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ABSTRACT  
A system-wide investigation into the impact of quasi-steady and unsteady state pressure variations 

on the structural degradation and ultimate failure of pipes is critical for prioritising operational and 

capital expenditures. Such investigations rely upon an optimally designed observational study and 

the availability of metrics, which accurately capture the physical phenomena. The objective of this 

paper is to explore advances in causal inference and statistical methods in order to develop a 

sampling survey methodology that is required to differentiate the impact of pressure variations and 

transients, and other causal factors on pipe deterioration and failures. 
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1 BACKGROUND  

Pipe failures in water supply network are attributed to the individual or combined impact of factors 

associated with pipe material and diameter (e.g. age, manufacturing defects, wall thickness), 

environmental and operational loadings (e.g. temperature, ground movement, soil shrink and swell, 

road traffic, pipe hydraulics), installation practices and workmanship during installation and repairs, 

and external factors (e.g. a third party damage). While many of these factors are beyond the control 

of operators for existing infrastructure, the optimal management (reduction) of the diurnal steady-

state pressure, which is represented by the Average Zonal Pressure (AZP), has been recognised as a 

cost-effective method for reducing leakage and burst frequencies ([1], [2]).  

In addition to AZP, cyclic pressure variations under steady and unsteady state hydraulic conditions 

could significantly contribute to both pipe failures and the structural degradation of pipelines by 

accelerating the fatigue crack growth rate. Recent studies ([3], [4]) have highlighted the adverse 

impact of pressure variations on pipe deterioration and failures. Consequently, it is of critical interest 

to operators the degree to which the dynamic pressure variations due to quasi and unsteady-state pipe 

hydraulics are a risk factor for pipe failures and pipe deterioration; and whether this knowledge could 

significantly enhance the performance of existing pipe burst deterioration models.  

The assessment of whether dynamic pressure variations, which include quasi-unsteady state pressure 

variations and pressure transients, are a causal factor in a pipe burst is rather complex. Firstly, on-site 

information gathered during pipe repairs is of low quality and a forensic analysis to identify the causes 

of pipe failures is rarely carried out. A “fire-fighting” (reactive) model for dealing with incidents and 

the lack of protocols for pipe failures analyses have so far limited the on-site data collection during 

and after pipe repairs. Secondly, technologies [11] for continuously monitoring the pressure with high 

temporal and spatial resolution, and metrics to quantitatively capture the fatigue-induced stress (e.g. 

the cumulative pressure induced stress, [12]) have only been recently developed and made available 

to pipeline and network operators [14]. Thirdly, pipe failures are likely the result of the joint effects 

of a number of factors, which makes it difficult to differentiate the contribution(s) of the dynamic 
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pressure variations to a pipe failure. The so-called “Swiss cheese model” of accident causation [13] 

describes that failures occur because of a combination of different events, which collectively change 

the behaviour of a system or a physical process. This model acknowledges that a structural failure 

has a multiple of possible causes that may not function independently, thus resulting in a fairly 

complex causal structure. Therefore, understanding the role of a critical individual factor such as the 

dynamic pressure variations, which is one of the very few factors an operator could proactively 

control, may bring significant operational benefits and expand the life cycle of pipe assets.  

The causality analysis of a pipe failure (or a cohort of pipe failures) requires good understanding and 

control of the various causal factors in making comparisons and assessments for different 

management strategies. Therefore, to assess the degree to which dynamic pressure variations 

increases the probability of a structural failure in a pipe, the design of the data collection and analysis 

should account for the correlation between the multiple additional factors, referred to as confounding 

factors, and the dynamic pressure variations as the causal factor of interest.  

