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Recursive modular modelling methodology applied
to a 3RRR mechanism

In order to illustrate the application of the modular methodology presented
in the paper “Recursive modular modelling methodology for lumped - pa-
rameter dynamic systems”, highlighting its generality and the advantages
of applying it to complex system, the modeling of a 3RRR according to
this approach is discussed in detail in this Supplementary Appendix. The
reader is also invited to check the modeling of this mechanism presented
in [1] in which a computational package for planar mechanisms based on a
non-recursive form of the modular methodology is applied.

For the sake of clarity, the figures already presented in the paper to
introduce a possible hierarchical description for this system are repeated in
this Supplementary Appendix (see Figures 1 – 3).

The 3RRR mechanism is assumed to be planar, mounted in a horizontal
plane fixed with respect to an inertial reference frame. A coordinate system
can be defined with axes x and y being tangent to the plane and axis z
being orthogonal to it. The origin can be set so that it coincides with the
center of the platform L in the reference configuration of the system. This
coordinate system is also assumed to remain fixed with respect to an inertial
reference frame.
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Figure 1: 3RRR parallel mechanism (system M) partitioned in 4 modules.
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Figure 2: Generic active RR kinematic chain (HK) partitioned in 3 modules.
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Figure 3: Hierarchical description of the 3RRR parallel mechanism.
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Adopt the following conventions for the constant parameters of the sys-
tem:

• lU and lB respectively denote the distances between the centres of the
revolute joints in the extremities of the bars UK and BK (K = A,B,C);
lL denotes the distance between the centre of the triangular platform
L and the centre of any revolute joint in one of its vertices.

• ᾱK denotes the angle (measured counterclockwise) between the line
joining the center of the triangular platform L to the centre of the
revolute joint linked to the chain HK (K = A,B,C) and the x axis when
the mechanism is in the reference configuration.

• x̄K and ȳK denote the Cartesian coordinates of the fixed centres of the
active revolute joints of the kinematic chains HK (K = A,B,C).

• mB and mL respectively denote the masses of the bars BK (K =
A,B,C) and of the platform L.

• IB and IL respectively denote the moments of inertia with respect to
the centres of mass (which are supposed to coincide with the geometric
centres) of the bars BK (K = A,B,C) and of the platform L.

• JA and JU respectively denote the moments of inertia of the rotors of
the actuators AK and of the bars UK (K = A,B,C) with respect to the
centres of the active revolute joints constituted by these subsystems.

• κm and κe respectively denote the motor torque constant and the
back emf constant, β denotes the viscous damping of the rotors, λ the
inductance of the armature windings and ρ the associated electrical
resistance of actuators AK (K = A,B,C).

• η denotes the speed ratio in the reducers of the actuators AK (K =
A,B,C).

Define the following generalized coordinates for the system:

• x, y and θ respectively representing the Cartesian coordinates of the
geometric centre (also centre of mass) of L and the angle of rotation
of this platform with respect to the reference configuration (measured
counterclockwise).

• ϕK denoting the angle between the longitudinal direction of the bars
UK (K = A,B,C) and the x axis.

• xK, yK, ψK respectively representing the Cartesian coordinates of the
geometric centres (also centres of mass) of the bars BK, and the angle
between the longitudinal direction of these bars and the x axis.
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Take as quasi-velocities for this model the time derivatives of the generalized
coordinates along with the following extra variables:

• ωK representing the angular velocities of the axes of the actuators AK

(K = A,B,C).

• iK representing the electrical current in the armature circuits of the
actuators AK (K = A,B,C).

Let the higher order generalized variables be trivially defined. This mecha-
nism is a holonomic system in which generalized variables up to order 2 are
enough to describe both dynamic and constraint equations. Ordering the
variables according to the order convention of the level 0 of the hierarchy
shown in Figure 3, it can be stated that:

q⟨0⟩ =
(
ϕA, xA, yA, ψA, ϕB, xB, yB, ψB, ϕC, xC, yC, ψC, x, y, θ

)
(1)

q⟨1⟩ =
(
ωA, iA, ϕ̇A, ẋA, ẏA, ψ̇A, ωB, iB, ϕ̇B, ẋB, ẏB, ψ̇B,

ωC, iC, ϕ̇C, ẋC, ẏC, ψ̇C, ẋ, ẏ, θ̇
)

(2)

q⟨2⟩ = q̇⟨1⟩ (3)

