Supplementary Appendix

ESM (Electronic Supplementary Material)
associated with, but not printed with, the journal paper
Recursive modular modelling methodology for
lumped-parameter dynamic systems
by
Renato Maia Matarazzo Orsino*
Proceedings of the Royal Society A, July 21, 2017

Recursive modular modelling methodology applied to a 3RRR mechanism

In order to illustrate the application of the modular methodology presented in the paper "Recursive modular modelling methodology for lumped - parameter dynamic systems", highlighting its generality and the advantages of applying it to complex system, the modeling of a $3 \underline{R} R R$ according to this approach is discussed in detail in this Supplementary Appendix. The reader is also invited to check the modeling of this mechanism presented in [I] in which a computational package for planar mechanisms based on a non-recursive form of the modular methodology is applied.

For the sake of clarity, the figures already presented in the paper to introduce a possible hierarchical description for this system are repeated in this Supplementary Appendix (see Figures 四- (3)

The $3 \underline{R} R R$ mechanism is assumed to be planar, mounted in a horizontal plane fixed with respect to an inertial reference frame. A coordinate system can be defined with axes x and y being tangent to the plane and axis z being orthogonal to it. The origin can be set so that it coincides with the center of the platform \mathscr{L} in the reference configuration of the system. This coordinate system is also assumed to remain fixed with respect to an inertial reference frame.

[^0]

Figure 1: $3 \underline{R} R R$ parallel mechanism (system \mathscr{M}) partitioned in 4 modules.

Figure 2: Generic active $\underline{R} R$ kinematic chain $\left(\mathscr{H}_{\mathrm{K}}\right)$ partitioned in 3 modules.

Figure 3: Hierarchical description of the $3 \underline{R} R R$ parallel mechanism.

Adopt the following conventions for the constant parameters of the system:

- $l_{\mathscr{U}}$ and $l_{\mathscr{B}}$ respectively denote the distances between the centres of the revolute joints in the extremities of the bars \mathscr{U}_{K} and $\mathscr{B}_{\mathrm{K}}(\mathrm{K}=\mathrm{A}, \mathrm{B}, \mathrm{C})$; $l_{\mathscr{L}}$ denotes the distance between the centre of the triangular platform \mathscr{L} and the centre of any revolute joint in one of its vertices.
- $\bar{\alpha}_{\mathrm{K}}$ denotes the angle (measured counterclockwise) between the line joining the center of the triangular platform \mathscr{L} to the centre of the revolute joint linked to the chain $\mathscr{H}_{K}(\mathrm{~K}=\mathrm{A}, \mathrm{B}, \mathrm{C})$ and the x axis when the mechanism is in the reference configuration.
- \bar{x}_{K} and \bar{y}_{K} denote the Cartesian coordinates of the fixed centres of the active revolute joints of the kinematic chains $\mathscr{H}_{K}(K=A, B, C)$.
- $m_{\mathscr{B}}$ and $m_{\mathscr{L}}$ respectively denote the masses of the bars $\mathscr{B}_{\mathrm{K}}(\mathrm{K}=$ $\mathrm{A}, \mathrm{B}, \mathrm{C})$ and of the platform \mathscr{L}.
- $I_{\mathscr{B}}$ and $I_{\mathscr{L}}$ respectively denote the moments of inertia with respect to the centres of mass (which are supposed to coincide with the geometric centres) of the bars $\mathscr{B}_{\mathrm{K}}(\mathrm{K}=\mathrm{A}, \mathrm{B}, \mathrm{C})$ and of the platform \mathscr{L}.
- $J_{\mathscr{A}}$ and $J_{\mathscr{U}}$ respectively denote the moments of inertia of the rotors of the actuators \mathscr{A}_{K} and of the bars $\mathscr{U}_{\mathrm{K}}(\mathrm{K}=\mathrm{A}, \mathrm{B}, \mathrm{C})$ with respect to the centres of the active revolute joints constituted by these subsystems.
- κ_{m} and κ_{e} respectively denote the motor torque constant and the back emf constant, β denotes the viscous damping of the rotors, λ the inductance of the armature windings and ρ the associated electrical resistance of actuators $\mathscr{A}_{\mathrm{K}}(\mathrm{K}=\mathrm{A}, \mathrm{B}, \mathrm{C})$.
- η denotes the speed ratio in the reducers of the actuators $\mathscr{A}_{\mathrm{K}}(\mathrm{K}=$ A, B, C).

