Track 1 Lightning Talk: Forking as a Tool for
Software Sustainability—An Empirical Study

Sarah Alhozaimy
School of Computer Science
University of Manchester, UK

Abstract—Forking—the process of cloning a repository, allow-
ing development to progress separately to the original project—
has become an important part of source control functionality. As
forking enables software reuse, it has the potential to play a role
in software sustainability, which aims to improve the longevity of
software. We studied the relationship between forking and the
sustainment, or active life, of a software project. An examination
of 9,118 projects hosted on GitHub shows a significant relation-
ship between forking and software sustainment, with projects
that have forks being, on average, sustained for longer than
those that do not, a phenomenon that is true when considering
both the length of the original project, and the length of the
original project extended by any forks. The results provide
evidence that maintaining software via forking is a sustainable
software practice, and making software open source improves its
sustainability through enabling reuse via forking.

I. INTRODUCTION

The Software Sustainability Institute (SSI) defines ‘sustain-
able software’ as that which ‘you use today will be available—
and continue to be improved and supported—in the future’!.
Ensuring sustainability has been identified as one of the key
challenges in the development of software, particularly in
research projects, where the software may continue to have
value, but there are limited financial resources to maintain it.
Whilst sustainability is generally linked to best practice [1, 2],
precisely how to achieve it remains an open question [3].

This paper examines the link between the use of forking—
the process of cloning a repository, such that development
can progress separately to the original project—and software
sustainment (the active life of the project). We find that forking
increases the sustainment of the original project, and can
increase the lifespan of software by allowing its extension.

II. BACKGROUND

Fogel (2005) defines a software fork as occurring when a
development team divides itself into two rival groups, to work
on different, incompatible versions of the code [4]. The term
has been used in a wider context over the last few years, and
now generally describes a case where a new project has been
developed through the replication of an existing codebase.

Forking in GitHub can be represented as a tree structure
with the original repository, Fj, as the root [5]. Forks that
are created directly from the original repository are termed
primary forks, Fi, . Secondary forks, F» , are created from a

Iwww.software.ac.uk/about

Robert Haines
Research IT
University of Manchester, UK

Caroline Jay
School of Computer Science
University of Manchester, UK
caroline.jay @manchester.ac.uk

primary fork. We examined three depths of fork, as shown in
Figure 1.

depth 0 Fy
depth1 F, F, F,
depth 2 FQO F21 ng

Fig. 1. A representative fork tree showing the depths of forks.

An application loses value over time if it fails to adapt [6].
The use of forks therefore aligns with the SSI's definition of
sustainability, as it means a software project is open to mod-
ifications, increasing the potential utility of the code. Whilst
forks can result from technical incompatibility or interpersonal
disagreements [7], forking tends to be used by new developers
to safely test a new idea before adding it to the original
project [8]. Forking can represent a threat to a project, as
software may end up ‘watered down’, or in competition [9, 5],
but it can also extend its lifespan, as it allows it to be taken
in a different direction [10].

Whilst there is a solid foundation for considering forking to
be a useful tool in sustaining software, there is no definitive,
quantitative evidence demonstrating a relationship to project
lifespan. Here, we examine the extent to which it increases or
decreases the longevity of both the original project, and the
original project and its longest surviving fork.

III. RESEARCH METHODOLOGY

A subset of repositories was selected from GitHub based
on the following criteria: the project was created between 1%
January and 31% December 2009; the project had at least one
commit; the first commit occurred on or after 1 % of January
2009.We sampled five continuous days from each month. For
example, we choose the first five days of January 2009; and
6™ to 10" of February 2009. The data and analysis code are
available on Figshare [11].

In this paper, we use two definitions for software sustain-
ment. Sustainment of the original project, S, is defined as the
time period from the first commit of a repository through to its
last commit, measured in days, as shown in equation 1 [12].

This work is licenced under a Creative Commons Attribution-ShareAlike 4.0 International License.



S was calculated for the default branch of each repository,
which in 99% (9,017) of projects was the master branch.

S = tiast—commit — Cinitial—commit (1)

Software sustainment with forking, SF’, is defined as the
number of days from the first commit of the original repository
through to the last commit when considering all forks (in this
study to a depth of two), as shown in equation 2.

SF = tlast—commit—on—all—fm“ks - tinitial—commit (2)
IV. RESULTS

Of the 9,118 projects retrieved from GitHub, 3,314 (36%)
had at least one fork. Of the projects with forks, 1,349 (40%)
had one fork, 504 (15%) had two forks, and 45% had three or
more.Whilst 90% of projects had fewer than 5 forks, a number
of projects used forking extensively. The largest number of
forks recorded for one project was 3,009. It should be noted
that these numbers consider two depths of forking, Fi, i.e.
forks from the original project, and Fs, i.e., forks of forks.

