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Formal description of the LGCA model
LGCA model

The LGCA model is defined on a discrete 2-dimensional square lattice L with pe-

riodic boundary conditions [2, 3]. The lattice-gas model used in our work is an

extension of cellular automata with binary states that has first been used in statis-

tical physics and fluid mechanics (see [1] for an overwiew). Each lattice node r ∈ L
is connected to its four nearest neighbours, forming its von Neumann neighbour-

hood Nr, by unit vectors ci, i = 0, ..., 3, called velocity channels. The total number

of channels per node is defined by κ, ands β := κ − 4 is an arbitrary number

of channels with zero velocity, called rest channels, in which ci = 0, 4 ≤ i < κ.

Each channel can be occupied by at most one cell at a time. In occupied chan-

nels, the occupation state ηi(r) = 1, i = 1, ..., κ, whereas for empty channels

ηi(r) = 0. If ηi(r) = 1, the occupying cell’s adhesive state is described by the

variable ai(r) ∈ R+ := [0,∞). Occupation states ηi(r) and adhesive states ai(r)

of all channels in a node r give the node configuration (η,a)(r), formally defined

as (η,a)(r) := ((η0, ..., ηκ−1), (a0, ..., aκ−1))(r) ∈ Ea := {0, 1}κ × R+κ. Fig. 1 (a)

illustrates the state space of the LGCA model.

LGCA dynamics are characterised by a transition operatorD : Ea → Ea, (η,a)(r) 7→
(η′,a′′)(r), that updates a given node configuration (η,a)(r, k) := (η,a)(r) to a

subsequent node configuration (η,a)(r, k+τ) := (η′,a′′)(r) at time k+τ ∈ K and is

simultaneously applied to each node r ∈ L at discrete time k ∈ K := {j τ | j ∈ N}.
The time-step length τ ∈ R+, τ > 0 is constant.

We define D as the composition of two operators:

• The deterministic adhesivity change operator

A : (η,a)(r)→ (η,a′)(r) (1)

calculates new adhesive states a′i(r) for every cell at node r, 0 ≤ i < κ.

To determine the new values for the adhesive states, we use an intracellular

adhesion receptor regulation model on the basis of an ordinary differential

equation (ODE) described below [eq. (4)].
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• The probabilistic reorientation operator

R : (η,a′)(r)→ (η′,a′′)(r) (2)

redistributes cells together with their adhesive states within a node r accord-

ing to a probability function P described below [eq. (14)].

Accordingly, D := R ◦ A.

After reorientation, cells in velocity channel ci of node r are deterministically moved

to channel ci of the neighbouring node r + ci ∈ L according to the translocation

operator Ti : (η
′
,a′′)(r) 7→ (η

′
,a′′)(r+ ci) (see Additional file 7 for details) that is

defined by

Ti : (η′i, a
′′
i )(r) := (η′i, a

′′
i )(r + ci), i = 0, ..., κ− 1, r ∈ L. (3)

Deterministic intracellular adhesion receptor regulation model

We describe the adhesion receptor concentration of individual cells positioned at

(r, ci) at time k by an adhesive state variable ai(r, k). To determine ai(r, k), we

use the following ODE [adapted from [4]]:

dyri (t)

dt
= h+(R0 − yri (t))− h−yri (t) (4)

with yri (t) the concentration of adhesion receptors on the cell surface at continuous

time t ∈ R+
0 , h+, h− ∈ R the respective adhesion receptor association and disso-

ciation rates, R0 ∈ N the maximum adhesion receptor concentration. The initial

condition is yri (0) = y0 (see Table 1 in main text for chosen parameter values).

The solution of eq. (4) can be obtained analytically and is given by

yri (t) = c e−(h
++h−)t +

h+R0

h+ + h−
, (5)

where c ∈ R is a constant of integration. Setting t = 0 gives

c = y0 −
h+R0

h+ + h−
, (6)

where y0 is the initial adhesion receptor concentration. The steady state of the ODE

model [eq. 4] is given by h+R0

h++h− .

We distinguish between fast and slow intracellular adhesion receptor regulation.

For the fast regulation mode, we use a quasi-steady state approximation and as-

sume that the steady state is reached almost instantly. In this case, we yri (t) to
h+R0

h++h− for t ≥ 0.

For the slow regulation mode, we calculate an adhesive state according to the an-

alytical solution of the ODE model [eq. (5)] for every discrete cellular automaton
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time k and every cell. The continuous adhesion receptor concentration yri (t) of a

cell at (r, ci) is temporally discretised to give the adhesive state variable ai(r, k) by

passing the discrete time-step of the LGCA model to eq. (5) as an argument [Fig.

2 (a) and Additional file 7 (b)]. For the temporal update, let ai(r, k + τ) be the

adhesive state at time k + τ ∈ K.

