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ABSTRACT 
The design of water resource management and control systems have provided a promising space
for evolutionary algorithms. In many cases a system for managing a water resource requires a
large  degree  of  planning  and  design  before  implementation  and  many  stake  holders  perceive
different  objectives  with  different  importance.  Multiobjective  evolutionary  algorithms inherently
provide a tool that can best satisfy the desires of many stakeholders (many objectives) through
computation of a non-dominated solution set.  However, the performance of an optimal solution
provided  by  a  multiobjective  evolutionary  algorithm  is  likely  to  deteriorate  during  real-world
implementation  if  design  conditions  of  the  optimization  framework  are  not  identical  to  those
imposed  on  the  system  in  practice.  This  paper  focuses  on  evaluating  a  scenario  based
multiobjective evolutionary algorithm for real-world design problems in which the environment
where a system will operate is dynamic, and uncertain. A previously developed genetic algorithm
termed the “RNSGA-II” used for water distribution system design is augmented to incorporate
robust  objectives  and  simple  Monte  Carlo  sampling  to  solve  the  classic  water  quality  sensor
placement  problem.  This  study  aims  to  further  develop  an  understanding  of  scenario  based
optimization methods for optimizing solutions to perform well in the face of uncertainty.
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1 BACKGROUND 
When designing a system for real-world implementation, a common difficulty arises in attempting
to characterize the unknown conditions a system may operate within. In many cases, the conditions
that a system will operate under cannot be explicitly known during a system’s design phase. This
issue is especially characteristic to water resource optimization problems. Typically, it is impossible
to truly know the future state of water resource systems, such as future reservoir  levels,  future
rainfall and  stream flow  levels,  or  future  demand  levels.  To  cope  with  the  incomplete  future
knowledge inherent to the design of a water resource system, scenario planning techniques have
been applied to evolutionary optimization schemes used in various water resource problems. [1]–[4]

Monte Carlo (MC), Latin Hypercube (LH), and other sampling techniques have been previously
employed to generate large ensembles of possible scenarios that may be realized, and optimization
typically attempts to minimize or maximize some objective measure across all sampled scenarios.
However, it is often infeasible to generate all possible realizations of an operational scenario, and
the computational demand to evaluate an ensemble of scenarios limits the size of an ensemble suite
that  can  be  used  for  optimization.  In  an  attempt  to  optimize  better  solutions  for  uncertain
operational scenarios, this work explores a dynamic scenario selection scheme, previously used to
reduce overfitting in genetic programming [5] and employed for water distribution system (WDS)
design [3]. For evaluating potential solution designs the evaluation scenario suite is dynamically re-
sampled during each generation of a multiobjective genetic algorithm. Dynamically re-sampling the
scenarios present in the evaluation suite is expected to increase computational efficiency by using
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smaller evaluation suites for evaluation, leading to robust solutions whose non-dominance is robust
with respect to the objective measures, and other solutions along the Pareto front. 

2 LITERATURE REVIEW

To cope with real-world design problems, scenario based optimization methods have been studied
to incorporate real-world uncertainty in to optimization problems. Stochastic optimization methods
[6] [7] have considered scenario based optimization as a method for robust optimization. However,
less work has considered explicit scenario based optimization in an evolutionary algorithm (EA)
framework. Deb et al.  [8] applied a EA to a three-bar truss and cantilever beam design problem
evaluated  in  multiple  operational  scenarios.  To  optimize  a  single  system's  design  for  multiple
distinct operational scenarios the authors aggregated objective function values computed for each
operational scenario.  

 In  most  real-world  design  problems,  it  is  infeasible  to  enumerate  all  possible  operational
environments.  Thus,  system  are  designed  to  operate  against  a  sample  of  scenarios  which
appropriately approximates the characteristics of all possible operational environments. As such, an
optimization algorithm will strive to develop solutions that will perform well against "unknown"
operational  environments  based on a  fraction of feasable operational  environments.  Within this
framework  the  optimization  problem  is  similar  those  found  in  Genetic  Programming  (GP).
Stochastically  re-sampling  the  evaluation  suite  has  previously  been employed  in GP studies  to
reduce solution bloat, and simultaneously improve the solutions ability to perform well in unknown
scenarios [5] [9].

