Supporting Information

Directly Coating Multifunctional Interlayer on the Cathode via Electrospinning for Advanced Lithium Sulfur Batteries

Yueying Peng^a, Yiyong Zhang^a, Yunhui Wang^a, Xiu Shen^a, Feng Wang^a, He Li^a, Bing-Joe Hwang^b and Jinbao Zhao^a*

^a State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Centre of Chemistry for Energy Materials, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China.

^b NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan E-mail: jbzhao@xmu.edu.cn.

Figure S1. (a) C 1s spectra of pristine C, (b) C1s spectra of NC particles, (c) N 1s XPS spectrum of NC particles, (d) corresponding N content.

Figure S2. TEM image of NC particles.

Figure S3. (a) nitrogen adsorption-desorption isotherm of PAN-NC fibers, (b) corresponding pore size distribution.

Figure S4. CV curves at different scanning rates and corresponding $i_{pa} - v^{1/2}$ scatters and linear fitting of (a, b) sulfur cathode, (c, d) PAN@cathode, (e, f) PAN-N@Cathode.

The diffusion coefficient of Li^+ (D_{Li}^+) can be calculated from the following Randles-Sevcik equation: ¹⁻²

$$I_p = 0.4463 \text{nFAC}(\frac{nFvD}{RT})^{1/2}$$
 (1)

Where I_p is the peak current (A), n is the number of electrons transferred, F is the Faraday's constant (96485 C mol⁻¹), A is electrode area (1.14 cm²), C represents concentration of Li⁺ (mol cm³), R is gas constant (8.314 J K⁻¹ mol⁻¹), T is temperature (K), D is Li⁺ diffusion coefficient (cm² s⁻¹), v is scan rate (V s⁻¹). Based on the equation 1, the value of D can be obtained from the slope of dI/dv^{1/2}. Peak 1 in CV plots is chosen for calculation.

Figure S5. Discharge and charge plots of sulfur cathode and PAN-NC@Cathode at 200 mA g^{-1} after 100 cycles.

Figure S6. Discharge and charge plots of sulfur cathode and PAN-NC@Cathode at 2000 mA g^{-1} at the 24 cycle.

Figure S7. Discharge and charge plots of PAN-NC@Cathode at 500 mA g⁻¹ after 200 cycling.

Figure S8. The cycling performances of sulfur cathode and PAN-NC@Cathode at 2000 mA g^{-1} after one cycle activation at 200 mA g^{-1} .

Figure S9. The cycling performances of sulfur cathode and PAN-NC@Cathode at 200 mA g^{-1} with higher sulfur loading of 4 mg cm⁻².

Figure S10. (a) the cycling performances of sulfur and PAN-NC/S cathodes at 500 mA g^{-1} after initial activation at 200 mA g^{-1} , (b) the discharge and charge curves of sulfur and PAN-NC/S cathodes at the 50th cycle.

Figure S11. EIS spectra of cathodes before and after cycling

	interlayer	method	Weight	cathode	Current	Capacity	Capacity
			(mg cm ⁻²)		density	(mAh g ⁻¹)	retention
			、 U /		(mA g ⁻¹)	after 100	
Inserting	³ Microporous carbon paper (MCP)	1 mixing conductive carbon with binder at 3:2 mass ratio	-	s	1675	1000	85.0%
		2 roll-pressing					
	⁴ Reduced graphene oxide with carbon black (rGO- CB)	1 suction-filtering rGO-CB suspensions	-	S	200	894	70.9%
		2 heat treatment					
	⁵ tubular polypyrrole (T- PPy) film	1 self-degraded template method	1	S/C	335	~964	68.9%
		2 vacuum filtration and drying					
	⁶ Cyclized-Polyacrylonitrile Modified CNF (CP@CNF)	1 electrospun CNF from PAN	-	S	502	910	85.1%
		2 dip-coated PAN, thermal treatment					
	⁷ TiO ₂ decorated CNF (CNF-T)	1 electrospun CNF from PAN	0.5-0.6	S	335	~840	63.2%
		2 dip-coated TiO ₂ , thermal treatment					
	$^8\mathrm{V}_2\mathrm{O}_5$ -Decorated Carbon	1 electrospun CNF	1	S	500	889	87.1% ^b
	Nanofiber						
		2 solvothermal , thermal treatment					
coating	⁹ TiO ₂ /Graphene	coating with the doctor blade	0.1	PCNTs-S	837	~1040 after 300	99%ª
	¹⁰ poly (3,4 ethylenedioxythiophene)- poly (styrene sulfonate)/Black Pearl (PS/BP)	electrospinning	0.09	NPCS-S	502	920	88.5%
This work	PAN-NC	electrospinning	0.14	S	200	1029	80.5%
					500	840	90.9% ^b

Table S1. The references³⁻¹⁰ about adding interlayer in Li-S batteries.

