar{x}_{K} - l_{\mathcal{U}}\cos\phi_{K} - \frac{1}{2}l_{\mathcal{B}}\cos\psi_{K} = 0$$

$$(12)$$

$$y_{\mathbf{K}} - \bar{y}_{\mathbf{K}} - l_{\mathcal{U}} \sin \phi_{\mathbf{K}} - \frac{1}{2} l_{\mathcal{B}} \sin \psi_{\mathbf{K}} = 0 \tag{13}$$

These constraint equations can also be expressed in the following form:

$$\tilde{A}_1 q^{\langle 2 \rangle} = \tilde{b}_1 \tag{14}$$

with:

$$\tilde{A}_{1} = \begin{bmatrix} \tilde{A}_{1,\mathcal{H}_{A}} & 0 & 0 & 0 \\ 0 & \tilde{A}_{1,\mathcal{H}_{B}} & 0 & 0 \\ 0 & 0 & \tilde{A}_{1,\mathcal{H}_{C}} & 0 \end{bmatrix} \qquad \tilde{b}_{1} = \begin{bmatrix} \tilde{b}_{1,\mathcal{H}_{A}} \\ \tilde{b}_{1,\mathcal{H}_{B}} \\ \tilde{b}_{1,\mathcal{H}_{C}} \end{bmatrix}$$

$$\tilde{A}_{1,\mathcal{H}_{K}} = \begin{bmatrix} -\frac{1}{\eta} & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & l_{\mathcal{U}} \sin \phi_{K} & 1 & 0 & \frac{1}{2} l_{\mathcal{B}} \sin \psi_{K} \\ 0 & 0 & -l_{\mathcal{U}} \cos \phi_{K} & 0 & 1 & -\frac{1}{2} l_{\mathcal{B}} \cos \psi_{K} \end{bmatrix}$$
(15)

$$\tilde{A}_{1,\mathcal{H}_{K}} = \begin{bmatrix} -\frac{1}{\eta} & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & l_{\mathcal{U}} \sin \phi_{K} & 1 & 0 & \frac{1}{2} l_{\mathcal{B}} \sin \psi_{K}\\ 0 & 0 & -l_{\mathcal{U}} \cos \phi_{K} & 0 & 1 & -\frac{1}{2} l_{\mathcal{B}} \cos \psi_{K} \end{bmatrix}$$
(16)

$$\tilde{b}_{1,\mathcal{H}_{K}} = \begin{bmatrix} 0 \\ -l_{\mathcal{U}}\dot{\phi}_{K}^{2}\cos\phi_{K} - \frac{1}{2}l_{\mathcal{B}}\dot{\psi}_{K}^{2}\cos\psi_{K} \\ -l_{\mathcal{U}}\dot{\phi}_{K}^{2}\sin\phi_{K} - \frac{1}{2}l_{\mathcal{B}}\dot{\psi}_{K}^{2}\sin\psi_{K} \end{bmatrix}$$

$$(17)$$

The constraint equations associated specifically to the Level 2 can be described by the following expressions (for K = A, B, C):

$$x + l_{\mathscr{L}}\cos(\theta + \bar{\alpha}_{K}) - x_{K} - \frac{1}{2}l_{\mathscr{R}}\cos\psi_{K} = 0$$
(18)

$$y + l_{\mathscr{L}}\sin(\theta + \bar{\alpha}_{K}) - y_{K} - \frac{1}{2}l_{\mathscr{R}}\sin\psi_{K} = 0$$
(19)

