
University of Copenhagen Casper Steinmann/2012
Molecular Statistics Exercise 1

Molecular Statistics

Exercise 1

Introduction

This is the first exercise in the course Molecular Statistics. The exercises in this course are split in
two parts. The first part of each exercise is a general introduction to new concepts and programming
techniques in the python programming language which covers and extends what is written in the
curriculum. Here, small exercises labeled (a) to (z) are present to get you going. The second part of
each exercise is the exercise itself with exercises labeled (1) to (n).

Python

The easiest way to get started with python (and to get comfortable with the language1) is to start its
interactive version in what we will call the interactive python shell (or just the python shell).
Alternatively, you can start the GUI named IDLE from the start menu. Here, you can enter
commands that the python interpreter will interpret, i.e. simple calculations, iterating over lists and
such.

Assuming you have started a terminal, you start the python shell by writing the following command

python

and hitting return. What you should see is the cursor blinking in front of a line of text saying “>>>”.
This means everything is set up correctly and python is ready to obey your commands.

As was shown to you this morning, the interactive python shell can add, subtract, multiply and
divide numbers.

(a) Try out the following statements. Does it behave like your regular calculator? If anything
unusual happens, try and explain why. Hint: Remember that each statement is executed by pressing
return.

5+9, 5-9, 5*9, 5/9, 5+2*9, 5.0 + 2.0*9.0, 5.0 / 9

Since manually entering numbers really does us no good, we might as well use a calculator. Instead,
we want to utilize what programming languages can provide, namely storage of values in what is
known as variables. Variables can store anything that you can think of, i.e. numbers, strings, lists of
numbers and so forth. Variables are assigned values by specifying a name and a value, i.e.

myFirstVariable = 5.0

where a variable named myFirstVariable has been assigned the value of 5.0.

1 Even Harry Potter will think you are cool when you tell him that you too speak python(!).

1/9

University of Copenhagen Casper Steinmann/2012
Molecular Statistics Exercise 1

(b) Try to make the expressions from exercise (a) using variables. Do the calculations give the same
results as in (a)? Hint: You can also mix numbers and variables – try it!

We are not restricted in our naming of variables at all and I encourage you to give them useful
names such xpos if you are saving the x-coordinates for instance. That way, you can more easily
remember what values are stored.

Speaking of x-coordinates, lets try to store an array of numbers. In today's exercise, lists will do the
job for us. Without further ado, jump back to the terminal and enter the following command

simpleList = []

which creates an empty list named simpleList. Even though it is empty, we can view its contents by
writing print simpleList. The results [] indicates that it is a list with no contents. The type can be
further verified by the type(simpleList) statement which states that simpleList is of the type list.
An empty list, however, won't do us much good, so to add values to the list, we use the following
command

simpleList.append(1.0)

to add the number 1.0 to the list.

(c) View the contents of the list as well as the type. What changed?

(d) Add the following numbers to the list: -1.0, 1.5, 2.0, -2.0, -3.0, 3.0 and view its contents again. A
list in python has several methods which we can use to modify the list itself. For instance, by
writing

simpleList.sort()

in the python terminal, we can sort the list. Try it and view its contents and comment on what
changed. Compare it with the previously printed list before you sorted it.

Another way of adding items, is to do it directly when we create the list. This is done almost the
same way as when we created the empty list, except we provide the initial content right away. This
is accomplished using

qList = [1.0, 2.0, 3.0, 4.0, -2.0, -4.5, -1.0]

(e) Redo exercise (d) but this time using qList instead of simpleList.

We've now seen that python lists can be created in various ways and even sorted,2 but it is quite
tedious to enter the data manually, especially if there is a lot of it. Luckily, python provides us with
the means to construct lists using various other approaches. The range command is probably the
command you will spend most time with during this course, so I suggest you already now become
friends with it.