A common experimental approach that limits the influence of confounding factors is the randomised 

control trial. However, the deliberate introduction of dynamic pressure variations will be 

unacceptable for water operators. Consequently, most of the data that is collected for such analysis 

are part of an observational study, which draws inferences from a sample to a population. In this case, 

the independent variable (dynamic pressure variations) is not under the control of an investigator and 

specific design-for-data-collection methods are needed to balance the impact of confounders on the 

comparison of pipe segments with and without the causal factor of interest, namely the dynamic 

pressure variations. By using such methods, water utilities can better assess the corrective actions, 

and the OPEX vs CAPEX trade-offs to reduce pipe failures due to sub-optimal pressure management.  

In this paper, methods for the design of an observational study for investigating the impact of dynamic 

pressure variations on pipe burts are studied in order to support the design and execution of a large 

scale investigation by a UK water company. The paper is structured to, firstly, provide a background 

review on the data collection methods, followed by a review of various categories of probability 

sampling methods. A calculation of sample sizes for this investigation is then presented, together with 

methods for a stratified random sampling and a two-stage sampling procedure.  

2 HIGH RESOLUTION PRESSURE DATA COLLECTION 

The long-term impact of dynamic pressure variations on water pipes is not well understood. Urgent 

cost-effective investigations are required to establish whether hydraulic dynamics increases the 

probability of pipe failures in order to take this into account when optimising capital and operational 

expenditure plans. One reason for this poor knowledge is the lack of long-term pressure data with 

high temporal and spatial resolution. Recent technological developments can now address this 

challenge. A pressure monitoring device, a data management system and a set of analytical methods 

developed at Imperial College London, InfraSense Labs, [3,11] and licensed to [14], are used for 

continuously monitoring the dynamic hydraulic behaviour within a water supply network and 

deriving the cumulative pressure induced stress [12] for each pipe and a control asset. CPIS is 

calculated from the frequency and amplitude of cycles and the average pressure for which these cycles 

occur for a specific pipe diameter. High frequency pressure data (up to 128S/s, Samples per second) 

has been acquired at over 480 monitoring locations across a water supply network within 2.5 years 

(and this programme of work continues). A carefully designed device placement programme (the 
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sampling programme) was integral to support the deduction of causal inferences from observational 

data and extrapolating such inferences to similar pipe segments.  

2.1 Sampling programme (device placements) for an observational study 

We investigate the impact of dynamic pressure variations on pipe failures by combining experimental 

research under controlled laboratory conditions (e.g. pipe samples investigated for crack initiation 

and propagation) and observational studies from operational networks. Each of these methods has its 

own advantages and limitations; and therefore, it is essential that the two methods are combined. This 

paper focuses on the design of an observational study.  

Our initial approach, which is becoming a common practice for UK water companies, included case 

studies where pressure data with high spatial and temporal resolution were acquired for individual 

pipes and sub-sections of a network following a pipe failure. We refer to this approach as “hunting 

for transients”. While this approach addresses specific operational problems, it lacks the rigour of 

answering system level questions such as: to what extent and under what circumstances dynamic 

pressure variations impact the pipe deterioration and failures, should these dynamic pressure 

variations be included in pipe burst prediction models, and what pressure monitoring and control 

actions should be implemented for hydraulically calm networks. Consequently, our work evolved to 

include causal inference and observational studies methods from epidemiology, medicine and 

statistics such as case-control, cross-sectional and cohort methods [10]. The device placement 

(sampling) method described here is designed to support a cross-sectional observational study, for 

which sections of uniform metallic pipes with historic failures, performance indicators (e.g. pressure 

from extended period simulation models and leakage) and specific confounding factors (e.g. soil type) 

were divided into “pipe subjects”. Nearly 114,000 pipe repair records were available for a time period 

of 10 years. The device placement method aimed to determine the prevalence of the cumulative 

pressure induced stress (CPIS) as a metric for the dynamic pressure variations. Prevalence equals the 

number of pipe subjects with measured CPIS in the population at a given point in time (e.g. a duration 

of two weeks).  