^a with a gradual increase for the first 20 cycles, ^b after one cycle activation, the capacity retention is calculated based on the second capacity.

materials	$\rho \ \Omega \ cm$	σ s m ⁻¹
PAN	14265	7.0 x 10 ⁻³
Carbon black	0.1	1.0 x 10 ³
PAN-NC	0.3	3.3 x 10 ²

Table S2. The results of resistivity measurements.

Electrical resistivity was measured with a four-contact method under the pressure of 4 MPa.

References

1. Li, H.; Jiang, J.; Wang, F.; Huang, J.; Wang, Y.; Zhang, Y.; Zhao, J., Facile Synthesis of Rodlike Cu_{2-x}Se and Insight into its Improved Lithium-Storage Property. *ChemSusChem* **2017**, 2235-2241.

2. You, Y.; Yao, H. R.; Xin, S.; Yin, Y. X.; Zuo, T. T.; Yang, C. P.; Guo, Y. G.; Cui, Y.; Wan, L. J.; Goodenough, J. B., Subzero-Temperature Cathode for a Sodium-Ion Battery. *Adv. Mater.* **2016**, *28*, 7243-7248.

3. Su, Y. S.; Manthiram, A., Lithium-Sulphur Batteries with a Microporous Carbon Paper as a Bifunctional Interlayer. *Nat. Commun.* **2012**, *3*, 1166-1172.

4. Wang, X.; Wang, Z.; Chen, L., Reduced Graphene Oxide Film as a Shuttle-Inhibiting Interlayer in a Lithium–Sulfur Battery. *J. Power Sources* **2013**, *242*, 65-69.

5. Ma, G.; Wen, Z.; Wang, Q.; Shen, C.; Peng, P.; Jin, J.; Wu, X., Enhanced Performance of Lithium Sulfur Battery with Self-Assembly Polypyrrole Nanotube Film as the Functional Interlayer. *J. Power Sources* **2015**, *273*, 511-516.

6. Li, Q.; Liu, M.; Qin, X.; Wu, J.; Han, W.; Liang, G.; Zhou, D.; He, Y.-B.; Li, B.; Kang, F., Cyclized-Polyacrylonitrile Modified Carbon Nanofiber Interlayers Enabling Strong Trapping of Polysulfides in Lithium–Sulfur Batteries. *J. Mater. Chem. A* **2016**, *4*, 12973-12980.

7. Liang, G.; Wu, J.; Qin, X.; Liu, M.; Li, Q.; He, Y. B.; Kim, J. K.; Li, B.; Kang, F., Ultrafine TiO₂ Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium-Sulfur Battery. *ACS Appl. Mater. Inter.* **2016**, *8*, 23105-23113.

8. Liu, M.; Li, Q.; Qin, X.; Liang, G.; Han, W.; Zhou, D.; He, Y. B.; Li, B.; Kang, F., Suppressing Self-Discharge and Shuttle Effect of Lithium-Sulfur Batteries with V₂O₅-Decorated Carbon Nanofiber Interlayer. *Small* **2017**, *13*, 1613-6810.

9. Xiao, Z.; Yang, Z.; Wang, L.; Nie, H.; Zhong, M.; Lai, Q.; Xu, X.; Zhang, L.; Huang, S., A Lightweight TiO(₂)/Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Long-Life Lithium-Sulfur Batteries. *Adv. Mater.* **2015**, *27*, 2891-2898.

10. Niu, S.; Lv, W.; Zhou, G.; Shi, H.; Qin, X.; Zheng, C.; Zhou, T.; Luo, C.; Deng, Y.; Li, B.; Kang, F.; Yang, Q.-H., Electrostatic-Spraying an Ultrathin, Multifunctional and Compact Coating onto a Cathode for a Long-Life and High-Rate Lithium-Sulfur Battery. *Nano Energy* **2016**, *30*, 138-145.