Polymerization Mechanism and Cross-Link

Structure of Nadic End-Capped Polymers: A Quantum Mechanical and Microkinetic

Investigation

Sooraj Kunnikuruvan, ${ }^{\dagger}$ Priya V. Parandekar, ${ }^{\ddagger}$ Om Prakash, ${ }^{\ddagger}$ Thomas K.
Tsotsis, ${ }^{\text {T }}$ and Nisanth N. Nair*, ${ }^{\dagger}$
\dagger Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
\ddagger Boeing Research \& Technology, India-centre, Bangalore-560016, India
【 Boeing Research \& Technology, Huntington Beach, CA-92647, U. S. A
E-mail: nnair@iitk.ac.in
Phone: +91 (0)512 2596311. Fax: +91-(0)512 2596806
Supporting Information

1 Accuracy

The accuracy of the MPW1K functional was benchmarked by comparing the barriers computed with M06 functional for the step $\mathbf{1} \boldsymbol{\rightarrow} \mathbf{3}$ (i.e. the preferred initiation step). M06 functional ${ }^{1}$ was used here for benchmarking as this functional is known to predict the bond dissociation energies for the multi-reference database MR-MGN-BE17 accurately,. ${ }^{2}$ Potential energy barrier computed using MPW1K functional for the step $\mathbf{1} \boldsymbol{\rightarrow} \mathbf{3}$ was found to be overestimated by $4 \mathrm{kcal} \mathrm{mol}^{-1}$ (see Table S2).

The basis set was benchmarked using $6-311++G(d, p)$ basis set for the step $\mathbf{1} \rightarrow \mathbf{3}$. The difference between the potential energy barrier obtained using this basis set to that of 6$31+G(d, p)$ basis set was found to differ by only $0.4 \mathrm{kcal} \mathrm{mol}^{-1}$ (see Table S2). Such a small difference in barrier indicates that the basis set used here is a good choice.

Table S1: Total electronic energies (in a.u.) of $\mathbf{1}$ and transition state of step $\mathbf{1} \rightarrow \mathbf{3}(\mathbf{1 - 3})$ using MPW1K/6-31+G(d,p), MPW1K/6-311++G(d,p) and M06/6-31+G(d,p) level of theories.

	MPW1K/6-31+G(d,p)	MPW1K/6-311++G(d,p)	M06/6-31+G(d,p)
$\mathbf{1}$	-784.449219892	-784.597522853	-784.133500826
$\mathbf{1 - 3}$	-784.380381971	-784.529243244	-784.071049627

Table S2: Difference in total electronic energies (in kcal mol^{-1}) between 1 and transition state of step $\mathbf{1} \rightarrow \mathbf{3}(\mathbf{1 - 3})$ using MPW1K/6-31+G(d,p), MPW1K/6-311++G(d,p) and M06/6$31+G(d, p)$ level of theories.

MPW1K/6-31+G(d,p)	MPW1K/6-311++G(d,p)	M06/6-31+G(d,p)
43.2	42.8	39.2

Table S3: Total electronic energies (in a.u.) of molecules involved in the propagation reaction of $\mathbf{4}$ and the model compound $\mathbf{1 b}$ with $\mathbf{1}$ and the corresponding transition states (TS-1-4 and TS-1-1b) using MPW1K/6-31+G(d,) level of theory.

$\mathbf{1}$	$\mathbf{4}$	1b	TS-1-4	TS-1-1b
-553.454666565	1337.86050597	-554.038828233	-1891.30147035	-1107.47845979

Table S4: Potential energy barrier (in kcal mol^{-1}) for the propagation reaction of $\mathbf{4}$ and the model compound 1b with 1, P1 and P1-model respectively.