For the cross-sectional observational study, two approaches for the placement of devices (sampling) 

were considered: probability and non-probability sampling methods. In probability samples, each 

pipe subject from the population has a known and non-zero chance of being chosen, while in non-

probability samples, it is not known for certain whether each pipe subject has non-zero probability of 

being selected. Probability sampling methods, which were investigated, include [5] a simple random 

sampling (SRS), stratified sampling, systematic sampling and multi-stage sampling. 

In simple random sampling, the desired number of pipe subjects (pipe samples) to be investigated for 

their CPIS (e.g. analysed for the dynamic pressure variations) are randomly selected from the 

population. For the stratified sampling, the pipe subjects are ranked and stratified, and then a list of 

pipe subjects to be investigated are randomly selected from the different strata. In systematic 

sampling, every 𝑖𝑡ℎ member of the list with ranked pipe subjects is selected. Multi-stage sampling 

involves using a combination of two or more of the sampling techniques highlighted above.  

In our study, a stratified random sampling has been applied to utilise a smaller sample size and 

minimise the use of under-representative samples. Two categories of stratified random sampling were 

investigated: proportionate stratification and disproportionate stratification of the derived pipe 

subjects [6]. In proportionate stratification, the sample size of each stratum is proportionate to 

population size, i.e. each stratum has a similar sampling fraction. The sampling fraction may vary for 

each stratum in disproportionate stratification. The disproportionate stratification could lower the cost 
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of the study as various assumptions are accommodated without significantly affecting the statistical 

rigour of the analysis. For instance, using this method, the sampling could be more heavily biased 

towards a stratum where the size of the stratum or its variability are large.  

 

2.2 Sample size 

There are various factors affecting the number of pipe subjects from the whole population, for which 

CPIS should be experimentally determined. These factors include the acceptable level of precision, 

confidence interval, variability within the strata and cost considerations. In order to calculate the 

sample size for random sampling without replacement, the population size, confidence level, margin 

of error and standard deviation are required. The sample size is determined from [6]:  

𝑛 = (𝑧 − 𝑠𝑐𝑜𝑟𝑒)2 × 𝑆𝐷 × (1 − 𝑆𝐷)/(𝑀𝑜𝐸)2 ( 1 ) 
 

where 𝑛 is sample size, 𝑆𝐷 is standard deviation and 𝑀𝑜𝐸 is Margin of Error. Value of 0.5 is assumed 

for the standard deviation. For stratified random sampling, the sample size in each stratum is 

calculated as [7]:  

𝑛ℎ =
𝑛×

(𝑁ℎ𝜎ℎ)

√𝑐ℎ

∑
(𝑁𝑖𝜎𝑖)

√𝑐𝑖

 ( 2 ) 

 

where 𝑛ℎ is the sample size for stratum ℎ, 𝑛 is total sample size, 𝑁ℎ is the population size for stratum 

ℎ, 𝑁 is total population size, 𝜎ℎ is the standard deviation of stratum ℎ, and  𝑐ℎ is the direct cost to 

sample an individual element from stratum ℎ. In this study, it is assumed that direct cost of each 

sample (e.g. the deployment of an InfraSense device) is the same across various strata, and in order 

to maximise precision given a fixed sample size, Neyman allocation, [5], is used to provide the sample 

size for stratum ℎ, as:  

𝑛ℎ =
𝑛×(𝑁ℎ𝜎ℎ)

∑(𝑁𝑖𝜎𝑖)
 ( 3 ) 

 

There are approximately 24,000km length of metallic pipes as part of this study with approximately 

0.5 million pipe segments, and a large proportion smaller than 5m in length. Based on the transient 

dissipation characteristics for metallic pipes, we assumed that a monitoring location can be 

representative of the CPIS characteristics for a pipe length of 1km, 500m length upstream and 

downstream direction. This reduces the total population to 24,000 pipe subjects; it should be noted 

that this topological simplification for the purpose of device placement provides the largest number 

of pipe segments. 

