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ABSTRACT  
 

Water supply networks (WSNs) represent an important part of urban technical infrastructure. 

Recently, the resilience of water distribution networks facing different physical and cyber threats 

has gained increasing attention. In order to improve the operation of complex water distribution 

systems under both, extreme and normal hydraulic conditions, mathematical simulation models are 

indispensable tools for engineers, network planners, network operators and decision makers. 

Especially, in the case of extremely disruptive events that might be caused by natural hazards or 

deliberate malevolent attacks by humans, the proper operation of the system for maintaining the 

supply of drinking water to at least parts of the population is a very challenging task. Resilient 

behaviour can be reached only by adaptive system operation including isolation of parts of the 

network and control of pressure and flows in the system. For that purpose, different kinds of control 

devices are used that may be remotely controlled or which are operated in the field. Existing 

hydraulic simulation software often fails to calculate reliable results for systems under control and 

pressure insufficiency. 

A mathematical framework for the simulation of the steady-state flow in reticulation water supply 

networks with special consideration of feedback control devices and pressure dependent demands is 

proposed in this paper. First, the importance of the steady-state calculation in the face of disruptive 

events is stressed and a brief review of synthetic and analytical methods for the hydraulic steady-

state calculation is given. In this paper, the well-known content model is extended by the content of 

pressure dependent outflows. The nonlinear consumption functions in combination with linear 

inequality constraints (box constraints) replace the constant demands of demand driven analysis. It 

is also shown that the range of solvable problems in combination with flow control devices is 

enlarged by the relaxation of fixed demands.   

 

Keywords:  Pressure driven modelling, control valve, convex optimization 

1  BACKGROUND  

1.1 Introduction  

The influence of insufficient pressure conditions ([1], [2], [3]) and the impact of control devices 

(has been widely studied in the context of mathematical modeling of Water Distribution Networks 

(WDN). However, there is still a lack of robust simulation algorithms that are capable of dealing 

with extreme situations where a number of pipes are in failure mode and, as a result, the system 

might be decomposed into several disconnected parts. The stable and robust calculation of WDN 

hydraulics and water quality under anomalous operational conditions as they appear under extreme 

events like natural disasters, electrical power blackouts or other technical failures is a basic 
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requirement for all model-based decisions and, eventually, for improving the resilience of drinking 

water supply. Existing simulation techniques are not capable of dealing with these situations and 

often fail to calculate a feasible solution. There is a strong need for improved mathematical methods 

that successfully deal with ill-posed systems and other situations where existing modelling 

techniques reach the limits of their theoretical basis.  

One important step towards robust and realistic modelling of extreme situations is the development 

of a robust hydraulic system solver that can deal, amongst other things, with system-wide 

insufficient pressure conditions. Consider a scenario with numerous failures of system devices like 

pumps, control valves or pipe breaks and the network is decomposed into different parts that might 

be connected to the sources only by pipes with insufficient diameter or not connected at all. In this 

case, the state-of-the-art demand driven models fail to converge or to calculate reliable results. The 

way to analyze such situations with existing tools is to remove the closed (or broken) pipes from the 

system, check connectivity and analyze the different resulting components separately with a 

remaining risk that flow control devices cause further decomposition. This approach is not 

practicable especially for online calculations since the system matrix has to be changed due to 

multiple incidence matrix manipulations. In contrast to pipes whose status is closed and known a 

priori, the state of flow control devices is unknown and dependent on the hydraulic conditions of 

the entire system. From a mathematical point of view, the closed pipes can be modelled by equality 

constraints of the flow, whereas flow control devices are modelled by inequality constraints. In this 

paper, after a brief background, a method is presented that extends the well-known Content Model 

for hydraulic steady-state calculation by introducing the content of pressure dependent demands. It 

will be shown that by replacing the fixed demands by a more general Pressure Outflow Relation 

(POR) the range of solvable systems is greatly enlarged. The method is demonstrated with a small 

example system.  