Over the last two decades, EAs have been extensively applied to a wide variety of water resource
problems  [10],  [11].  Evolution  algorithms  have  been  advantageous  in  the  water  resource  field
because they do not require function landscape information, easily handle objective function non-
linarites,  and  can  simultaneously  optimize  along  multiple  competing  objectives  (multiobjective
evolutionary algorithms (MOEAs)). Evolutionary algorithms have been employed to solve: WDS
design  and  rehabilitation  problems  [2],  [3],  [12]–[15];  groundwater  monitoring  system  and
treatment  design  [16]–[18],  water quality  sensor placement  [1],  and more recently evolutionary
algorithms were employed to solve large scale rainfall runoff model calibration [19], and watershed
portfolio allocation [20].

A GA previously developed in [3], termed the RNSGA-II, inspired the exploration of the authors
proposed “R” operator in the NSGA-II. The RNSGA-II was employed to evaluate robustness in
WDS solution designs by sampling (via Latin Hypercube sampling [21]) a small number of scenario
realizations (20) that the WDS may operate within. The percentage to scenarios where the WDS did
not provide adequate service was used to calculate the robustness of each solution. Throughout the
RNSGA-II  run,  the  solution  performance  was  averaged  across  the  previous  10-30  RSNGA-II
generations to describe the performance against a larger number of evaluations scenarios, without
the  intensive  computation  demand required  to  evaluate  a  large  number  of  scenario realizations
during each solutions evaluation. Further description and discussion of the RNSGA-II can be found
in [3].

The  methods  used  within  the  RNSGA-II  were  augmented  to  operate  in  a  robust  optimization
framework using min-max objectives. The goal of min-max optimization is to find a solution which
leads  to  the  best  worst  case  performance  (optimizing  solution  to  perform  best  in  the  worst
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operational case). This formulation is appealing in that it incorporates uncertainty in the operational
scenarios by “insuring” that some optimal solution will provide some performance guarantee, even
in the worst case. However, the min-max formulation has issues that need to be addressed. 

In  cases  where  system  uncertainty  is  incorporated  in  to  optimization  by  sampling  potential
operational scenarios, the quality of a solution is dependent on the condition that the worst-case
scenario has been sampled for evaluation, otherwise a performance guarantee is not valid. In many
cases, even if many thousands of scenarios are sampled it is unlikely that the single worst case
scenario is sampled due to large scenario sampling spaces. Sampling and evaluating a large number
of scenarios leads to a dramatically increased computational demand in the optimization algorithm.
Aslo, min-max solutions are highly susceptible to “overfitting” the solution to the single worst case
scenario  that  evaluation  presents.  In  the  case  that  all  possible  operational  scenarios  have  been
evaluated “overfitting” does not exist, however, in all practical cases a small sample of scenarios is
sampled due to a limited computational budget. In optimizing a solution to perform well in the
“expected case” (min-mean optimization) a small number of scenarios is often sufficient to describe
the expected performance level of a solution, however, it is unlikely that this condition will hold for
min-max optimization.

The previously developed RNSGA-II has been modified to exploit its computational savings and
search efficiency for min-max optimization objectives, by removing inter-generational performance
averaging. 

3 METHODS

The GA employed in this work is described in the pseudo code below. In short, prior initialization
of the GA an initial scenario evaluation suite is generated termed EvalSuiteInitial via Monte Carlo
sampling from all possible evaluation scenarios. During each generation of the GA, a new, smaller
evaluation suite (termed EvalSuite) is sampled from EvalSuiteInitial prior evaluation of the current
population. 

For investigation of generational sampling within the GA, a large number of optimization runs were
performed using various sizes of EvalSuiteInitial, and EvalSuite, outlined in the table below. Each
entry in the table represents the size of EvalSuite used within the GA. All GA runs were limited to
50,000,000 function evaluations.
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Table 1. Evaluation suite sizing for Monte Carlo sampling within the GA.

Size of EvalSuiteInitial 100 250 500 750 1000
(EvalSuite / EvalSuiteInitial) =0.25 25 62 125 187 250
(EvalSuite / EvalSuiteInitial) =0.5 50 125 250 375 500
(EvalSuite / EvalSuiteInitial) =0.75 75 187 375 562 750
(EvalSuite / EvalSuiteInitial) =0.9 90 225 450 675 900
(EvalSuite / EvalSuiteInitial) =1 100 250 500 750 1000

4 CASE STUDY

The sensor placement problem for contamination event detection previously presented in [1] is used
for evaluation in this study. This problem has been extensively explored within the literature; the
task to place a set of water quality monitoring stations (sensors) at junctions throughout a WDS to
provide the best (fastest, most reliable, etc.) detection of contamination. Limited by cost, sensor
networks  typically  only  provide  sparse data  and the  performance  of  a  set  of  sensors  is  highly
sensitive to the location of each sensor. As an increasing number of sensors are placed within a
distribution system, the network provides better event detection performance, however, at increased
cost.