Define the following generalized coordinates for the system:

- x, y and θ respectively representing the Cartesian coordinates of the geometric centre (also centre of mass) of \mathscr{L} and the angle of rotation of this platform with respect to the reference configuration (measured counterclockwise).
- ϕ_{K} denoting the angle between the longitudinal direction of the bars $\mathscr{U}_{\mathrm{K}}(\mathrm{K}=\mathrm{A}, \mathrm{B}, \mathrm{C})$ and the x axis.
- $x_{\mathrm{K}}, y_{\mathrm{K}}, \psi_{\mathrm{K}}$ respectively representing the Cartesian coordinates of the geometric centres (also centres of mass) of the bars \mathscr{B}_{K}, and the angle between the longitudinal direction of these bars and the x axis.

Take as quasi-velocities for this model the time derivatives of the generalized coordinates along with the following extra variables:

- ω_{K} representing the angular velocities of the axes of the actuators \mathscr{A}_{K} $(K=A, B, C)$.
- i_{K} representing the electrical current in the armature circuits of the actuators $\mathscr{A}_{\mathrm{K}}(\mathrm{K}=\mathrm{A}, \mathrm{B}, \mathrm{C})$.
Let the higher order generalized variables be trivially defined. This mechanism is a holonomic system in which generalized variables up to order 2 are enough to describe both dynamic and constraint equations. Ordering the variables according to the order convention of the level 0 of the hierarchy shown in Figure [3, it can be stated that:

$$
\begin{align*}
& q^{\langle 0\rangle}=\left(\phi_{\mathrm{A}}, x_{\mathrm{A}}, y_{\mathrm{A}}, \psi_{\mathrm{A}}, \phi_{\mathrm{B}}, x_{\mathrm{B}}, y_{\mathrm{B}}, \psi_{\mathrm{B}}, \phi_{\mathrm{C}}, x_{\mathrm{C}}, y_{\mathrm{C}}, \psi_{\mathrm{C}}, x, y, \theta\right) \tag{1}\\
& q^{\langle 1\rangle}= \\
& \quad\left(\omega_{\mathrm{A}}, i_{\mathrm{A}}, \dot{\phi}_{\mathrm{A}}, \dot{x}_{\mathrm{A}}, \dot{y}_{\mathrm{A}}, \dot{\psi}_{\mathrm{A}}, \omega_{\mathrm{B}}, i_{\mathrm{B}}, \dot{\phi}_{\mathrm{B}}, \dot{x}_{\mathrm{B}}, \dot{y}_{\mathrm{B}}, \dot{\psi}_{\mathrm{B}},\right. \tag{2}\\
& \left.\quad \omega_{\mathrm{C}}, i_{\mathrm{C}}, \dot{\phi}_{\mathrm{C}}, \dot{x}_{\mathrm{C}}, \dot{y}_{\mathrm{C}}, \dot{\psi}_{\mathrm{C}}, \dot{x}, \dot{y}, \dot{\theta}\right) \tag{3}\\
& q^{\langle 2\rangle}=\dot{q}^{\langle 1\rangle}
\end{align*}
$$

The equations of motion associated to this system can be written in the following form:

$$
\begin{equation*}
M q^{\langle 2\rangle}=f+\gamma_{r} \tag{4}
\end{equation*}
$$

with:

$$
\begin{align*}
& M=\operatorname{diag}\left(M_{\mathscr{H}}, M_{\mathscr{H}}, M_{\mathscr{H}}, M_{\mathscr{L}}\right) \tag{5}\\
& M_{\mathscr{H}}=\operatorname{diag}\left(J_{\mathscr{A}}, \lambda, J_{\mathscr{U}}, m_{\mathscr{B}}, m_{\mathscr{B}}, I_{\mathscr{B}}\right) \tag{6}\\
& M_{\mathscr{L}}=\operatorname{diag}\left(m_{\mathscr{L}}, m_{\mathscr{L}}, I_{\mathscr{L}}\right) \tag{7}\\
& f=\left(f_{\mathscr{H}_{\mathrm{A}}}, f_{\mathscr{H}_{\mathrm{B}}}, f_{\mathscr{H}_{\mathrm{C}}}, f_{\mathscr{L}}\right) \tag{8}\\
& f_{\mathscr{H}_{\mathrm{K}}}=\left(-\beta \omega_{\mathrm{K}}-\kappa_{m} i_{\mathrm{K}},-\kappa_{e} \omega_{\mathrm{K}}-\rho i_{\mathrm{K}}+v_{\mathrm{K}}, 0,0,0,0\right) \tag{9}\\
& f_{\mathscr{L}}=(0,0,0) \tag{10}
\end{align*}
$$

In these equations, v_{K} represent the voltage sources of the actuators \mathscr{A}_{K} ($K=A, B, C$) which should be treated as control inputs. All frictional effects but the ones in the actuators were neglected. Also, once the mechanism is mounted in a horizontal plane, there are no terms in the equations associated to gravitational forces.