1.2 Content Model for Demand Driven Modelling (DDM)  

It has been shown by different authors that in DDM analysis the calculation of the steady-state of 

pressurized pipe networks is equivalent to the minimization of the so-called system content [4].   min𝐪∈ 𝑝 𝐶 𝐪 =∑ +∑==     . .  −𝐀 𝐪 − = 𝟎  

(1) 

The continuity constraint includes the 𝑛 × 𝑛  arc-node incidence matrix 𝐀  (𝐀 , , = , if arc  

leaves node , 𝐀 , , = − , if arc  enters node  and 0 otherwise), the flow vector 𝐪 (size np: 

number of pipes) and demand vector  (size nj: number of nodes without fixed head). The content 

of pipe j is given by:   = ∫ 𝐺 𝑥 𝑥 = ∫ |𝑥 |𝛼− + |𝑥 | 𝑥 𝑥 .  (2) 

Here,    is the flow for pipe j;   =    𝑥   is the pipe resistance which depends on flow for the 

Darcy-Weisbach head loss; and  the exponent of the hydraulic equation (usually for the Darcy-

Weisbach or Hazen-Williams formulations where  𝛼 ).  The second term on the right-hand side 

in Eq. (2) refers to the local minor loss of valves and fittings. The second sum in Eq. (1) is over all 

fixed head nodes (number nr). The content in this case is defined by:  = ∫ ℎ , 𝑥 = −ℎ , 𝐀 𝐪 .  (3) 

with the external in- or outflow at the fixed head node  𝐀 𝐪  and ℎ ,  is the known head at node i. 

The system content is strictly convex (which is guaranteed by the strict monotonicity of the head 
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loss equation) and a norm-coercive function of q (| | ⟶ +∞  if | |  → +∞ ). This 

guarantees the existence and uniqueness of the solution if the mass constraint set is non-empty.  

1.3 Content Model for DDM Analysis Including Flow Control Devices 

In a previous publication [5] it was shown that flow control devices such as check valves and flow 

control valves can be modelled by a multivalued subdifferential mapping. As a consequence, the 

convex and differentiable problem of minimizing the system content is replaced by either the 

minimization of an unconstrained, convex and subdifferentiable content function or by the 

minimization of a convex and differentiable Content function over a polyhedral set that is described 

by the continuity equation in combination with additional inequality constraints describing the 

restrictions imposed by flow control devices:   min 𝐪 ∈  𝑝  𝐶  𝐪  = ∑   (  )  − 
 =  𝐪  𝐀  𝐡    . .   −𝐀   𝐪 −  =  𝟎   ;   𝐪 −  𝐪 ax  𝟎;−𝐪 +  𝐪  𝟎 (4) 

The constrained minimization problem has a unique solution if and only if the polyhedral set 

defined by the constraints is nonempty and the Karush-Kuhn-Tucker conditions (KKT) hold. 

Pressure controlling devices are not included, here. It would require the formulation of additional 

local minimization problems that result in a game theoretical model. For solution a Nash-

Equilibrium can be calculated, then. 

2 EXTENDED CONTENT MODEL 

2.1  Content and Multivalued Pressure Outflow Relation (POR) 

In this section, the content minimization problem of Eq. (4) is extended to include pressure outflow 

relationships (PORs). For an analytical investigation, the concept of sub-gradients is used. The 

generalized mathematical framework of Subdifferential Calculus, better known as Convex Analysis, 

provides strong concepts including general necessary and sufficient conditions. This is especially 

important for the derivation of statements about existence and uniqueness of steady state solutions 

with interacting PDM nodes and control devices. A common POR is the so-called Wagner function 

[6] where the outflow c is a function of the actual pressure h: ℎ . Other POR forms can be found 

for example in [6]. The following multivalued (sub-differential) mapping describes the pressure 

dependent behaviour by the inverse mapping ℎ : 

 h c ∶= {  
  ∅ , c <−∞,h , ] , c  =  h , + k c |c |          , < c < d [h , , +∞ , c = d∅ , c > d  (5) 

with k = ,𝑆 − , d 2  , 𝑓 d ≠ ; h ,  the elevation plus the minimum pressure head at node i; and h ,  is the service head at node i (i.e.: the elevation plus the service pressure head above which the 

full demand is satisfied). For this sub-differential mapping, a convex and lower semi-continuous 

content function exists: 



CCWI 2017 – Computing and Control for the Water Industry Sheffield 5
th

 - 7
th

 September 2017 

̅ c = { ∞ , c <h , c + k |c |          , c d∞ , c > d  (6) 

Figure 1 shows the graph of the multivalued mapping for  h c  and the corresponding lower semi-

continuous convex Content function. Within the interval ] , [. ̅  is strictly convex. 