The equations of motion associated to this system can be written in the
following form:

Mq⟨2⟩ = f + γr (4)

with:

M = diag
(
MH,MH,MH,ML

)
(5)

MH = diag
(
JA, λ, JU,mB,mB, IB

)
(6)

ML = diag
(
mL,mL, IL

)
(7)

f =
(
fHA , fHB , fHC , fL

)
(8)

fHK =
(
− βωK − κmiK,−κeωK − ρiK + vK, 0, 0, 0, 0

)
(9)

fL =
(
0, 0, 0

)
(10)

In these equations, vK represent the voltage sources of the actuators AK

(K = A,B,C) which should be treated as control inputs. All frictional effects
but the ones in the actuators were neglected. Also, once the mechanism is
mounted in a horizontal plane, there are no terms in the equations associated
to gravitational forces.

The constraint equations associated specifically to the Level 1 of the
hierarchy can be expressed as follows (for K = A,B,C):

ϕ̇K −
ωK
η

= 0 (11)

xK − x̄K − lU cosϕK −
1

2
lB cosψK = 0 (12)

yK − ȳK − lU sinϕK −
1

2
lB sinψK = 0 (13)
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These constraint equations can also be expressed in the following form:

Ã1q
⟨2⟩ = b̃1 (14)

with:

Ã1 =

Ã1,HA 0 0 0

0 Ã1,HB 0 0

0 0 Ã1,HC 0

 b̃1 =

b̃1,HA

b̃1,HB

b̃1,HC

 (15)

Ã1,HK =

− 1
η 0 1 0 0 0

0 0 lU sinϕK 1 0 1
2 lB sinψK

0 0 −lU cosϕK 0 1 −1
2 lB cosψK

 (16)

b̃1,HK =

 0

−lUϕ̇2K cosϕK − 1
2 lBψ̇

2
K cosψK

−lUϕ̇2K sinϕK − 1
2 lBψ̇

2
K sinψK

 (17)

The constraint equations associated specifically to the Level 2 can be de-
scribed by the following expressions (for K = A,B,C):

x+ lL cos(θ + ᾱK)− xK −
1

2
lB cosψK = 0 (18)

y + lL sin(θ + ᾱK)− yK −
1

2
lB sinψK = 0 (19)

These constraint equations can also be expressed in the following form:

Ã2q
⟨2⟩ = b̃2 (20)

with:

Ã2 =

Ã2,HA 0 0 Ã2,A

0 Ã2,HB 0 Ã2,B

0 0 Ã2,HC Ã2,C

 b̃2 =

b̃2,Ab̃2,B
b̃2,C

 (21)

Ã2,HK =

[
0 0 0 −1 0 1

2 lB sinψK
0 0 0 0 −1 −1

2 lB cosψK

]
(22)

Ã2,K =

[
1 0 −lL sin(θ + ᾱK)
0 1 lL cos(θ + ᾱK)

]
(23)

b̃2,K =

 0

lL θ̇
2 cos(θ + ᾱK)− 1

2 lBψ̇
2
K cosψK

lL θ̇
2 sin(θ + ᾱK)− 1

2 lBψ̇
2
K sinψK

 (24)

Choosing one strategy among the four presented in Proposition 3.1, one
can compute a matrix S1 describing an operator onto the kernel of Ã1 and
then compute a matrix C2 describing an operator onto the kernel of B2 =
Ã2S1. According to the statement of Theorem 3.1, S2 = S1C2. Therefore,
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the dynamic equations of motion for the 3RRR mechanism are the following,
with q̇⟨1⟩ = α2:S∗2MÃ1

Ã2

α2 =

S∗2fb̃1
b̃2

 (25)

Alternatively, one could opt to use the algorithm based on Udwadia-
Kalaba equation presented in Section 4. In this case, let H̃1 = Ã1M

−1/2

and H̃2 = Ã2M
−1/2. Assume that (·)g denotes {1, 4}-inverses. Let P0 = I

and compute K1 = (H̃1P0)
g = H̃g

1 , P1 = I − H̃g
1 H̃1 and K2 = (H̃2P1)

g. The
dynamic equations of motion for the 3RRR mechanism can alternatively be
expressed in the following explicit form, with q̇⟨1⟩ =M−1/2a2:

a0 =M−1/2f (26)

a1 = a0 +K1(b̃1 − H̃1a0) (27)

a2 = a1 +K2(b̃2 − H̃2a1) (28)
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