P1	P1-model
8.6	9.4

2 Derivation of Rate Expression for the Rate of Polymerization

Polymerization reactions involve three major steps; (a) initiation (b) propagation and (c) termination. This can be represented by Equation (S1)-Equation (S5).

$$
\begin{align*}
\mathbf{1} & \rightarrow \mathrm{R}_{1}^{i} \tag{S1}\\
\mathrm{R}_{1}^{i}+\mathrm{M}^{j} & \rightarrow \mathrm{R}_{2}^{i} \tag{S2}\\
\mathrm{R}_{2}^{i}+\mathrm{M}^{j} & \rightarrow \mathrm{R}_{3}^{i} \tag{S3}\\
\vdots & \\
\mathrm{R}_{n-1}^{i}+\mathrm{M}^{j} & \rightarrow \mathrm{R}_{n}^{i} \tag{S4}\\
\mathrm{R}_{n}^{i}+\mathrm{R}_{m}^{i} & \rightarrow \mathrm{R}_{n+m}^{i} \tag{S5}
\end{align*}
$$

In the above equations, Equation (S1) represents the initiation process, where R_{1}^{i} is the radical formed from the reactant, $\mathbf{1}$, along route i. The propagation steps are shown by Equation (S2)-Equation (S4), where M^{j} can be $\mathbf{1}, \mathbf{2 a}$ or $\mathbf{2 b}$. The termination step is shown in Equation (S5). The kinetics of polymerization can be then derived from these equations.

The rate of polymerization or the consumption of any one of the monomers $\left(\mathrm{M}^{j}\right)$ can be written as,

$$
\begin{equation*}
-\frac{\mathrm{d}\left[\mathrm{M}^{j}\right]}{\mathrm{d} t}=k_{\mathrm{p}}^{j}\left[\mathrm{M}^{j}\right] \sum_{n}\left[\mathrm{R}_{n}\right], \tag{S6}
\end{equation*}
$$

where, k_{p} is the propagation rate constant. Applying steady state approximation for $\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{n}$ and taking sum of the rate expressions for all intermediates will result in the expression

$$
\begin{equation*}
\nu^{i}-k_{\mathrm{t}}\left(\sum_{n}\left[\mathrm{R}_{n}\right]\right)^{2}=0 \tag{S7}
\end{equation*}
$$

where ν^{i} is the rate of initiation process and k_{t} is the rate constant for the termination process. In the above equation, $\nu^{i}=k_{\mathrm{ini}}^{i}[\mathbf{1}]$, where, k_{ini}^{i} is the rate constant for the initiation.

$$
\begin{equation*}
\sum_{n}\left[\mathrm{R}_{n}\right]=\left(\frac{\nu^{i}}{k_{\mathrm{t}}}\right)^{\frac{1}{2}} \tag{S8}
\end{equation*}
$$

Substituting Equation (S8) in Equation (S6),

$$
\begin{equation*}
-\frac{\mathrm{dM}^{j}}{\mathrm{~d} t}=k_{\mathrm{p}}^{j}\left[\mathrm{M}^{j}\right]\left(\frac{\nu^{i}}{k_{\mathrm{t}}}\right)^{\frac{1}{2}} \tag{S9}
\end{equation*}
$$

3 Derivation of Rate Expression for the Radical Initiation Processes

1. Case 1:IP1 pathway

For case 1, the reaction follows Equation (S10).

$$
\begin{equation*}
\mathrm{R}_{\mathrm{i}} \stackrel{k_{1 \mathrm{f}}}{\rightleftharpoons} \mathrm{R}_{1} \tag{S10}
\end{equation*}
$$

Here, R_{i} and R_{1} is equal to $\mathbf{1}$ and $\mathbf{3}$ respectively for the step $\mathbf{1} \rightarrow \mathbf{3}$ of IP1.

$$
\begin{equation*}
\text { Rate of initiation, } \nu^{i}=k_{1 \mathrm{f}}\left[\mathrm{R}_{i}\right] \tag{S11}
\end{equation*}
$$

2. Case 2: IP2, IP5, IP7-9

For Case 2, the reaction follows Equation (S12).

$$
\begin{equation*}
\mathrm{R}_{i} \underset{k_{1 \mathrm{~b}}}{\stackrel{k_{1 \mathrm{f}}}{\rightleftharpoons}} \mathrm{R}_{j} \stackrel{k_{2 \mathrm{f}}}{\stackrel{k_{2 \mathrm{~b}}}{ }} \mathrm{R}_{2} \tag{S12}
\end{equation*}
$$

Where, R_{i} and R_{j} is equal to $\mathbf{1}$ and $\mathbf{2 a}+\mathbf{2 b}$ for all pathways (IP2, IP5, IP7-9) and R_{2} is equal to $\mathbf{3}, \mathbf{1 7}, \mathbf{2 1}, \mathbf{2 5}$ and $\mathbf{2 7}$ for IP2, IP5, IP7-9 pathways, respectively. Here,

$$
\begin{equation*}
\nu^{i}=k_{2 \mathrm{f}}\left[\mathrm{R}_{j}\right] \tag{S13}
\end{equation*}
$$