                        
Figure 1. Multivalued mapping for the inverse POR function  𝒄   and the corresponding convex, 

lower semi-continuous Content-Function  ̅  

 

The different variables and their physical meanings may be visualized in Figure 2. The curves a, b 

and c refer to the hydraulic grade lines (HGLs) corresponding to three different cases:  

 a) full supply with c = d  and h h , ;  

 b) reduced supply with < c < d  and h = ĥ c ;  

 c) no supply with c =  and h h , .  

The multivalued POR shown in Figure 2 can be realized in Epanet by a series of control devices 

enabling the solution of PDM problems by existing DDM solvers ([1], [2], [3]). To achieve that, one 

FCV (flow control valve), one TCV (throttle valve), one check valve and one reservoir are 

connected to the original demand node in the Epanet model as shown in Figure 3. 

 
Figure 2. Multi-valued mapping for POR and Lagrangian multipliers for three HGLs a – c. 
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The FCV limits the maximum outflow to the required demand (upper bound c d ), the TCV 

includes the nonlinear flow-head relationship (inverse POR function:  h , c  = k c |c |) and the 

check valve prevents backflow from the reservoir into the system (lower bound c ). The 

elevation of the reservoir is set to the elevation (minimum pressure head) ℎ  of the demand node. 

The setting of the FCV is the demand   and the headloss coefficient value of the TCV is chosen 

such that the headloss for flow  =  equals the minimum service pressure  ℎ  .  

     
Figure 3: Modifications in EPANET needed for PDM modelling. 

This approach has also been recently proposed by other researchers. However, the applicability of 

the approach is limited due to following reason. First, the settings of the TCVs have to be updated 

for every time step of an extended period simulation according to changes in d. Second, the size of 

the model is dramatically increased by the modifications. For every demand node, an addition of 

three nodes and three links is required. Third, the solvability of the system relies on the heuristics 

implemented in Epanet for handling flow control devices.   

2.2 System Content with Pressure Dependent Demands 

The steady-state is given by the minimum of the system content that is extended by the content of 

the non-zero demand nodes. In the continuity constraints the fixed demand d is replace by c.  min [𝐪, ]∈𝑹 𝑝+ 𝐶 𝐪, =∑ ( ) += ∑W̅ −= 𝐪 𝐀 𝐡    . .   −𝐀 𝐪 − = 𝟎  (7) 

The function 𝐶 is strictly convex and norm-coercive in q and c. As explained above, the content of 

the PDM demand nodes W̅ as shown in Eq. (6) is an unconstrained, convex and sub-differentiable 

function. Therefore, there always exists a minimum. However, in practice we are only interested in 

solutions where  𝐶 𝐪, < ∞. For numerical treatment, it is convenient to replace the unconstrained 

minimization problem (Eq. (7)) by a constrained one with differentiable function Ŵ  that is defined 

only for   and is identical with W̅ within the compact set defined by the box constraints. 

The unconstrained minimization problem with subdifferentiable objective function W̅ is replaced by 

the following constrained problem with differentiable function Ŵ: 

 min [𝐪, ] ∈ 𝐑 𝑝+  𝐶 𝐪, = ∑ +∑Ŵ −= 𝐪 𝐀 𝐡=    . .   −𝐀 𝐪 − = 𝟎 ; − 𝟎 ;        (8) 

An equivalent formulation was proposed in [8]. 

2.3 System Content with POR and Flow Control 

In a previous publication [5] it was shown that flow control devices can be treated with a very 

similar approach using PORs as described in the previous section. The hydraulic behaviour can be 