By applying the Neyman allocation, and considering a standard deviation of 0.5, sample sizes (𝑛) are 

calculated for various confidence intervals and margins of error (Table 1).  

Table 1 Sample size got various Confident Intervals (CI) and Margin of Error (MoE) 

 𝐶𝐼 𝑧 − 𝑠𝑐𝑜𝑟𝑒 𝑀𝑜𝐸 𝑆𝐷 𝑛 

0.05 95% 1.96 10% 0.5 96 

0.02 98% 2.33 10% 0.5 136 

0.1 90% 1.645 5% 0.5 271 
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0.05 95% 1.96 5% 0.5 384 

0.02 98% 2.33 5% 0.5 543 

 

Considering the network size, uncertainties in data used for the sampling design, and resource 

constraints (number of devices and man hours), a confidence interval of 95% and margin of error of 

5% are considered, resulting in a minimum sample size of 384 monitoring locations.  

3 STRATIFIED RANDOM SAMPLING (SRS) 

The developed stratified random sampling consists of two stages (Figure 1). Stage 1 assigns the pipe 

subjects (population members) to individual strata, and in stage 2, the random sampling from each 

stratum is carried out.  

 
Figure 1 placeholder - Statified random sample procedure 

 

3.1 SRS Stage 1 

In stage 1, three strata with low, medium and high hydraulic failure likelihood are defined. This 

stratification process attempts to capture the spatial variations in the network performance based on 

topological, operational characteristics and historic performance. The hydraulic failure likelihood 

utilises information from “classic” pipe burst prediction modelling methods, which do not take into 

consideration the dynamic pressure variations, together with additional hydraulic-based performance 

indicators. In this investigation, the topological hierarchy of the network has also been considered. 

For example, the stratification included Control Groups (CG). A control group is a set of 30-60 DMAs 

(District Metered Areas) with the same supply sources.  

The additional hydraulic-based performance indicators, which were included in the hydraulic failure 

likelihood, take into consideration areas and assets with high probability of occurrence of pressure 

transients. These include pipe assets in proximity to pumps, electrically operated valves and large 

industrial consumers. The hydraulic performance measures used for stage 1 ranking are based on the 

control group ranking, type of control assets, historic pipe failures, predicted pipe failures and historic 
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supply interruptions. A performance table is then used to rank all CGs. For instance, analysing 

historical bursts per pipe length in each CG, Table 2, results in CG ranking based on this factor. 

Table 2 Example of CG ranking based on CG pipe failure rate 

CG 

reference 

Number of burst 

(2003-2013) 

Length of 

mains(km) 

Bursts/ 

1000km  

CG 

ranking 

CG 

level 

CGEM23 837 246.9 3390 3 H 

CGEM16 146 75.5 3258 4 H 

CGEM03 288 152.7 1886 51 M 

CGEM24 2840 1521.8 1866 52 M 

CGEM47 434 321.9 1349 96 L 

CGSV03 242 180.7 1339 98 L 

… … … … … … 

 

A weighted CG rank list is then computed from the six CG ranking lists, which are derived using the 

various indicators. Methods such the Round Robin, Raw Score and Linear Scaling [8] can be applied 

to combine the ranked lists. For this study, a Raw Score method is utilised. A local score for each list 

is calculated for defining the ranking in the combined list. CGs are assigned a weighting based on 

their ranking in each list. Then, a linear combination of weights for each CG is calculated and used 

to develop a final ranking list. In this final list, each CG has a CG level (H, M, L), which stands for 

High, Medium, or Low, in order to indicate its hydraulic failure likelihood. 

3.2 Stratum sample size 

The outcome from stage 1, which is the three strata of the CGs with low, medium and high level of 

hydraulic failure likelihood, is summarised in Table 3.  