Applying steady state approximation for R_{j} followed by simplification,

$$
\begin{align*}
& {\left[\mathrm{R}_{j}\right]=\frac{k_{1 \mathrm{f}}\left[\mathrm{R}_{i}\right]}{k_{1 \mathrm{~b}}+k_{2 \mathrm{f}}}} \tag{S14}\\
& \Rightarrow \nu^{i}=\frac{k_{2 \mathrm{f}} k_{1 \mathrm{f}}\left[\mathrm{R}_{i}\right]}{k_{1 \mathrm{~b}}+k_{2 \mathrm{f}}} \tag{S15}
\end{align*}
$$

3. Case 3: IP4 and IP6

For Case 3, the initiation reaction follows Equation (S16).

$$
\begin{equation*}
\mathrm{R}_{i} \underset{k_{1 \mathrm{~b}}}{\stackrel{k_{1 f}}{\rightleftharpoons}} \mathrm{R}_{j} \underset{k_{2 \mathrm{~b}}}{\stackrel{k_{2 \mathrm{f}}}{\rightleftharpoons}} \mathrm{R}_{k} \stackrel{k_{3 \mathrm{~b}}}{\underset{k_{3 \mathrm{~b}}}{\rightleftharpoons}} \mathrm{R}_{3} \tag{S16}
\end{equation*}
$$

Where, R_{i} and R_{j} is equal to $\mathbf{1}$ and $\mathbf{2 a}+\mathbf{2 b}$ for both pathways (IP4 and IP6); R_{2} is equal to 11, 16 for IP4 and IP6 respectively; R_{3} is equal to $\mathbf{1 2}$ and $\mathbf{1 7}$ for IP4 and IP6 respectively. Here,

$$
\begin{equation*}
\nu^{i}=k_{3 \mathrm{f}}\left[\mathrm{R}_{k}\right] \tag{S17}
\end{equation*}
$$

Applying steady state approximation for R_{j} and R_{k} followed by simplification,

$$
\begin{align*}
& {\left[\mathrm{R}_{k}\right]=\frac{k_{1 \mathrm{f}} k_{2 \mathrm{f}}\left[\mathrm{R}_{i}\right]}{k_{1 \mathrm{~b}} k_{2 \mathrm{~b}}+k_{3 \mathrm{f}}\left(k_{1 \mathrm{~b}}+k_{2 \mathrm{f}}\right)}} \tag{S18}\\
& \Rightarrow \nu^{i}=\frac{k_{1 \mathrm{f}} k_{2 \mathrm{f}} k_{3 \mathrm{f}}\left[\mathrm{R}_{i}\right]}{k_{1 \mathrm{~b}} k_{2 \mathrm{~b}}+k_{3 \mathrm{f}}\left(k_{1 \mathrm{~b}}+k_{2 \mathrm{f}}\right)} \tag{S19}
\end{align*}
$$

Table S5: Cross-linking pathways (CLP) and steps involved in each CLP (Steps) for the various propagation pathways studied.