CCWI 2017 – Computing and Control for the Water Industry Sheffield 5
th

 - 7
th

 September 2017 

described by a multivalued monotone (subdifferential) mapping q->h and a convex lower semi-

continuous content function. The combined constrained minimization of the continuous content 

function is then:  min [𝐪, ] ∈ 𝐑 𝑝+ 𝐶 𝐪, = 𝐪 𝚫𝐡̅̅ ̅̅ − 𝐪𝑻𝐀 𝐡 + 𝐍 + 𝐡 . .   −𝐀 𝐪 − = 𝟎 ; − 𝟎 ;  ;   𝐪 − 𝐪 ax 𝟎;   𝐪 + 𝐪 𝟎   (9) 

where N is the 𝑛 × 𝑛  diagonal matrix with diagonal elements 𝑁 = | |. The Lagrangian of 

the minimization problem Eq. (9) is defined as:  𝐪, , 𝐡, , = 𝐪 𝚫𝐡̅̅ ̅̅ − 𝐪 𝐀 𝐡 +   𝐍 + 𝐡 −𝐡 𝐀 𝐪 + + − − +(−𝐪+ 𝐪min)+ (𝐪 − 𝐪max)     𝟎 , 𝟎 , 𝟎 , 𝟎  

(10) 

with the Lagrangian multipliers   and   which correspond to the constraints of the POR and   and    which refer to the link flow constraints. Necessary conditions for a solution of Eq. (9) are 

provided by the KKT conditions:  

                          𝐆 𝐪 𝐪 −  𝐀 𝐡 −  𝐀 𝐡 − L ∗ + U ∗ = 𝟎  

                                     𝐍  + 𝐡 − L ∗ + U ∗ = 𝐡  
                              − 𝑨   𝐪 −   =  𝟎  

    ∗  = 𝟎;  ∗ ∗ − = 𝟎; ∗ 𝐪∗ − 𝐪  = 𝟎;  ∗  𝐪∗ −  𝐪 ax = 𝟎 

(11) 

Here, G 𝐪  is the 𝑛 × 𝑛  diagonal matrix whose diagonal elements are such that G 𝐪 𝐪 = 𝐡 is 

the vector of headlosses. ∗, ∗, ∗ and ∗ are the Lagrangian Multipliers of the active PORs and 

flow bounds at the solution point.  L, U, L, U are matrices representing the corresponding index 

sets for which the value is 1 for active bounds and 0 otherwise. The last four equations represent the 

complementary slackness condition.   

2.4 Existence and Uniqueness 

To prove the existence and uniqueness of a hydraulic steady state, the content formulation is 

advantageous. If all the content functions are strictly convex and norm-coercive (|𝐶 𝑥 |  ⟶ +∞  
if |𝑥 | → +∞ ) then the total system content is a strictly convex and norm-coercive function of  𝐪, . The strict convexity of the content can be proven by using the monotonicity of the particular 

mappings ↦ ℎ  of network elements. From the norm-coercivity it follows that the system content 

has a minimum. Therefore, in order to prove the existence of a solution it is sufficient to show that 

the polyhedron that is described by the constraints is nonempty.  𝑷 = {𝐱 ∈ 𝐑 𝑝+  | [𝐀   𝐈]𝐱 = 𝟎;   𝐱 𝐱  ; 𝐱 𝐱 𝑎𝑥}  ≠ ∅ (12) 

with 𝐱𝑻 = [ 𝑻 𝒄𝑻], 𝐱𝑻 = [𝐪𝑻  𝟎], 𝐱  𝒂𝒙𝑻 = [𝐪  𝒂𝒙𝑻  ]. If  𝐪 𝟎  the pipe flow rates and 

nodal outflows 𝐪 = 𝟎  and = 𝟎  are trivially feasible solutions for the set of constraints (Eq. 

(12)). It is proven that there always exists a solution to the problem. The more theoretical case 

where   , >  𝟎 for some   refers to flow constraints that would require pumping is not 

considered here. Together with the strict convexity of the system content, the existence of a unique 

solution is proved.  

2.5 Problems with Non-Uniqueness in Practical Applications 

As was shown above the content minimization problem always has a unique solution in terms of 

network flows. However, in practice problems with singular system matrices and resulting non-
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uniqueness still occur. How is this consistent with the statement of uniqueness? The answer is that 

in practice it is often difficult to guarantee that the Linear Independency Constraint Qualification 

(LICQ) is always fulfilled during the iterative solution process. If the set of active flow constraints 

is changed it must be checked that the linear system that includes the continuity equation and all 

active flow and outflow constraints has no linearly dependent rows (has full row rank). Moreover, 

in practical applications it is sometimes difficult to decide which of the redundant constraints should 

be activated. Non-uniqueness of heads (the Lagrange multipliers) is always a consequence of 

linearly dependent equations of active flow constraints and continuity equations. Such situations 

can be avoided by careful pre-analysis that detects infeasible configurations or a check when 

constraints are activated. The problem of non-uniqueness of nodal pressures is discussed also in [8]. 