A. Is forking related to sustainment of the original project?

Figure 2 shows the distribution of projects as a function
of S. Projects that have forks are shown in blue, towards
the back of the graph. The mean sustainment S, of projects
where the number of forks > 1 is 788 days, compared to 303
days for projects with 0 forks, a difference shown by a Mann-
Whitney test to be statistically significant (U = 5, 885, 866.5,
p = .000).

500
Number
of Forks

B Forks>= 1
M Forks=0

400

@
=3
=3

Frequency

200

365 730 1095

Sustainment (S)

1460

1825 2190 2555 2920

Fig. 2. Software sustainment as a function of S in days for projects in GitHub
(The arbitrary (or frequency) value of the first column is 4,432 for projects
where Forks = 0 and 1,076 for projects where Forks > 1.)

500
Number
of Forks
M Forks>=1
M Forks =0

400

Frequency

365 730

1095 1460 1825
Sustainment (SF)

2190 2555 2920

Fig. 3. Software sustainment as a function of SF in days for projects in
GitHub (The arbitrary (or frequency) value of the first column is 4,141 for
projects where Forks = 0 and 768 for projects where Forks > 1.)

B. Does forking sustain software beyond the original project?

A second question is whether forking extends the life of
software beyond the original project: if the original project
ceases to be sustained, does activity continue in a forked
project? Here we considered only those 3,314 projects with
at least one fork. Figure 3 shows the distribution as a function
of SF. The mean value of SF' (1,111 days) is significantly
greater than the mean value of S (788 days), a difference
that a Wilcoxon test shows to be statistically significant
(Z = —32.631, P = .000). Extension to the life of software
offered by a fork occurs in just under a third of the projects
examined. In 70% of projects the last recorded commit was
in the original project; in the remaining 30%, the last commit
was recorded in one of the forks.

V. CONCLUSION

We demonstrate a two-fold effect of forking on the sus-
tainability of software. Projects that use forking are sustained,
on average, for longer than those that do not, indicating that
using forks to update or maintain software is a positive practice
in terms of software sustainability. Forking also offers the
opportunity to extend the life of the software beyond the
original project. Open source repositories such as GitHub
that support forking may play a key role in supporting the
sustainability of software.

REFERENCES

[1] M. de Souza et al, “Defining Sustainability through Developers’ Eyes: Recommen-
dations from an Interview Study,” in WSSSPE 2, 2014.

[2] S.Betz and T. Caporale, “Sustainable Software System Engineering,” in 2014 IEEE
Fourth International Conference on Big Data and Cloud Computing, 2014.

[3] C. Venters et al., “The Blind Men and the Elephant: Towards an Empirical
Evaluation Framework for Software Sustainability,” JORS, vol. 2, no. 1, 2014.



[4]

[5]
[6]
[7]

[8]
[9]
[10]

[11]

[12]

K. Fogel, Producing Open Source Software How to Run a Successful
Free Software Project, 2nd ed. LLC, 2005. [Online]. Available: http:
//producingoss.com/en/producingoss.pdf

A. Rastogi, “Forking and the Sustainability of the Developer Community Partici-
pation - An Empirical Investigation on Outcomes and Reasons,” SANR, 2016.

L. Meir, “Programs, Life Cycles, and Laws of Software Evolution,” /EEE, vol. 68,
no. 9, Sep. 1980.

H. Kuusirati, “Forks in Open Source Software Projects,” University of Oulu,
2012. [Online]. Available: https://wiki.oulu.fi/download/attachments/28092087/
ossd_2012_kuusirati_seppanen.pdf?version=1&modificationDate=1353314930000
L. Nyman and T. Mikkonen, “To Fork or Not to Fork : Fork Motivations in
SourceForge Projects,” Springer, 2011.

R. Viseur, “Forks impacts and motivations in free and open source projects,”
IJACSA, vol. 3, no. 2, pp. 117-122, 2012.

L. Nyman, J. Lindman, and G. Moody, “Code Forking , Governance , and
Sustainability in Open Source Software,” TIM, pp. 7-12, Jan. 2013.

S. Alhozaimy, “sustainability-and-SVC-usage-wssspe5.1.zip,” 8 2017. [Online].
Available: https:/figshare.com/articles/sustainability-and- SVC-usage-wssspe5_1_
zip/5328730

A. Aldabjan et al, “How should we measure the relationship between code quality
and software sustainability?” WSSSPE 4, CEUR Workshop Proceedings, 2016.