Heterogeneity in the intracellular adhesion receptor regulation model

We introduce intrinsic adhesion heterogeneity by assigning independent stochastic

values to two ODE parameters, the initial adhesive state y0 and the maximum ad-

hesive state R0 (Fig. 2). Heterogeneity in these parameters is achieved by randomly

drawing values from a normal distribution for each cell before starting the simula-

tion. The respective expected values 〈y0〉 and 〈R0〉 are fixed (Tab. 1 in main text).

As a control parameter for the degree of heterogeneity, we use the coefficient of

variation and denote it by γ

γ =
σy0

< y0 >
=

σR0

< R0 >
(7)

where σy0 and σR0
are the standard deviations of y0 and R0, respectively. γ-values

are chosen to be equal for y0 and R0. The rates h+ and h− are held constant and

identical for all cells. Note that rates h+ and h− have different units compared to

rates of second order reactions as yri (t) is not a molar concentration but the actual

number of adhesion receptors on the cell surface [4]. For the fast regulation mode,

where we approximate eq. (4) by the steady state value, the parameter R0 that

determines the steady state value h+R0

h++h− is drawn from a normal distribution with

the same parameters as above.

For modelling extrinsic cell density-dependent adhesion receptor regulation, we

modify eq. (5) by considering a linear cell density-dependent weight. To account

for changes in cell density within the circular core population, we normalise the

local cell density with the average global cell density, such that

yri (t, ρ(Nr, k)) =

[
1− α+ α

(
ρ(Nr, k)

ρ̄(N, k)

)]
yri (t), α ∈ [0, 1], (8)

where α is an environmental control parameter and ρ̄(N, k) is the global average

cell population density, defined as

ρ̄(N, k) :=
1

N

N∑
r=1

κ−1∑
i=0

1

κ
ηi(r, k) (9)

with N := N(r, k) the number of nodes in L with at least one occupied channel at

time k ∈ K and, as before, κ the number of channels per node. The term

ρ(Nr, k) :=
1

5

4∑
j=0

κ−1∑
i=0

1

κ
ηi(r + cj , k) ∈ R (10)
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describes the local cell density in a neighbourhood Nr at time k ∈ K. To model

a decrease in adhesive states with increasing cell density, we changed eq. (8) such

that the density-dependent weighting term linearly decreases with increasing local

cell density, i.e.

yri (t, ρ(Nr, k)) =

[
1− α

(
ρ(Nr, k)

ρ̄(N, k)

)
+ α

]
yri (t), α = 1. (11)

Probabilistic migration step guided by intracellular adhesion receptor concentration

To account for adhesive interaction between cells, we model a probabilistic prefer-

ence of migration towards areas with high local cell densities, i.e. nodes with high

cell numbers nη(r) :=
∑κ−1
i=0 ηi(r). Thereby, the strength of adhesive interactions

depends on the adhesive states ai(r, k) of the interacting cells. We weight the cell

numbers by the adhesive states ai(r, k) of the interacting cells. This gives a mo-

mentum J := J(η,a)(r) of a node configuration (η,a)(r), defined by

J(η,a)(r) :=

κ−1∑
i=0

ci ηi(r) ai(r). (12)

The vector sum of all momenta in Nr \ {r} gives a local adhesivity gradient

G(η,a)(r) around node r ∈ L, excluding r (Fig. 1), defined by

G(η,a)(r) :=

3∑
j=0

κ−1∑
i=0

cj ηi(r + cj) ai(r + cj). (13)

The reorientation probability P : (η,a′)(r) → (η′,a′′)(r) depends on the post-

reorientation momentum J := J(η′,a′′)(r) and the pre-reorientation local adhesiv-

ity gradient G := G(η,a′)(r). To model adhesive interaction as attraction between

cells depending on their adhesive states, we define the reorientation probability P

such that it increases with the degree of alignment between J and G [Fig. 1 (b)].

Formally, we achieve this by using the scalar product of J and G. We then define

the reorientation probability P such that, at each node r ∈ L,

P ((η,a′(r))→ (η′,a′′)(r))) :=
1

Z(η,a′)
exp(〈J ,G〉) δη η′ Πa′ a′′ . (14)

With Kronecker’s delta δη η′ defined as

δη η′ := δ(nη, nη′) =

1 : nη = nη′

0 : else,
(15)

we ensure that the number of cells at each node r before reorientation nη is equal

to the number of cells after reorientation nη′ , i.e the number of cells in r stays
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constant during reorientation.

The function Πa′ a′′ ensures that the adhesive states of all rearranged cells within

the channels of a given node r are maintained. It is defined as

Πa′ a′′ :=

1 : a′π(i) = ai, i = 0, ..., κ− 1 for a permutation π of (0, ..., κ− 1)

0 : else.

(16)

The term Z(η,a′) is a normalisation term such that P is indeed a probability. It is

given by

Z(η,a) :=
∑
η′∈Ea

exp(〈J ,G〉) δη η′ Πa′ a′′ . (17)
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