3 EXAMPLE 

In this section the following question is addressed: under what conditions does the PDM model still 

give feasible solutions by reduction of the outflow at the demand nodes? A simple example is given 

in Fig. 1 where a supply area, represented by the single node   (elevation 100 m) where the 

demand is d, is connected to two reservoirs (R1 and R2, both at elevation 200 m) by two identical 

pipes (L= 1000 m, D = 200 mm CHW=100). In the case of sufficient pressures and without flow 

control, the demand  =   +  . The flows   and   depend on the pipe characteristics and the 

water levels in the reservoirs. Now, consider the case where the flow out of the reservoirs is 

restricted, e.g. because of a water shortage, by FCVs in pipe 1, 2. Then, the demand cannot be 

satisfied anymore if  >  + . In DDM this results in infeasible solutions whereas in PDM the 

actual delivery is reduced to less than d by the nonlinear consumption function. The following cases 

are distinguished: 

 unique solution exists and is calculated by DDM and PDM 

 unique solution exists in PDM but not in DDM 

 solution exists but is unique neither in DDM nor PDM 

 

Figure 1. Example system with FCVs in Pipes 1 and 2 

Following Eq. (11) the full KKT conditions are:  𝐺 ,   + ℎ −  ℎ ,  −  𝐿,   +  ,   =   𝐺 ,   + ℎ −  ℎ ,  −  𝐿,  +  ,   =   𝑁  +  ℎ  −  𝐿  +   =  +  = c;   𝐿c = ;  c − d = ;  𝐿, − , = ;  ,  ( − , 𝑎𝑥) = ;   𝐿, − , = ;  ,  ( − , 𝑎𝑥) =  

Table 1 shows the results for three different demand values (0, 200, 500 in m3/h). The settings of 

the FCVs are the same for all three cases:  , 𝑎𝑥 =  m
3
/h and  , 𝑎𝑥 = 5  m

3
/h. The units 

for the heads and the Lagrange multipliers are meters [m]. In the first case (d=200) both FCVs are 

inactive and the full demand is supplied. This situation causes no problems even in DDM analysis. 

In the second case, the sum of allowable flows is less than the desired demand. Both control devices 

are active with positive multipliers for the upper flow bounds (  and ). Epanet fails to calculate a 

R1 

d 

 𝑞   𝑞  

R2 

S 
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realistic solution (head at node S: -7,474,824.00 m, q1 = 225.0 m
3
/h, q2 = 275 m

3
/h). The third case 

happens, when for example both pipes are closed. Then the demand is reduced to zero but as shown 

in Figures 1 and 2 the head at the node can theoretically be any value below the minimum pressure. 

To get a unique solution it is important that the POR constraint is not active even when c = 0. 

Otherwise, the flow constraints are linearly dependent which contradicts the LICQ of the Kuhn-

Tucker conditions. In spite of this Epanet finds a solution for the third case.  

Table 1. Results for three demand values (d= 200 m
3
/h, d=450 m

3
/h, d=0 m

3
/h) 

d G1,1 G2,2 N q1 q2 c h      

200 0.07 0.07 0.15 100 100 200 193 0 63 0 0 0 0 

500 0.127 0.153 0.06 200 250 450 127 0 0 0 0 47.65 34.68 

0 1e10 1e10 1e10 0 0 0 100 0 0 0 0 100 100 

4 CONCLUSIONS 

It has been shown that the consideration of pressure dependent outflows is not only useful for more 

realistic modelling of pressure deficient conditions and pressure dependent leakage: it also enlarges 

the range of solvable problems by its ability to reduce the outflow in cases of disconnected subnets. 

The same technique is used for both POR functions and flow control devices. As an important 

result, it has been shown that there always exists a unique solution in terms of networks flows. 

Violation of the LICQ by the set of active flow and outflow constraints in combination with the 

homogeneous continuity equation results in non-uniqueness of the Lagrangian multipliers and 

therefore also in non-uniqueness of nodal heads. 
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