CLP	Steps
CLP1	$1 \rightarrow 3 \xrightarrow{1} \xrightarrow{1}$
CLP2	$1 \rightarrow 3 \xrightarrow{\text { aa }} \xrightarrow{\text { 2a }}$
CLP3	$1 \rightarrow 3 \xrightarrow{2 \mathrm{~b}}$
CLP4	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \rightarrow 3 \xrightarrow{1} \xrightarrow{1}$
CLP5	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \rightarrow 3 \xrightarrow{2 \mathrm{a}} \xrightarrow{2 \mathrm{a}}$
CLP6	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \rightarrow 3 \xrightarrow{2 \mathrm{~b}}$ 2b
CLP7	$1 \rightarrow 7 \xrightarrow{1} \xrightarrow{1}$
CLP8	$1 \rightarrow 7 \xrightarrow{2 a}$
CLP9	$1 \rightarrow 7 \xrightarrow{2 \mathrm{~b}}$
CLP10	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \xrightarrow{1} 11 \xrightarrow{2 \mathrm{~b}} 12 \xrightarrow{\text { 1 }} \xrightarrow{1}$
CLP11	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \xrightarrow{1} 11 \xrightarrow{2 \mathrm{~b}} 12 \xrightarrow{2 \mathrm{a}} \xrightarrow{2 \mathrm{a}}$
CLP12	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \xrightarrow{1} 11 \xrightarrow{2 \mathrm{~b}} 12 \xrightarrow{2 \mathrm{~b}} \xrightarrow{2 \mathrm{~b}}$
CLP13	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \xrightarrow{2 \mathrm{a}} 17 \xrightarrow{1} \xrightarrow{1}$
CLP14	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \xrightarrow{2 \mathrm{a}} 17 \xrightarrow{2 \mathrm{a}} \xrightarrow{2 \mathrm{a}}$
CLP15	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \xrightarrow{2 \mathrm{a}} 17 \xrightarrow{2 \mathrm{~b}} \xrightarrow{2 \mathrm{~b}}$
CLP16	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \xrightarrow{2 \mathrm{a}} 16 \rightarrow 17 \xrightarrow{1} \xrightarrow{1}$
CLP17	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \xrightarrow{2 \mathrm{a}} 16 \rightarrow 17 \xrightarrow{2 \mathrm{a}} \xrightarrow{2 \mathrm{a}}$
CLP18	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \xrightarrow{2 \mathrm{a}} 16 \rightarrow 17 \xrightarrow{2 \mathrm{~b}}$ 2b
CLP19	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \rightarrow 21 \xrightarrow{1} \xrightarrow{1}$
CLP20	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \rightarrow 21 \xrightarrow{2 \mathrm{a}} \xrightarrow{2 \mathrm{a}}$
CLP21	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \rightarrow 21 \xrightarrow{2 \mathrm{~b}} \xrightarrow{2 \mathrm{~b}}$
CLP22	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \rightarrow 25 \xrightarrow{1} \xrightarrow{1}$
CLP23	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \rightarrow 25 \xrightarrow{2 \mathrm{a}} \xrightarrow{2 \mathrm{a}}$
CLP24	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \rightarrow 25 \xrightarrow{2 \mathrm{~b}} \xrightarrow{2 \mathrm{~b}}$
CLP25	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \xrightarrow{1} 29 \xrightarrow{1} \xrightarrow{1}$
CLP26	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \xrightarrow{1} 29 \xrightarrow{2 \mathrm{a}} \xrightarrow{2 \mathrm{a}}$
CLP27	$1 \rightarrow 2 \mathrm{a}+2 \mathrm{~b} \xrightarrow{1} 29 \xrightarrow{2 \mathrm{~b}} \xrightarrow{2 \mathrm{~b}}$

Figure S1: Singlet (black curve) and triplet (red curve) potential energy curves for the step $\mathbf{1} \rightarrow \mathbf{3}$ obtained using MPW1K/6-31+G(d,p) level of theory

Figure S2: Singlet (black curve) and triplet (red curve) potential energy curves for the step $\mathbf{1} \rightarrow \mathbf{3}$ obtained using MPW1K/6-311++G(d,p) level of theory

Figure S3: Singlet (black curve) and triplet (red curve) potential energy curves for the step $\mathbf{1} \rightarrow \mathbf{3}$ obtained using M06/6-31+G(d,p) level of theory

Figure S4: Singlet (black curve) and triplet (red curve) potential energy curves for the step $\mathbf{2 a}+\mathbf{2 b} \rightarrow \mathbf{3}$ obtained using MPW1K/6-31+G(d,p) level of theory

Figure S5: Singlet (black curve) and triplet (red curve) potential energy curves for the step $\mathbf{1}+\mathbf{1} \rightarrow \mathbf{7}$ obtained using MPW1K/6-31+G(d,p) level of theory

Figure S6: Singlet (black curve) and triplet (red curve) potential energy curves for the step $\mathbf{2 a}+\mathbf{2 a} \rightarrow \mathbf{1 7}$ obtained using MPW1K/6-31+G(d,p) level of theory

Figure S7: Singlet (black curve) and triplet (red curve) potential energy curves for the step $\mathbf{1 6} \rightarrow \mathbf{1 7}$ obtained using MPW1K/6-31+G(d,p) level of theory

Figure S8: Singlet (black curve) and triplet (red curve) potential energy curves for the step $\mathbf{2 b}+\mathbf{2 b} \rightarrow \mathbf{2 1}$ obtained using MPW1K/6-31+G(d,p) level of theory

Figure S9: Optimized structures of minima and transition states along IP1 and IP2 pathways. Crucial distances (in \AA) are shown. The transition state for any step $\mathbf{A} \rightarrow \mathbf{B}$ is labeled as TS A-B. Atom color codes: C-black, N-blue, O-red and H-white.