2 For a complete list(!) of methods that you can use on the lists you create, I forward you to section 5.1 on the python
homepage: http://docs.python.org/tutorial/datastructures.html

2/9

http://docs.python.org/tutorial/datastructures.html

University of Copenhagen Casper Steinmann/2012
Molecular Statistics Exercise 1

(f) Write the following commands in the python shell and explain the results before moving on.
Hint: use the type command to get the data type of the commands, i.e. type(range(10))

range(10)
range(3,10)
range(-3,10,4)

List on a List

Another thing we want to be able to do, is use the numbers in one list to create new numbers in
another list. This is smart if we want to tabulate the values y for a function y=x2 provided that
we have the points x in a list. Python allows the construction of the list of y-values in several
different ways which we will now explore.

(g) Define a list named xvalues to be a range of integers from -5 to 5 (both included). Hint: Look
in exercise (f) for information about what numbers you will need to supply to the range function.

(h) Generate the y-values by writing the following command

yvalues = [x**2 for x in xvalues]

and comment on the results. This technique is known as list comprehension.3

This is by far the simplest way to generate a list of values based on another list. There are two other
properties of lists we need to consider before moving on to today's exercise. The first is to get the
length of a list, i.e. get the number of elements that a list contains. It is a simple function called len
which takes the list from which you want to get the number of elements. You can invoke it by

len(xvalues)

(i) you should try and guess what the length of yvalues is before your write len(yvalues) – did your
guess match pythons answer?

The last thing we need to investigate today is a way to get hold of the i'th element in a list provided
that 0iN and N is the number of elements in the list.

(j) To get the i'th element of the list qlist, write the following statements and describe the results

qlist[3]
qlist[0]
qlist[-1]
qlist[len(qlist)]
qlist[len(qlist)-1]

(k) what is the index of the first item in a list? Also, what is the index of the last item?

We are now ready to construct the y-values again, this time using a slightly different approach

3 I suggest you look at http://docs.python.org/tutorial/datastructures.html#list-comprehensions for more information
since this is an important point.

3/9

http://docs.python.org/tutorial/datastructures.html#list-comprehensions

University of Copenhagen Casper Steinmann/2012
Molecular Statistics Exercise 1

which is more general than the method you saw before. It is however, also a little bit more
complicated to understand, but I urge you to really try and understand the next sections of code and
text as they are integral to solving the final exam projects as well as the exercises.

(l) We shall use the x-values array as a basis again for determining the y-values in the equation
y=x2 . We will construct an empty list yvalues2 and then for each element x i in the x-values

array xvalues, we will calculate the corresponding y-value and append it to yvalues2.

yvalues2=[]
for i in range(len(xvalues)):
 sqr = xvalues[i]**2
 yvalues2.append(sqr)

NB! You'll notice the “:” at the end of line 2 above, this means that you have to indent4 your code
accordingly. You'll also notice that the python terminal changes from “>>>” to “...”. When you are
done, hit return twice to execute it.

(m) View the contents of the yvalues2 and compare them to the yvalues. Are there any
differences?

Plotting

Lastly in this introduction we want to plot the function y=x2 using python. To do so, we will
need to import a library which allows us to plot numbers in a regular coordinate system. Such a
library is already present on the fys.ku.dk servers and it is called matplotlib. To load it, you write:

import pylab

which tells python to use the library pylab and to access its methods, use pylab as the prefix for
the methods and classes of that library – the examples below will show you how to invoke some of
the methods, but just remember that an import statement means that we load extra modules which
extend the basic python functionality. Another example is the math library from which you can
import math-related functions such as cos, sin and exp. It is done by invoking

from math import cos, sin, exp

If all goes well with the import statement of pylab, nothing should happen(!). To plot your lists of
numbers (xvalues and yvalues2) we can use a built-in function of that library called plot which
takes the x-coordinates and y-coordinates you want to plot. Invoke it as

pylab.plot(x,y)

and to show the result, use

pylab.show()

which tells us that matplotlib should show the result on the screen. This is useful if you want to

4 Indentation usually means hit [SPACE] twice and continue writing your code, that is at least how I do it – other
people prefer using [TAB] but it is entirely up to you, just be consistent.