These constraint equations can also be expressed in the following form:

$$\tilde{A}_2 q^{\langle 2 \rangle} = \tilde{b}_2 \tag{20}$$

with:

$$\tilde{A}_{2} = \begin{bmatrix} \tilde{A}_{2,\mathscr{H}_{A}} & 0 & 0 & \tilde{A}_{2,A} \\ 0 & \tilde{A}_{2,\mathscr{H}_{B}} & 0 & \tilde{A}_{2,B} \\ 0 & 0 & \tilde{A}_{2,\mathscr{H}_{C}} & \tilde{A}_{2,C} \end{bmatrix} \qquad \tilde{b}_{2} = \begin{bmatrix} \tilde{b}_{2,A} \\ \tilde{b}_{2,B} \\ \tilde{b}_{2,C} \end{bmatrix}$$
(21)

$$\tilde{A}_{2,\mathscr{H}_{K}} = \begin{bmatrix} 0 & 0 & 0 & -1 & 0 & \frac{1}{2}l_{\mathscr{B}}\sin\psi_{K} \\ 0 & 0 & 0 & -1 & -\frac{1}{2}l_{\mathscr{B}}\cos\psi_{K} \end{bmatrix}$$
(22)

$$\tilde{A}_{2,K} = \begin{bmatrix} 1 & 0 & -l_{\mathscr{L}}\sin(\theta + \bar{\alpha}_{K}) \\ 0 & 1 & l_{\mathscr{L}}\cos(\theta + \bar{\alpha}_{K}) \end{bmatrix}$$
(23)

$$\tilde{b}_{2,K} = \begin{bmatrix} 0 \\ l_{\mathcal{L}}\dot{\theta}^{2}\cos(\theta + \bar{\alpha}_{K}) - \frac{1}{2}l_{\mathcal{B}}\dot{\psi}_{K}^{2}\cos\psi_{K} \\ l_{\mathcal{L}}\dot{\theta}^{2}\sin(\theta + \bar{\alpha}_{K}) - \frac{1}{2}l_{\mathcal{B}}\dot{\psi}_{K}^{2}\sin\psi_{K} \end{bmatrix}$$

$$(24)$$

Choosing one strategy among the four presented in Proposition 3.1, one can compute a matrix S_1 describing an operator onto the kernel of A_1 and then compute a matrix C_2 describing an operator onto the kernel of B_2 \tilde{A}_2S_1 . According to the statement of Theorem 3.1, $S_2=S_1C_2$. Therefore, the dynamic equations of motion for the 3RR mechanism are the following, with $\dot{q}^{\langle 1 \rangle} = \alpha_2$:

$$\begin{bmatrix} S_2^* M \\ \tilde{A}_1 \\ \tilde{A}_2 \end{bmatrix} \alpha_2 = \begin{bmatrix} S_2^* f \\ \tilde{b}_1 \\ \tilde{b}_2 \end{bmatrix}$$
 (25)

Alternatively, one could opt to use the algorithm based on Udwadia-Kalaba equation presented in Section 4. In this case, let $\tilde{H}_1 = \tilde{A}_1 M^{-1/2}$ and $\tilde{H}_2 = \tilde{A}_2 M^{-1/2}$. Assume that $(\cdot)^g$ denotes $\{1,4\}$ -inverses. Let $P_0 = I$ and compute $K_1 = (\tilde{H}_1 P_0)^g = \tilde{H}_1^g$, $P_1 = I - \tilde{H}_1^g \tilde{H}_1$ and $K_2 = (\tilde{H}_2 P_1)^g$. The dynamic equations of motion for the 3RR mechanism can alternatively be expressed in the following explicit form, with $\dot{q}^{\langle 1 \rangle} = M^{-1/2} a_2$:

$$a_0 = M^{-1/2} f (26)$$

$$a_1 = a_0 + K_1(\tilde{b}_1 - \tilde{H}_1 a_0) \tag{27}$$

$$a_2 = a_1 + K_2(\tilde{b}_2 - \tilde{H}_2 a_1) \tag{28}$$

References

[1] Orsino RMM. 2016 A contribution on modelling methodologies for multibody systems. PhD thesis. São Paulo, Brazil: University of São Paulo. See http://www.teses.usp.br/teses/disponiveis/3/3151/tde-22062016-160724/en.php.