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Recursive modular modelling methodology applied
to a 3RRR mechanism

In order to illustrate the application of the modular methodology presented
in the paper “Recursive modular modelling methodology for lumped - pa-
rameter dynamic systems”, highlighting its generality and the advantages
of applying it to complex system, the modeling of a 3RRR according to
this approach is discussed in detail in this Supplementary Appendix. The
reader is also invited to check the modeling of this mechanism presented
in [@] in which a computational package for planar mechanisms based on a
non-recursive form of the modular methodology is applied.

For the sake of clarity, the figures already presented in the paper to
introduce a possible hierarchical description for this system are repeated in
this Supplementary Appendix (see Figures 0 — B).

The 3RRR mechanism is assumed to be planar, mounted in a horizontal
plane fixed with respect to an inertial reference frame. A coordinate system
can be defined with axes x and y being tangent to the plane and axis z
being orthogonal to it. The origin can be set so that it coincides with the
center of the platform & in the reference configuration of the system. This
coordinate system is also assumed to remain fixed with respect to an inertial
reference frame.
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Figure 1: 3RRR parallel mechanism (system .#) partitioned in 4 modules.
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Figure 2: Generic active RR kinematic chain (#%) partitioned in 3 modules.
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Figure 3: Hierarchical description of the 3RRR parallel mechanism.



Adopt the following conventions for the constant parameters of the sys-
tem:

e [y and lg respectively denote the distances between the centres of the
revolute joints in the extremities of the bars %x and %Bx (K = A, B, C);
l# denotes the distance between the centre of the triangular platform
& and the centre of any revolute joint in one of its vertices.

e ax denotes the angle (measured counterclockwise) between the line
joining the center of the triangular platform & to the centre of the
revolute joint linked to the chain #x (K = A, B, C) and the x axis when
the mechanism is in the reference configuration.

e Ty and ¥k denote the Cartesian coordinates of the fixed centres of the
active revolute joints of the kinematic chains #x (K = A, B, C).

e mg and mg respectively denote the masses of the bars By (K =
A, B, C) and of the platform Z.

o Iz and Iy respectively denote the moments of inertia with respect to
the centres of mass (which are supposed to coincide with the geometric
centres) of the bars Bk (K = A, B, C) and of the platform &Z.

e Jy and Jy respectively denote the moments of inertia of the rotors of
the actuators &fx and of the bars %x (K = A, B, C) with respect to the
centres of the active revolute joints constituted by these subsystems.

® K, and k. respectively denote the motor torque constant and the
back emf constant, S denotes the viscous damping of the rotors, A the
inductance of the armature windings and p the associated electrical
resistance of actuators fx (K = A, B, C).

e 1) denotes the speed ratio in the reducers of the actuators ofx (K =
A,B,C).

Define the following generalized coordinates for the system:

e z, y and 6 respectively representing the Cartesian coordinates of the
geometric centre (also centre of mass) of & and the angle of rotation
of this platform with respect to the reference configuration (measured
counterclockwise).

e ¢ denoting the angle between the longitudinal direction of the bars
%x (K = A,B,C) and the x axis.

e I, Yx, Yx respectively representing the Cartesian coordinates of the
geometric centres (also centres of mass) of the bars Bk, and the angle
between the longitudinal direction of these bars and the x axis.



Take as quasi-velocities for this model the time derivatives of the generalized
coordinates along with the following extra variables:

e wy representing the angular velocities of the axes of the actuators ofx
(K =A,B,0C).

e iy representing the electrical current in the armature circuits of the
actuators ofx (K =A,B,C).

Let the higher order generalized variables be trivially defined. This mecha-
nism is a holonomic system in which generalized variables up to order 2 are
enough to describe both dynamic and constraint equations. Ordering the
variables according to the order convention of the level 0 of the hierarchy
shown in Figure B, it can be stated that:
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The equations of motion associated to this system can be written in the
following form:

Mg = f 4+, (4)
with:
M = diag (Mg, Mg, Mg, M)
My = diag (Ju, A, Jo, mag, maz, L)
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Mg = diag (mg,mg,[g)
f=(fow: [, [, [#)

Jw. = (_BWK_K'miKa_HeWK_piK+vK7070’O)O) 9
f# =(0,0,0) (10

In these equations, vk represent the voltage sources of the actuators ofx
(K = A, B, C) which should be treated as control inputs. All frictional effects
but the ones in the actuators were neglected. Also, once the mechanism is
mounted in a horizontal plane, there are no terms in the equations associated
to gravitational forces.

The constraint equations associated specifically to the Level 1 of the
hierarchy can be expressed as follows (for K = A, B, C):
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These constraint equations can also be expressed in the following form:

Alq<2> = i)l (14)
with:
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The constraint equations associated specifically to the Level 2 can be de-
scribed by the following expressions (for K = A, B, C):
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These constraint equations can also be expressed in the following form:

Azq® = by (20)
with:
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Choosing one strategy among the four presented in Proposition 3.1, one
can compute a matrix 57 describing an operator onto the kernel of A; and
then compute a matrix Cy describing an operator onto the kernel of By =
A5 8. According to the statement of Theorem 3.1, Sy = S1C5. Therefore,



the dynamic equations of motion for the 3RRR mechanism are the following,
with ¢ = aw:

S3M St
{11 9 = [31 (25)
Ao by

Alternatively, one could opt to use the algorithm based on Udwadia-
Kalaba equation presented in Section 4. In this case, let H; = A M~1/2
and Hy = AoM~1/2. Assume that (-)9 denotes {1,4}-inverses. Let Py = I
and compute K1 = (ﬁlpo)g = ﬁlg, P1 = I—ijlgﬁl and K2 = (ﬁgpl)g. The
dynamic equations of motion for the 3RRR mechanism can alternatively be
expressed in the following explicit form, with ¢t = M~1/2q,:

ag=MV2f (26)

a1 = ag + Kl(i)l — ﬂlao) (27)

az = a1 + KQ(Z;Q - ﬁ?(ll) (28)
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