The constraint equations associated specifically to the Level 1 of the hierarchy can be expressed as follows (for $K=A, B, C$):

$$
\begin{align*}
& \dot{\phi}_{\mathrm{K}}-\frac{\omega_{\mathrm{K}}}{\eta}=0 \tag{11}\\
& x_{\mathrm{K}}-\bar{x}_{\mathrm{K}}-l_{\mathscr{U}} \cos \phi_{\mathrm{K}}-\frac{1}{2} l_{\mathscr{B}} \cos \psi_{\mathrm{K}}=0 \tag{12}\\
& y_{\mathrm{K}}-\bar{y}_{\mathrm{K}}-l_{\mathscr{U}} \sin \phi_{\mathrm{K}}-\frac{1}{2} l_{\mathscr{B}} \sin \psi_{\mathrm{K}}=0 \tag{13}
\end{align*}
$$

These constraint equations can also be expressed in the following form:

$$
\begin{equation*}
\tilde{A}_{1} q^{\langle 2\rangle}=\tilde{b}_{1} \tag{14}
\end{equation*}
$$

with:

$$
\begin{align*}
& \tilde{A}_{1}=\left[\begin{array}{cccc}
\tilde{A}_{1, \mathscr{H}_{A}} & 0 & 0 & 0 \\
0 & \tilde{A}_{1, \mathscr{H}_{\mathrm{B}}} & 0 & 0 \\
0 & 0 & \tilde{A}_{1, \mathscr{H}_{\mathrm{C}}} & 0
\end{array}\right] \quad \tilde{b}_{1}=\left[\begin{array}{l}
\tilde{b}_{1, \mathscr{H}_{\mathrm{A}}} \\
\tilde{b}_{1}, \mathscr{H}_{\mathrm{B}} \\
\tilde{b}_{1, \mathscr{C}_{\mathrm{C}}}
\end{array}\right] \tag{15}\\
& \tilde{A}_{1, \mathscr{H}_{\mathrm{K}}}=\left[\begin{array}{cccccc}
-\frac{1}{\eta} & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & l_{\mathcal{U}} \sin \phi_{\mathrm{K}} & 1 & 0 & \frac{1}{2} l_{\mathscr{B}} \sin \psi_{\mathrm{K}} \\
0 & 0 & -l_{\mathcal{U}} \cos \phi_{\mathrm{K}} & 0 & 1 & -\frac{1}{2} l_{\mathscr{B}} \cos \psi_{\mathrm{K}}
\end{array}\right] \tag{16}\\
& \tilde{b}_{1, \mathscr{G}}=\left[\begin{array}{c}
0 \\
-l_{\mathcal{U}} \dot{\phi}_{\mathrm{K}}^{2} \cos \phi_{\mathrm{K}}-\frac{1}{2} l_{\mathscr{B}} \dot{\psi}_{\mathrm{K}}^{2} \cos \psi_{\mathrm{K}} \\
-l_{\mathcal{U}} \dot{\phi}_{\mathrm{K}}^{2} \sin \phi_{\mathrm{K}}-\frac{1}{2} l_{\mathscr{B}} \dot{\psi}_{\mathrm{K}}^{2} \sin \psi_{\mathrm{K}}
\end{array}\right] \tag{17}
\end{align*}
$$

The constraint equations associated specifically to the Level 2 can be described by the following expressions (for $\mathrm{K}=\mathrm{A}, \mathrm{B}, \mathrm{C}$):

$$
\begin{align*}
& x+l_{\mathscr{L}} \cos \left(\theta+\bar{\alpha}_{\mathrm{K}}\right)-x_{\mathrm{K}}-\frac{1}{2} l_{\mathscr{B}} \cos \psi_{\mathrm{K}}=0 \tag{18}\\
& y+l_{\mathscr{L}} \sin \left(\theta+\bar{\alpha}_{\mathrm{K}}\right)-y_{\mathrm{K}}-\frac{1}{2} l_{\mathscr{B}} \sin \psi_{\mathrm{K}}=0 \tag{19}
\end{align*}
$$

These constraint equations can also be expressed in the following form:

$$
\begin{equation*}
\tilde{A}_{2} q^{\langle 2\rangle}=\tilde{b}_{2} \tag{20}
\end{equation*}
$$

with:

