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1 The probability of single mutant generation

To describe the stochastic dynamics of cellular growth, and in particular, to
calculate the chances of generating mutants, we formulate a fully stochastic
model of cellular expansion, see also [1].

We consider a stochastic continuous time birth-death process, which repre-
sents the growth of a colony of tumor cells. The following parameters are used to
describe the kinetics of wild-type cells: Rw stands for the division rate, and Dw

for the death rate, with Dw < Rw. Wild type cells can mutate with probability
u per cell division. Mutant cells are characterized by the division rate, Rm and
the death rate, Dm. We assume that initial, there are N0 wild-type cells and 0
mutant cells in the colony. The size of the colony at the time when the number
of mutants is assessed is denoted by N . Please note that in the main text, we
referred to the wild type division and death rates as R and D respectively, such
that

R ≡ Rw, D ≡ Dw.

In the supplement, since equations contain more types, the notation Rw and
Dw is used for the wild type cells.

To describe the birth-death process with mutations, we can use the standard
method of probability generating function, see e.g. [1]. Denoting by ϕiw,im(t)
the probability to have iw wild type cells and im mutant cells at time t, the
Kolmogorov forward equation for this quantity can be written as:

ϕ̇iw,im = Rw(1 − u)ϕiw−1,im(iw − 1) +Rmϕiw,im−1(im − 1)

+ Rwuϕiw,im−1iw

+ Dwϕiw+1,im(iw + 1) +Dmϕiw,im+1(im + 1)

− ϕiw,im(Rw +Rm +Dw +Dm), (1)
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see Chapter 4.2, “The Basic Model of Cancer Growth and Generation of Muta-
tions” for details. We define the probability generating function as

Ψ(ξw, ξm; t) =
∑
iw,im

ϕiw,im(t)ξiww ξimm , (2)

and obtain the following first order partial differential equation:

∂Ψ

∂t
=

∂Ψ

∂ξw
(Rw(1 − u)ξ2w +Dw − ξw(Rw +Dw −Rwuξm))

+
∂Ψ

∂ξm
(Rmξ

2
m +Dm − ξm(Rm +Dm)). (3)

PDE (3) can be solved by the standard method of characteristics. The initial
value problem satisfied by the functions ξw(t) and ξm(t) is given by:

ξ̇w = Rw(1 − u)ξ2w +Dw − ξw(Rw +Dw −Rwuξm), (4)

ξ̇m = Rmξ
2
m +Dm − ξm(Rm +Dm), (5)

ξw(0) = 1, ξm(0) = 0. (6)

The quantity ξw(t)N0 defines the probability of not having any mutants at time
t. The time when the colony reaches size N is given by T : N0e

(Rw−Dw)T = N .
The quantity of interest is the probability Pres(T ) to generate mutants by time
T given that the colony has survived. To obtain this quantity, we can rewrite
ξw(t)N0 as

ξw(t)N0 = Prob(Extinct) + (1 − Prob(Extinct))P 1
no mut,

where the probability of colony extinction is well approximated by Prob(Extinct) =
(Dw/Rw)N0 , and P 1

no mut is the probability of no one-hit mutants conditional
on the colony non-extinction (the superscript 1 refers to the fact that one-hit
mutants are considered; this will be genrelized to more hits later). Therefore,
solving for P 1

no mut, and using P 1
mut = 1 − P 1

no mut, we obtain

P 1
mut(t) =

1 − ξw(t)N0

1 − (Dw/Rw)N0
.

Below we are using N0 = 1. Therefore, we have

P 1
mut(T ) =

1 − ξw(T )

1 −Dw/Rw
. (7)

2 Multiple mutant generation

The probability of double-hit (or in general, m-hit) mutant generation in a
colony of size N has been studied in [2, 1], in the context of resistance to drugs
in cancer treatments. Each cell can acquire mutations of m types, in general

2



Figure 1: Mutation diagram corresponding to three possible mutations. The binary number,
s, for each node describes the mutant types: 0 stands for “wild-type” and 1 for “mutant” with
respect to a particular allele.

with rates u1, . . . , um. Using simple combinatorics, we obtain that there can be
up to n = 2m − 1 different mutant cell types. Figure 1 illustrates the mutation
network for m = 3. We label each phenotype by a binary number of length
m, where “1” indicates mutation and “0” wild-type with respect to a particular
allele. Each type s is characterized by the division rate Rs and the death rateDs.
In particular, the wild type has the division rate R0 = Rw and the death rate
D0 = Dw. To describe stochastic evolution of a cellular colony with mutations,
we introduce the function

ϕi0,...,in(t),

the probability to have is cells of type s at time t, where 0 ≤ s ≤ n = 2m are
binary numbers. We can write down the Kolmogorov forward equation,

ϕ̇i0,...,in =

n∑
s=0

Q(s),

where Q(s) is the contribution obtained from considering probabilities of repro-
duction and death of cell-type s,

Q(s) = ϕ...,is−1,...(is − 1)Rs

1 −
∑
j

us,outj

+ isRs
∑
j

ϕ...,is,...,ij−1,...u
s,out
j

+ ϕ...,is+1,...(is + 1)Ds − ϕ...is(Rs +Ds).

In this equation we used the following short-hand notation: ϕ... stands for
ϕi0,...,in , and the only explicit subscripts indicate the indices which are different
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from (i0, . . . , in). We further denoted by us,outj the mutation rates corresponding
to the arrows originating at type s and pointing to type j in a mutation diagram,
see e.g. figure 1 for the case m = 3. In analogy with equation (2), we define the
probability generating function, Ψ(ξ0, . . . , ξn; t),

Ψ(ξ0, . . . , ξn; t) =
∑

i0,...,in

ϕi0,...,in

n∏
s=0

ξiss . (8)

This function satisfies the following first order partial differential equation (a
generalization of (3)):

∂Ψ

∂t
=
∑
s

∂Ψ

∂ξs

ξ2sRs (1 − us,out
)

+Ds + ξsRs
∑
j

ξju
s,out
j − (Rs +Ds) ξs

 ,
(9)

where we used the notation

us,out =
∑
j

us,outj .

