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ABSTRACT  
Data-driven analysis has recently emerged as an important task for smart water management as 

large amount of various data collected via smart meters, sensors and data loggers. Among the 

methods developed for data-driven modeling, deep neural network (DNN) is proved as the 

competitive and generic approach to solve many challenging problems, including but not limited to 

voice recognition, natural language processing, image classification etc. Deep belief network 

(DBN) is one of the DNNs and widely used for data analysis. This paper extended authors’ previous 

research in applying DBN model with the genetic algorithm to integrate with the Extended Kalman 

Filter (EKF). It results in a comprehensive and generic approach, by which the genetic algorithm is 

employed to optimize the configuration of the DBN and the EKF is applied to assimilate the newly 

available data with the trained DBN model so that the model can be updated whenever new data 

becomes available. The proposed method has been tested in the case studies of different domains, 

including but not limited to water distribution systems. The results show that the deep learning 

method integrated with EKF has resulted in good performance. 
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1 INTRODUCTION 

Infrastructure has been the foundation of our society. It provides transportation, power generation 

safe drinking water and much more. Infrastructure must be sustainable and resilient to the incidents 

and the deteriorations. To address the issue of aging infrastructure, sensors are placed onto 

infrastructure to monitor infrastructure health conditions. Ubiquitous sensing is continuously 

capturing data and generating large volume of data. With the ubiquitous sensing and 

interconnectivity, there is an imperative need for developing efficient and effective data analytics to 

extract useful information from big data, discover knowledge from information and acquire wisdom 

from knowledge to facilitate good decision-making. Intelligent data analytics play an important role 

at each and every step of the process.  

In water distribution system, a conventional SCADA system has been widely adopted to monitor 

the critical facilities, such as pump stations, storage tanks, and other key control points. While 

SCADA systems are very well developed, but the data collected from these systems are usually 

accumulated but no deep analysis is conducted to make good use of the data. Over last decade, 

Automatic Meter Reading (AMR) and Advanced Metering Infrastructure (AMI) technologies are 

gaining more and more acceptance in water industry. This is primarily driven by improving 
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operation efficiency. Widely adopted SCADA and emerging AMR/AMI are the backbone of 

implementing effective monitoring programs, which rapidly produce the datasets in large size (so-

called big data). Its value cannot be realized unless useful/actionable information is retrieved or 

extracted, and used for systematic simulation and optimization modelling to facilitate the decision 

making, and finally improve the automation control for triggering/communicating with the 

instruments in the field. However, conducting big data analysis calls for development of generic 

data-driven modelling tool. Based on our previous work [1], this paper proposes an enhanced deep 

belief network (DBN) [2] learning model with the Extended Kalman Filter (EKF) [3] that is 

integrated with DBN to enable assimilated learning from the given dataset. The application of EKF 

with the optimal parameters of the neural network results in the output covariance, which can be 

used to establish the confidence levels of the model prediction.  

 

2 INTEGRATED DEEP LEARNING FRAMEWORK 

An integrated deep belief learning framework has been developed with the extended Kalman filter 

and genetic algorithm optimization tool [4], which provides high performance computing features 

involved many CPUs (and/or compute nodes) and many GPUs to accelerate the model training 

process.  

2.1 Deep belief network 

Deep Belief Network (DBN) was originally proposed by Hinton, Osindero and Teh in 2006 [2]. It 

has been shown that the DBN can be constructed by stacking a number of Restricted Boltzmann 

Machines (RBMs) and training them in a greedy layer wise manner to learn more complex models 

than conventional ANN architectures. An RBM is a fully connected bipartite graph with two layers 

namely visible and hidden layers. The neurons in visible and hidden layers are designed to take 

binary or Gaussian values as input, so that several different architectures can be obtained with 

different value type, namely binary-binary, Gaussian-binary or Gaussian-Gaussian.  