$$
\begin{align*}
& \tilde{A}_{2}=\left[\begin{array}{cccc}
\tilde{A}_{2, \mathscr{H}_{\mathrm{A}}} & 0 & 0 & \tilde{A}_{2, \mathrm{~A}} \\
0 & \tilde{A}_{2, \mathscr{H}} & 0 & \tilde{\tilde{A}}_{2, \mathrm{~B}} \\
0 & 0 & \tilde{A}_{2, \mathscr{C}_{\mathrm{C}}} & \tilde{A}_{2, \mathrm{C}}
\end{array}\right] \quad \tilde{b}_{2}=\left[\begin{array}{l}
\tilde{b}_{2, \mathrm{~A}} \\
\tilde{b}_{2, \mathrm{~B}} \\
\tilde{b}_{2, \mathrm{C}}
\end{array}\right] \tag{21}\\
& \tilde{A}_{2, \mathscr{H}_{\mathrm{K}}}=\left[\begin{array}{ccccc}
0 & 0 & 0 & -1 & 0 \\
0 & \frac{1}{2} l_{\mathscr{B}} \sin \psi_{\mathrm{K}} \\
0 & 0 & 0 & -1 & -\frac{1}{2} l_{\mathscr{B}} \cos \psi_{\mathrm{K}}
\end{array}\right] \tag{22}\\
& \tilde{A}_{2, \mathrm{~K}}=\left[\begin{array}{ccc}
1 & 0 & -l_{\mathscr{L}} \sin \left(\theta+\bar{\alpha}_{\mathrm{K}}\right) \\
0 & 1 & l_{\mathscr{L}} \cos \left(\theta+\bar{\alpha}_{\mathrm{K}}\right)
\end{array}\right] \tag{23}\\
& \tilde{b}_{2, \mathrm{~K}}=\left[\begin{array}{l}
l_{\mathscr{L}} \dot{\theta}^{2} \cos \left(\theta+\bar{\alpha}_{\mathrm{K}}\right)-\frac{1}{2} l_{\mathscr{A}} \dot{\psi}_{\mathrm{K}}^{2} \cos \psi_{\mathrm{K}} \\
l_{\mathscr{L}} \dot{\theta}^{2} \sin \left(\theta+\bar{\alpha}_{\mathrm{K}}\right)-\frac{1}{2} l_{\mathscr{B}} \dot{\psi}_{\mathrm{K}}^{2} \sin \psi_{\mathrm{K}}
\end{array}\right] \tag{24}
\end{align*}
$$

Choosing one strategy among the four presented in Proposition 3.1, one can compute a matrix S_{1} describing an operator onto the kernel of \tilde{A}_{1} and then compute a matrix C_{2} describing an operator onto the kernel of $B_{2}=$ $\tilde{A}_{2} S_{1}$. According to the statement of Theorem 3.1, $S_{2}=S_{1} C_{2}$. Therefore,
the dynamic equations of motion for the $3 \underline{R} R R$ mechanism are the following, with $\dot{q}^{\langle 1\rangle}=\alpha_{2}$:

$$
\left[\begin{array}{c}
S_{2}^{*} M \tag{25}\\
\tilde{A}_{1} \\
\tilde{A}_{2}
\end{array}\right] \alpha_{2}=\left[\begin{array}{c}
S_{2}^{*} f \\
\tilde{b}_{1} \\
\tilde{b}_{2}
\end{array}\right]
$$

Alternatively, one could opt to use the algorithm based on UdwadiaKalaba equation presented in Section 4 . In this case, let $\tilde{H}_{1}=\tilde{A}_{1} M^{-1 / 2}$ and $\tilde{H}_{2}=\tilde{A}_{2} M^{-1 / 2}$. Assume that $(\cdot)^{g}$ denotes $\{1,4\}$-inverses. Let $P_{0}=I$ and compute $K_{1}=\left(\tilde{H}_{1} P_{0}\right)^{g}=\tilde{H}_{1}^{g}, P_{1}=I-\tilde{H}_{1}^{g} \tilde{H}_{1}$ and $K_{2}=\left(\tilde{H}_{2} P_{1}\right)^{g}$. The dynamic equations of motion for the $3 \underline{R R R}$ mechanism can alternatively be expressed in the following explicit form, with $\dot{q}^{\langle 1\rangle}=M^{-1 / 2} a_{2}$:

$$
\begin{align*}
& a_{0}=M^{-1 / 2} f \tag{26}\\
& a_{1}=a_{0}+K_{1}\left(\tilde{b}_{1}-\tilde{H}_{1} a_{0}\right) \tag{27}\\
& a_{2}=a_{1}+K_{2}\left(\tilde{b}_{2}-\tilde{H}_{2} a_{1}\right) \tag{28}
\end{align*}
$$

References

[1] Orsino RMM. 2016 A contribution on modelling methodologies for multibody systems. PhD thesis. São Paulo, Brazil: University of São Paulo. See http://www.teses.usp.br/teses/disponiveis/3/3151/tde-22062016-160724/en.php.

[^0]: *Offshore Mechanics Laboratory, Department of Mechanical Engineering, Escola Politecnica, University of Sao Paulo, Brazil. (renato.orsino@gmail.com)