Table 3 Characteristics of the Strata result from stage 1 

Stratum Number of CGs 
Population (pipe 

segments) 

Low 43 477,304 

Medium 43 318,018 

High 43 456,905 

 

A stratum with low hydraulic failure likelihood represents areas of the system that have not 

experienced hydraulic failures (e.g. pipe failure, supply interruption, etc.), have a low probability of 

predicted pipe failures (based on a “classic” pipe burst modelling method) and where the likelihood 

of dynamic pressure variations is low. Consequently, the stratified sampling results in a larger number 

of samples from areas with a higher likelihood of hydraulic failures.  

The Neyman allocation is expanded to account for this sample adjustment weighting:  

𝑛ℎ =
𝑛×(𝑁ℎ𝜎ℎ)×𝑆𝑊

∑(𝑁𝑖𝜎𝑖)×𝑆𝑊𝑖
 ( 4 ) 

 

where  𝑛ℎ is the sample size for stratum ℎ, 𝑛 is total sample size, 𝑁ℎ is the population size for stratum 

ℎ, 𝜎ℎ is the standard deviation of stratum ℎ and 𝑆𝑊 is sample adjustment weighting. As standard 

deviation for each stratum is not known, value of 0.5 is used. For 𝑛=384, 𝜎ℎ=0.5 and considering 
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population proportion (weighting factor to promote areas with a higher likelihood for hydraulic 

failures); the number of samples in each stratum is calculated, as shown in Table 4.  

Table 4 Distribution of sampling points in each stratum 

Stratum 

Mains 

length 

(km) 

Population 

(pipe 

segments) 

Sample 

adjustment 

weighting 

𝑁ℎ 𝑛ℎ 

Low 10,193 477,304 0.2 95461 62 

Medium 13,909 318,018 0.3 95405 62 

High 19,473 456,905 0.5 228453 148 

 

3.3 SRS Stage 2 

At SRS stage 1, the list of CGs and number of samples in each stratum is determined. At stage 2, a 

random sampling is undertaken from the number of samples within each stratum. The device 

placement (deployment) locations are randomly selected within each stratum, taking into account 

various practical constraints and deployment restrictions. Some of these restrictions include: (i) a 

limited number of pressure tapping points on large diameter (trunk) mains, valves and pumps; (ii) a 

restricted access to certain locations (traffic management, private properties, etc.); (iii) discrepancies 

between available assets data from the GIS and the actual network configurations. 

4 ANALYSIS OF THE SAMPLING (DEVICE PLACEMENTS)  

A total of 480 locations have been monitored as part of this initial study, which exceeded the 

minimum sample requirement of 384 device placements. The proposed sampling methodology for 

the observational study was further analysed in order to examine whether the assets selected for 

placing a device had similar distributions in comparison with the distributions of all pipe assets for 

the entire population. For instance, as illustrated in Figure 2, the distribution of sites logged, follow a 

similar distribution of the assets for the entire network. This is true for both physical properties (e.g. 

pipe age and soil properties) of the network and its hydraulic characteristics (e.g. maximum pressure).  

 

Figure 2 Comparing distribution of assets logged versus all pipes at (a) age groups (b) pipe 

diameter groups 
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5 CONCLUSIONS 

The total expenditure model (TOTEX) and the recently introduced quality of service and outcomes-

based incentives by the water regulator (Ofwat) are forcing UK water utilities to gain much better 

understanding and control of the hydraulic performance of their networks, and causes of pipe failures. 

This paper describes the design of an observational study, which informed the sampling programme 

(the placement of pressure monitoring devices) for a unique large scale investigation into the impact 

of quasi-unsteady and unsteady-state (transients) pressure variations on pipe failures. The size of the 

networks under investigation is 43,000km of pipes. The quality and strength of evidence provided by 

the study, which is outside the scope of this paper, is determined largely by its sampling design. This 

paper discussed the principles and methods that guided the design of the observational study.  

The presented observational study and sampling method empower the transition towards a more 

holistic pressure management approach for hydraulically calm networks, which includes the 

reduction of both AZP and dynamic pressure variations 
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