Based on the RBM model, the DBN model’s conditional probability distribution between observed 

vector and hidden layers is as follows: 

 

 𝑃ሺݔ, ℎଵ, ℎଶ, … , ℎ௟ሻ = ቆ∏ 𝑃ሺℎ௞|ℎ௞+ଵሻ௟−ଶ௞=଴ ቇ𝑃ሺℎ௟−ଵ, ℎ௟ሻ (1) 

 

where ݔ corresponds to the input layer and is equivalent to ℎ଴. 𝑃ሺℎ௟−ଵ, ℎ௟ሻ is the joint probability 

distribution of visible units of a RBM at layer 𝑙 conditioned on the hidden units of the RBM at layer 𝑙 − ͳ. Figure 1 shows an example of DBN. 
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Fig.1 DBM model 

For the predictive analysis application, the Gaussian-binary RBM must be implemented with the 

following energy function [5]:  

 

 𝐸ሺݒ, ℎሻ = −∑ ሺݒ௜ − ܽ௜ሻଶʹ𝜎௜ଶ௜∈𝑉 −∑ ௝ܾℎ௝௝∈𝐻 −∑ ௜𝜎௜ݒ ℎ௝ݓ௜௝௜,௝  (2) 

 

Where V is the set of neurons in visible layers while H designates the set of neurons in hidden 

layers. ݒ௜ and ℎ௝  are the states of visible units and hidden units respectively; while ܽ௜ is bias weight 

for the visible units and ௝ܾ is for the hidden units. ݓ௜௝ is the weights between the neuron ݅ and the 

neuron ݆. 𝜎௜ is the standard deviation of the Gaussian noise for visible unit ݅. Learning the noise 

associated with each visible unit poses a challenge, but it can be overcome by normalizing each 

component of the data though subtracting the mean and divided by the variance. The learning rate is 

adjusted by reducing it by one or two magnitude from what is used for binary-binary RBM training. 

Reduction in learning rate is required to keep the weights emanating from certain components 

becoming very large. Gaussian visible units with rectified linear hidden units has been employed in 

the Gaussian-binary RBM. In this model, the hidden units are approximated by max(Ͳ,𝑁ሺͲ,ͳሻ) 
where 𝑁ሺͲ,ͳሻ is a Gaussian noise with zero mean and unit variance.  

2.2 DBN high performance optimization 

Different configurations (structures) of DBN models may result in the huge difference on the 

prediction performance. To achieve the good accuracy for the prediction, the best configuration of 

DBN must be adopted for the given problem. However, there is no general rules for choosing the 

best DBN model structure, a trial-and-error approach is usually employed in practice. In order to 

construct a robust DBN model efficiently and effectively 

, the Darwin Optimization Framework [15] (DOF) is integrated with DBN to optimize the DBN 

configuration [12]. DOF is a genetic algorithm-based optimization software tool. It enables 

heterogeneous high performance optimization with many CPUs (or compute nodes), where DBN 

model structures and training parameters are optimized, and many GPUs, where DBN training is 

accelerated by using hundreds of computing threads. During the optimization, the DBN 
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configurations, such as the number of hidden layers and the number of neurons at each hidden layer, 

are encoded into binary strings, so that they can be evolved by the genetic algorithm. For each 

generation in the evolution, the binary strings will be decoded into the configuration information to 

generate the DBN models to calculate their fitness, which is the prediction accuracy. The final 

optimized configuration given by DOF is also decoded into the configuration information so that 

the DBN model can be constructed for the given problem. 

2.3 Assimilated training 

Unlike conventional artificial neural network, a DBN model constriction involves two-step training 

namely the pre-training and fine-tuning. With traditional gradient-based training methods, the 

corrections of the weights in the neural network are calculated with the gradients of the activation 

functions by chain rule. However, since the gradient of the commonly used activation function is in 

the range of (-1, 1), and the corrections of the later layers are the multiplications of these small 

gradients by chain rule, the update values for the weights of the "front layers" (the layers close to 

the output side) become smaller as the number of layers of the network increases, and thus the 

“front layers” cannot be trained effectively. This is so-called the vanishing gradient problem, 

consequently the DBN cannot be trained effectively with the traditional gradient-based training 

methods. To address the vanishing gradient challenge, the pre-training [13] is adopted to obtain the 

good representation of the data. It enables the neural network model to learn layer by layer, so that 

the "front layers" can be well trained. After the pre-training, the neural network is fine-tuned by the 

traditional training method, e.g. backpropagation, to further improve its accuracy. In this paper, the 

EKF is employed to fine-tune the neural network. The structure of the EKF integrated with DNN is 

shown in Figure 2 to enable the assimilated learning. The principle is to use the DBN to "mimic" 

the output of the physical system in real world. For prediction applications, the inputs of the real 

system and the DBN are the historical data. If the outputs of the real system and the DBN are the 

same, it means that the prediction of DBN is accurate. Otherwise, the difference between the 

outputs will be feed-backed to the EKF to adjust the estimation of the states, i.e. the weights and 

biases of the neural network. This way, the new output of the real system can be timely assimilated 

with the DBN via EKF.  