4/9

University of Copenhagen Casper Steinmann/2012
Molecular Statistics Exercise 1

debug something and see intermediate results, but since it pauses execution of the program, it is not
very useful for a final program. Instead you can save the image directly to disk by the following
command

pylab.savefig('myfirstplot.png')
pylab.clf()

which saves the plot as a .png file. A final command that is useful is the pylab.clf() which
clears the current plot for all its data – this is useful if you want to iterate over particle positions and
store snapshots of those positions.5

Final Comments

Before the actual exercise, the recommended work flow will be presented here briefly.

The idea is that you use your favorite text editor6 to edit python scripts. These scripts are then
executed on the command line (or by pressing F5 on Windows). I also recommend that you keep the
exercises from the different weeks separate by using folders, this will make it much easier to find
files later on.

Linux (and Mac OS X)
(n) When you open a new terminal it always starts in your home folder where all your files are
stored. To create a directory called molstat and enter it, use the following commands

mkdir molstat
cd molstat

The mkdir command creates a folder with the name molstat and the cd command enters the
folder named molstat. Make a new directory called ex1 and enter it as well. This will be the starting
point for exercise 1. To create a new file, launch kedit from the programs menu and save the
empty file as example.py in the molstat/ex1 folder.

Windows
Make a new document in IDLE, save it as example.py in a place where you can find it later.
Remember that on Windows, you just have to press F5 to run your code when it is open. In the
exercises later on, when it says kedit, you can easily replace this with IDLE.

5 Which coincidentally is what we want to do today.
6 For most people, the kedit text editor on the fys.ku.dk servers is more than enough. For windows, the IDLE

environment serves our purpose nicely.

5/9

University of Copenhagen Casper Steinmann/2012
Molecular Statistics Exercise 1

Generally
Write the following code and understand it before you proceed:

x = range(-5,5)
print x

Once you've gotten the grasp of what you think this little program does, save the file and in the
terminal you can execute the script7 by writing

python example.py

(o) What happens? How is it different from executing stuff on the command line?

(p) Extend the example.py script to calculate y=x2 . When you have calculated the yvalues
array, print it to verify it, plot the results and save the figure using savefig command.

From now on, everything we do will be done like this. You create a file in kedit, save it and
execute it using python.

7 Remember that we are now in the regular shell, and not in python.

6/9

University of Copenhagen Casper Steinmann/2012
Molecular Statistics Exercise 1

Getting into coding – non-interacting particles
Goal of today

• Initialize particles with random coordinates and random velocities.
• Propagate the particle positions in time.
• Confine the particles to be in a box.8

Implementation

The code below is your starting point for today's exercise.

import pylab and a function to create random numbers
import random
import pylab

initialize some variables
npart = 100
nsteps = 1
dt = 0.001

create the x- and y-coordinates
X = [random.random() for I in range(npart)]
Y = [random.random() for I in range(npart)]

plot the x- and y-coordinates in a figure.
pylab.plot(X,Y,'ro')
pylab.axis((-1,1,-1,1))
pylab.savefig('startcoord.png')

As you can see, a lot of variables have been declared such as npart which is the number of particles
that we want to generate and simulate. nsteps is the number of steps we want to take in a
simulation and dt controls how much of the velocity is scaled. Lastly we have defined the x-
coordinates and y-coordinates for npart random particles using list-comprehensions.

(1) Inspect and understand the above code. You should be able to tell what the different parts of the
program does before you continue. To be sure, try to print the values of the variables as well. You
should also try to print the random() function, what happens when you run your script twice after
each other?

The first programming task for today will be to correct the y-coordinates of the particle positions.
On Figure 1a you can see what happens if you run the above code and what it is supposed to look
like in Figure 1b, given that we would like the particles to start in the right hand side of the box.