TS 1-7

7

Figure S10: Optimized structures of minimum and transition state along IP3 pathway. Color codes and other descriptions are same as that in Figure S9.

Figure S11: Optimized structures of minimum and transition state along IP4 pathway.

Figure S12: Optimized structures of minima and transition states along IP5 and IP6 pathways.

Figure S13: Optimized structures of minimum and transition state along IP7 pathway.

Figure S14: Optimized structures of minima and transition state along IP8 pathway.

Figure S15: Optimized structures of minima and transition state along IP9 pathway

Figure S16: Scheme showing propagation pathways initiated by radicals generated along IP1-IP9. Here, CLPs and CLs have same description as given in the manuscript. The labeling scheme used here for the propagation reactions is also used in other figures and tables.

Figure S17: Optimized structures of transitions states for the propagation pathways initiated by 3. Please see Figure S16 for the labels used for the optimized structures.

Figure S18: Optimized structures of transitions states for the propagation pathways initiated by 7 .

Figure S19: Optimized structures of transitions states for the propagation pathways initiated by 12 .

Figure S20: Optimized structures of transitions states for the propagation pathways initiated by 17 .

Figure S21: Optimized structures of transitions states for the propagation pathways initiated by 21 .

Figure S22: Optimized structures of transitions states for the propagation pathways initiated by 25 .

Figure S23: Optimized structures of transitions states for the propagation pathways initiated by 29 .

Table S6: Free energy (in a.u.) of all chemical structures considered in the polymerization of nadic end-cap computed at 600 K using MPW1K/6$31+G(d, p)$ level of theory. Note that geometry optimization was performed for both singlet and triplet state wherever applicable. For all the propagation pathways involving radicals $\mathbf{3}, \mathbf{1 2}, \mathbf{2 5}$ and $\mathbf{2 9}$, where there are two possible reaction cites, both the possibilities were considered.

	Multiplicity, M	Free energy (a.u.)
1	1	-784.299765
1a	1	-553.365381
1-2	1	-784.228567
2a	1	-194.033110
2b	1	-590.260934
2-3	1	-784.207091
2-3	3	-784.183899
1-3	1	-784.235130
1-3	3	-784.174548
3	1	-784.235463
3	3	-784.238211
3-4a	3	-1337.539659
4 a	3	-1337.578054
4b	3	-1568.513758
3-4	3	-1337.550621
4	3	-1337.596834
4c	3	-1568.531313
3-5	3	-978.225003
5	3	-978.275630
3-5a	3	-978.205912
5a	3	-978.257100
3-6a	3	-1374.444201
6a	3	-1374.480481
3-6	3	-1374.445400
6	3	-1374.496256
1-7	1	-1106.637167
7	3	-1106.660167
7-8	3	-1659.967289
8	3	-1660.014295
7-9	3	-1300.638287
9	3	-1300.696582
9a	3	-1531.630990
7-10	3	-1696.863710
10	3	-1696.914474
10a	3	-1927.848876