(details of the derivation of equation (9) can be found in [1]). As before, this
equation can be solved by the standard method of characteristics. The equations
for characteristics are given by:

ξ̇s = Rs
(
1 − us,out

)
ξ2s +

Rs∑
j

us,outj ξj − (Rs +Ds)

 ξs +Ds, 0 ≤ s ≤ n.

(10)
Although the methodology described here is very general, we proceed by

assuming the existence of certain symmetries in the coefficients. We assume
that:

• All the mutation rates are equal, that is, uj = u.

• All the types with 1, 2, etc mutations, have equal kinetic parameters.

To simplify equation (10), we note that all the mutant types can be separated
into classes such that in each class k, cells contain k mutations. For each k, the
class consists of all variables ξs such that the binary numbers s contain exactly
k nonzero entries. Therefore, we can denote by ξk, with 0 ≤ k ≤ m, the class of
variables describing k-hit mutants (with the total possible number of mutants
m). We further make the assumption that

• Within each class, the birth and death rates are equal.

In this case, it does not matter which k out of m mutations a cell contains. The
total number of distinct equations in this case is not n = 2m + 1, but m + 1.
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Figure 2: The probability of having one-, two-, and three-hit mutants in a colony of N = 1010

cells, under mutation rate u = 10−9. The values of division and death rates of wild-type cells
were taken from the set of measured values for the cell lines under different aspirin doses.
(a) Mutations are disadvantageous, such that each additional mutation gives a 2% reduction
in the division rate. (b) Mutations are advantageous, such that each additional mutation
gives a 2% increase in the division rate. Only the relative probabilities are shown, where the
calculated probabilities are normalized to be one for the lowest R/D ≡ Rw/Dw value.

Then, simplifying equation (10), we obtain the following initial value problem:

ξ̇
(m)
k = Rk(1 − (m− k)u)(ξ

(m)
k )2 +Dk

− ξ
(m)
k (Rk +Dk − (m− k)Rku ξ

(m)
k+1), 0 ≤ k ≤ m, (11)

ξ
(m)
k (0) = 1 for 0 ≤ k ≤ m− 1, ξ(m)

m (0) = 0, (12)

where we introduced superscript (m) which refers to the number of mutations,
m, in the system. This is a multi-mutation generalization of system (4-6). The
probability to have m-hit mutants at time T is given by equation similar to
equation (7):

Pmmut(T ) =
1 − ξ

(m)
0 (T )

1 −D0/R0
, (13)

where ξ
(m)
0 (t) is the zeroth component of the solution of system (11-12). These

calculations were used to investigate the probability of having one-, two-, and
three-hit mutants, see figure 2.

Further, in figures 3 and 4 we plot the relative probabilities of mutant exis-
tence for one-, two-, and three-hit mutants as functions of the aspirin dose; these
figures present the same information as figure 2, except the show the connection
with the aspirin dose. These two figures are similar to figure 3 of the main text,
where the case of neutral mutants is showcased.
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Figure 3: Effect of aspirin on the probability for a cell to exist that is characterized by
(A) 1, (B) 2, and (C) 3 independent advantageous mutations by the time a cell colony has
grown from 1 to 1010 cells (assuming a mutation rate u = 10−9). A 2% fitness advantage
was assumed, expressed by an increase in the division rate of cells. The relative change in
the probabilities is shown, dividing the probability for a mutant to exist in the presence of
aspirin by the probability in the absence of the drug. The dots represent the different cell
lines. (D) This graph plots the average over all cell lines for each dose, along with error bars
that represent the standard error.
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Figure 4: Same as in figure 3, but for the case where the mutants have a 2% disadvantage
expressed as a reduction in the division rate.
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3 The mean number of mutants

The mean number of mutants at colony of size N was found in [3], see eq. (1)
in that paper. In our notations, we have

M0 =
Nu(1 − 1/N1−α)

(1 −Dw/Rw)(1 − α)P
, (14)

where

α =
Rm −Dm

Rw −Dw
, P = 1− exp

(
− NuF

1 −Dw/Rw

)
, F =

∫ 1

0

1 −Dm/Rm
1 − yαDm/Rm

dy,

α denoting the relative fitness of mutants and P the probability of non-extinction
of mutated cells. For example, for neutral mutants and in the case of large
Nu > 1, we have Rm = Rw, Dm = Dw, and P ≈ 1. Then the expected number
of mutants is simply given by

M0 =
Nu lnN

1 −Dw/Rw
, (15)

where the numerator is exactly the expected number of mutants in the absence
of cell death, calculated first by [4]. The denominator corrects for the actual
expected number of divisions needed to grow to size N in the presence of cell
death. The same expression as (15) can be obtained by solving the initial value
problem describing the expected number of cells,

ẋw = (Rw(1 − u) −Dw)xw, (16)

ẋm = Rwuxw + (Rm −Dm)xm, (17)

xw(0) = 1, xm(0) = 0. (18)

Setting Rm = Rw and Dm = Dw and evaluating the solution for xm at t∗ =
lnN/(Rw −Dw), we obtain exactly the expression in (15).

In fact, system (16-18) can be solved numerically for advantageous or disad-
vantageous mutant cases. After calculating t∗ such that xw(t∗) + xw(t∗) = N ,
we obtain the expected number of mutants at size N as

M0 = xw(t∗). (19)

In the limit of large Nu, these solutions are very close to the predictions of
formula (14).
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