 

 

 

 

 

 

 

 

 
 

Figure 2 Assimilated training with extended Kalman filter 
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3 EXAMPLE APPLICATION 

The integrated approach for enhanced DBN model has been applied to a few real use cases for data-

driven analysis. The learning process follows Figure 2, which includes the Darwin optimization, 

pre-training and fine tuning with EKF. Then, the prediction is performed with the trained neural 

network model. The results are compared with the neural network trained with back propagation 

(BP) method. 

3.1 Daily water consumption prediction 

The first case is the water consumption prediction. The dataset is the daily water consumption data 

of a real water system from 2005 to 2008 [6]. In this case, a deep belief neural network is optimized 

with 7 inputs, 3 hidden layers (7 neurons in each layer) and 1 output is used. The inputs of the 

neural network are the previous 7 days’ water consumption data, and the output is the prediction of 

the water demand for the next day. The neural network is trained with the data in 2005 and 2006, 

then tested for prediction of the daily water consumption of 2007 and 2008.  

 

The sample prediction results of the proposed EKF integrated DNN (EKF-DNN) is presented in 

Fig.6 compared with the prediction from BP trained neural network (BP-DNN) and the actual data. 

The line charts in the figures are the actual water consumption values and the predictions of BP and 

proposed DBN-EKF methods. The bar charts in the figures are the difference between the 

prediction errors of two methods, in which the positive value indicates the proposed DBN-EKF 

method has better prediction accuracy. Based on the results, the Mean Absolute Percentage Error 

(MAPE) is 1.998% for EKF training and 3.178% for BP training. Meanwhile, the RMSE is 6.22 for 

EKF-DNN and 9.21 for BP-DNN. Therefore, the EKF-DNN is more accurate than BP-DNN. Also, 

as shown in Figure 3, the prediction of the conventional BP method gets less accurate in 2008 than 

in 2007. This is because the BP trained neural network has fixed parameters that cannot keep 

tracking the system changes, while the EKF-DNN can be updated with the new input data. 

Therefore, the EKF-DNN is able to produce consistently accurate prediction for a long period of 

time, since it keeps learning to assimilate the new data feature along the time horizon while being 

used for prediction. 

 

Figure 3 Comparison of prediction and the actual daily water consumption 
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As briefly elaborated earlier, the confidence interval of the prediction can be calculated by EKF, and 

this information can be used to detect the anomaly in the system. In this case, by running the EKF 

while the DNN is predicting, the upper and lower bounds of the prediction can be obtained. By 

choosing a 2σ confidence interval that σ is standard deviation, the actual water consumption will 

have about 95% possibility to be within the bounds. If the actual measurement is out of the bounds, 

it indicates that there is a very high chance that something wrong happened in the system. Then, a 

warning could be issued to inform system operators. Figure 4 demonstrates the examples of the 

anomaly detection for this case. 

3.2 15-Minute water consumption prediction 

The second case study is also the water consumption prediction problem of the Oldham town, but 

the data is recorded in every 15 minutes. The model is built to input the previous 2.5 hours’ data to 

the neural network and predict the next 15-minute water consumption. The deep belief neural 

network model has been optimized with 10 inputs and 1 output, since the data have 15 minutes’ 
interval. Meanwhile, the neural network has 3 hidden layers with 7 neurons in each layer. 

 

 

Figure 4 Anomaly detection for daily water consumption  

 

Figure 5 Comparison of predictions and the actual 15-min water consumptions 
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As shown in Figure 5, the prediction from EKF-DNN model can track the actual water consumption 

very well. The MAPE of the prediction is 5.543% and the RMSE is 0.2. Therefore, it can be 

concluded that the EKF-DNN model is very effective to achieve adequately accurate prediction of 

water consumptions and anomaly detections. The result of the proposed method is compared with 

the BP method. It shows that the proposed method outperforms the BP method in this case study. 

This is because the data has a period of one day, but the 2.5 hours input data is not enough for the 

neural network to learn the pattern. BP method without function of data assimilation, the prediction 

result is less accurate than EKF-DNN. 

4 CONCLUSIONS 

This paper presented a generic data analytic modelling framework for extracting the intelligence 

from data, with potential of wide applications in simulation and prediction analysis that serves as 

the data-driven engine of infrastructure asset performance modelling e.g. water distribution network 

management. The results of the case studies conducted and presented in the paper demonstrate the 

effectiveness of the integrated approach for practical applications.  
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