$\mathbf{2 a - 1 1}$	1	-747.313443
$\mathbf{1 1}$	1	-747.395175
$\mathbf{1 1 a}$	1	-978.329271
$\mathbf{1 1 - 1 2}$	1	-1337.564399
$\mathbf{1 2}$	3	-1337.588510
$\mathbf{1 2 - 1 3 a}$	3	-1890.886653
$\mathbf{1 3 a}$	3	-1890.943172
$\mathbf{1 2 - 1 3}$	3	-1890.901968
$\mathbf{1 3}$	3	-1890.947502
$\mathbf{1 2 - 1 4 a}$	3	-1531.571347
$\mathbf{1 4 a}$	3	-1531.624500
$\mathbf{1 2 - 1 4}$	3	-1531.575315
$\mathbf{1 4}$	3	-1531.626048
$\mathbf{1 2 - 1 5}$	3	-1927.805482
$\mathbf{1 5}$	3	-1927.855059
$\mathbf{1 2 - 1 5 a}$	3	-1927.798871
$\mathbf{1 5 a}$	3	-1927.846303
$\mathbf{2 a - 1 7}$	1	-387.974144
$\mathbf{1 7}$	3	-388.014075
$\mathbf{2 a - 1 6}$	1	-387.986353
$\mathbf{1 6}$	1	-388.057913
$\mathbf{1 6 - 1 7}$	1	-387.993957
$\mathbf{1 7 - 1 8}$	3	-941.317564
$\mathbf{1 8}$	3	-941.358940
$\mathbf{1 7 - 1 9}$	3	-581.988091
$\mathbf{1 9}$	3	-582.033837
$\mathbf{1 7 - 2 0}$	3	-978.223409
$\mathbf{2 0}$	3	-978.259553
$\mathbf{2 b - 2 1}$	1	-1180.423828
$\mathbf{2 1}$	3	-1180.457835
$\mathbf{2 1 - 2 2}$	3	-1733.765801
$\mathbf{2 2}$	3	-1733.817581
$\mathbf{2 1 - 2 3}$	3	-1374.447316
$\mathbf{2 3}$	3	-1374.494591
$\mathbf{2 1 - 2 4}$	3	-1770.673517
$\mathbf{2 4}$	3	-1770.721168
$\mathbf{2 a - 2 5}$	3	-747.313988
$\mathbf{2 5}$	3	-747.334683
$\mathbf{2 5 - 2 6 a}$	3	-1300.640310
$\mathbf{2 6 a}$	3	-1300.679009
$\mathbf{2 5 - 2 6}$	3	-1300.643772
$\mathbf{2 6}$	3	-1300.699446
	3	
	3	

$\mathbf{2 5 - 2 7}$	3	-941.317938
$\mathbf{2 7}$	3	-941.377921
$\mathbf{2 5 - 2 7 a}$	3	-941.310546
$\mathbf{2 7 a}$	3	-941.356469
$\mathbf{2 5 - 2 8}$	3	-1337.546852
$\mathbf{2 8}$	3	-1337.599111
$\mathbf{2 5 - 2 8}$	3	-1337.541700
$\mathbf{2 8}$	3	-1337.578565
$\mathbf{2 b - 2 9}$	1	-1143.542241
$\mathbf{2 9}$	3	-1143.559407
$\mathbf{2 9 - 3 0}$	3	-1927.800356
$\mathbf{3 0}$	3	-1927.856369
$\mathbf{2 9 - 3 0 a}$	3	-1927.799448
$\mathbf{3 0 a}$	3	-1927.853321
$\mathbf{2 9 - 3 1}$	3	-1337.549367
$\mathbf{3 1}$	3	-1337.598835
$\mathbf{2 9 - 3 1 a}$	3	-1337.534338
$\mathbf{3 1 a}$	3	-1337.592664
$\mathbf{2 9 - 3 2 a}$	3	-1733.767104
$\mathbf{3 2 a}$	3	-1733.819187
$\mathbf{2 9 - 3 2}$	3	-1733.767304
$\mathbf{3 2}$	3	-1733.813342

Table S7: Free energy barriers, ΔG^{\ddagger} (in kcal mol ${ }^{-1}$) and corresponding rate constants (in hours ${ }^{-1}$ or $\mathrm{L} \mathrm{mol}^{-1}$ hours $^{-1}$) for all the elementary steps involved in the polymerization of nadic end-cap computed at 600 K using MPW1K/6-31+G(d,p) level of theory.

Step	ΔG^{\ddagger}		Rate constant	
	Forward	Reverse	Forward	Reverse
$\mathbf{1} \rightarrow \mathbf{2 a + 2 b}$	44.7	41.1	2.4	48.1
$\mathbf{1} \rightarrow \mathbf{3}$	40.6	1.9	73.1	9.1×10^{15}
$\mathbf{2} \rightarrow \mathbf{3}$	54.6	19.5	6.0×10^{-4}	3.6×10^{9}
$\mathbf{3} \rightarrow \mathbf{4}$	33.2	29.0	36271.0	1.2×10^{6}
$\mathbf{3} \rightarrow \mathbf{4 a}$	40.1	24.1	111.2	7.5×10^{7}
$\mathbf{3} \rightarrow \mathbf{5}$	29.1	31.8	1.2×10^{6}	117362.0
$\mathbf{3} \rightarrow \mathbf{5 a}$	41.0	32.1	52.3	91253.3
$\mathbf{3} \rightarrow \mathbf{6}$	33.7	31.9	23846.7	107920.0
$\mathbf{3} \rightarrow \mathbf{6 a}$	34.5	22.8	12190.4	2.2×10^{8}
$\mathbf{1} \rightarrow \mathbf{7}$	58.7	14.4	2.0×10^{-5}	2.6×10^{11}
$\mathbf{7} \boldsymbol{\rightarrow}$	36.6	29.5	2094.4	807851.0
$\mathbf{7} \rightarrow \mathbf{9}$	34.5	36.6	12190.4	2094.4