(2) Correct the y-coordinates of the particle positions by making them initialize in the range
y∈[−1,1] instead of the standard y∈[0,1] .

When you have corrected the particle positions, it is time to give the particles random velocities to
allow the particles to move around.

8 Although it is tempting to think of quantum mechanics when particles are confined to a box, it is, however, not the
case here.

7/9

University of Copenhagen Casper Steinmann/2012
Molecular Statistics Exercise 1

(3) Create two new lists named Vx and Vy which we shall use to store the velocities for the particles
they should be random, as the positions were. The particle velocities should have an equal
possibility to go in all directions.

You can plot the particle velocities by using the quiver function of the matplotlib library. It plots
arrows which we normally use to represent vector quantities. You can use it by writing

pylab.quiver(X,Y,Vx,Vy)

before the pylab.axis command is issued.

a) Initial coordinates from code b) Correct coordinates to start with
Figure 1: Generating random coordinates in python can result in many different solutions. We want to
generate the particles in the right side of a container which spans x∈[0,1] and y∈[−1,1] .

We are now ready to loop over each particle in our system, but before we do this, you should make
it really clear to yourself how we can obtain the coordinates and velocities for the i'th particle. Hint:
Check out exercise (j) again.

The idea with this exercise is that since no forces act on the particles, only the velocity of the
particle influences its position. Hence the location of the i'th particle X i

n1 at a time-step
n1 is given as

X i
n1

=X i
n
dt⋅Vxi

n

which tells us that the i'th particle will be at its previous position + its velocity at the previous
position times a time step.

(4) Modify your script to loop over each particle and update the x- and y-coordinates with the
respective particle velocities (Vx and Vy). Plot the particle positions, after you have changed them,
to a file called stepcoords.png to verify that your particles indeed have moved.

It turns out, however, that simulations that only propagate time in one step are rather boring in the
long run(!). We therefore wish to make several steps to view the behavior of the particles over a

8/9

University of Copenhagen Casper Steinmann/2012
Molecular Statistics Exercise 1

long time-span before the simulation ends.
(5) Modify your code to repeat the displacement of the particles nstep times, and in each step,
update the positions of the particles as you did in exercise (5). Where are the particles after 10
steps? 100 steps? 1000 steps? 10000 steps? Make a plot of the region {-1,1,-1,1} as well as {-
10,10,-10,10} to help answer the question.

What you simulate is how particles in vacuum would behave if they cannot feel each other and have
kinetic energy. What remains is to keep the particles inside a box, i.e. they should make an elastic
reflection on the walls and change direction. To change the direction on the i'th particle, we must
change the sign on the velocity for that particle. For simplicity, we shall add a box which
corresponds to the region we are plotting, that is x∈[−1,1] and y∈[−1,1] .

For simplicity we start out with the x-coordinates first and then, when we have confirmed that it is
working, we move onto the y-coordinates.

(6) Modify your code such that after you updated a particles position, you test if the particle is
outside the boundary of the box. If it is outside the box, then change the sign on the velocity of that
particle. Hint: You will need if-statements to solve this problem. Also, it is a good idea to draw your
plan for what happens with a pen and paper(!).

There is one unsatisfactory thing about the solution you just made. Can you guess what it is? Since
we are not doing quantum mechanics on particles in a well, the particles should never be allowed to
be outside the box in a simulation step and the above solution permits that.

(7) Make the appropriate changes such that no particles are left outside the box when we have
modified all the particle positions in a single step. When you are done, plot the final particle
positions after 10000 steps and comment on the result.

Congratulations. You've completed your first programming task (ever?). Learning programming is
all about trying and failing, and then trying some more.

(8) Until next week, try and start over with the exercise from today (assignment 1 to 7) and program
it again.

9/9

	Exercise 1
	Introduction
	Python
	List on a List
	Plotting
	Final Comments

	Getting into coding – non-interacting particles
	Implementation