$7 \rightarrow 10$	36.0	31.9	3464.4	107920.0
$2 \rightarrow 11$	53.4	51.3	2.0×10^{-3}	9.0×10^{-3}
$11 \rightarrow 12$	57.5	15.1	5.1×10^{-5}	1.4×10^{11}
$12 \rightarrow 13$	32.6	28.6	59995.3	1.7×10^{6}
$12 \rightarrow 13 \mathrm{a}$	42.2	35.5	19.1	5269.3
$12 \rightarrow 14$	29.1	31.8	1.1×10^{6}	117362.0
$12 \rightarrow 14 \mathrm{a}$	31.5	33.4	150941.0	30669.5
$12 \rightarrow 15$	27.6	31.1	4.0×10^{6}	211111.0
$12 \rightarrow 15 \mathrm{a}$	31.7	29.8	127630.0	628134.0
$2 \mathrm{a} \rightarrow 17$	57.8	25.1	4.0×10^{-5}	3.2×10^{7}
$2 \mathrm{a} \rightarrow 16$	50.1	44.9	$0.03 .0 \times 10^{-2}$	2.0
$16 \rightarrow 17$	40.1	12.6	111.2	1.2×10^{12}
$17 \rightarrow 18$	38.8	26.0	330.9	1.5×10^{7}
$17 \rightarrow 19$	37.1	28.7	1377.0	1.6×10^{6}
$17 \rightarrow 20$	32.4	22.7	70952.8	2.4×10^{8}
$2 \mathrm{~b} \rightarrow 21$	61.5	21.3	1.8×10^{-6}	7.8×10^{8}
$21 \rightarrow 22$	36.0	32.5	3464.4	65244.4
$21 \rightarrow 23$	27.4	29.7	4.7×10^{6}	683091.0
$21 \rightarrow 24$	28.4	29.9	2.0×10^{6}	577599.0
$2 \mathrm{a} \rightarrow 25$	53.0	13.0	2.0×10^{-3}	8.3×10^{11}
$25 \rightarrow 26$	35.3	34.9	6231.7	8715.9
$25 \rightarrow 26 \mathrm{a}$	37.5	24.3	984.5	6.3×10^{7}
$25 \rightarrow 27$	31.3	37.6	178508.0	905.3
$25 \rightarrow 27 \mathrm{a}$	35.9	28.8	3767.5	1.5×10^{6}
$25 \rightarrow 28$	30.6	32.8	321102.0	50730.0
$25 \rightarrow 28 \mathrm{a}$	33.8	23.1	21928.1	1.7×10^{8}
$2 \mathrm{~b} \rightarrow 29$	52.8	10.8	3.0×10^{-3}	5.2×10^{12}
$29 \rightarrow 30$	36.9	35.1	1628.5	7369.9
$29 \rightarrow 30 \mathrm{a}$	37.5	33.8	984.5	21928.1
$29 \rightarrow 31$	27.1	31.0	6.0×10^{6}	229582.0
$29 \rightarrow 31$ a	36.5	36.6	2277.7	2094.4
$29 \rightarrow 32$	33.3	28.9	33352.9	1.3×10^{6}
$29 \rightarrow 32$ a	33.4	32.7	30669.5	55168.4

Full Citation of Reference 37

Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson,
H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.

Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

References

(1) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215-241.
(2) Yu, H. S.; He, X.; Li, S. L.; Truhlar, D. G. MN15: A Kohn-Sham Global-Hybrid Exchange-Correlation Density Functional with Broad Accuracy for Multi-reference and Single-reference Systems and Noncovalent Interactions. Chem. Sci. 2016, 7, 5032-5051.