In this work, a modified RNSGA-II incorporating simple Monte Carlo random sampling and min-
max optimization objectives is employed to determine the best locations within a WDS to place a
set of water quality monitoring stations (sensors). Instead of defining a number of sensor a priori,
the  number  of  sensors  is  defined as  an  objective  of  the  GA.  The multiobjective  nature  of  the
employed RNSGA-II accordingly seeks to minimize the number of sensors placed in the network,
while maximizing the performance of a sensor network. Messy genetic algorithm cut and splice
operators [22] are used to “cross” variable length strings, which define the sensor networks.

To evaluate the performance of the sensor networks, the population affected metric is used [1], and
each solution  is  exposed to  a  suite  of  contamination  events.  For  each contamination  event  the
population  affected  prior  contamination  detection  is  computed  and  reported.  The  minimum
maximum population affected across all contamination events within the evaluation suite is reported
as a respective solution’s performance. For further discussion of the population affected metric and
its computation the reader is directed to [1]. 

5  RESULTS

The plots below present the results of the optimization scenarios conducted according to Table 1,
for clarity, only selected solutions are presented here. Full Pareto fronts are presented in Figure 1,
while the aggregated Pareto front from all optimization scenarios is presented in Figure 2.
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Figure 1: Performance of “optimal” sensor networks found using the dynamic evaluation suite
mechanism. Color and shape of the points correspond to the respective GA optimization

scenario.

Figure 2: Aggregated Pareto fronts of “optimal” sensor networks found using the dynamic
evaluation suite mechanism. Color and shape of the points correspond to the respective GA

optimization scenario.
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Observing the Pareto fronts presented in Figures 1 and 2 demonstrates the advantages gained by
using a dynamic generational evaluation framework. For a case which demands extremely stringent
performance, ie. a threshold allowable population affected of less than 100 people the best solutions
are generally those generated by using a static evaluation suite (all green points are those generated
using a static evaluation suite). However, these solutions provide dramatically low robustness; at
best  allowing 40% of all  contamination events to affect populations greater than the prescribed
affected population threshold (Figure 2c). Of the solutions that show more practical robustness, as
seen  in  the  plots  of  threshold  allowable  populations  of  100  people  or  more,  almost  all  were
generated using dynamic evaluation suites (Figure 2d-i). 

For comparison to a previous study, one of the highest performing solutions from the original Battle
of the Water Sensor Networks  [1],  [23] challenge was evaluated in the same framework as the
solutions  generated  using  the  augmented  RNSGA-II  from  this  study,  Figure  3.  The  previous
solution (black points) shows to be out-performed by the solutions generated using an augmented
RNSGA-II. 

Figure 3: Aggregated Pareto fronts of “optimal” sensor networks found using the dynamic
evaluation suite mechanism. Color and shape of the points correspond to the respective GA

optimization scenarios.

6 CONCLUSIONS

This  paper  investigates  a genetic  algorithm operator  previously proposed and studied for water
distribution system design. With the intent of better understanding how to optimize difficult water
resource problems under  uncertain conditions,  this  study briefly  explores  the use of a dynamic
scenario evaluation suite re-sampled using Monte Carlo sampling during each generation of the
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genetic  algorithm.  Opposed  to  sampling  a  large  number  of  evaluation  scenarios  (in  this  case
contamination  events)  and  evaluating  each  solution  against  each  scenario  during  each  genetic
algorithm generation,  resampling  the  evaluation  suite  during  each genetic  algorithm generation
allows for small evaluation suites. This can increase the efficiency of a genetic algorithm and allow
for  longer  optimization  runs,  which would likely  lead to  higher  performing solutions  for equal
computational  burden.  In  comparison  to  a  historically  high  performing  solution  for  the  sensor
placement  problem on  the  case  study network,  the  solutions  developed  herein  show increased
robustness with respect to the population affected by an unknown contamination event. This shows
the importance in considering robust performance in wireless sensor networks for contamination
event  detection,  something  that  was  not  considered  in  the  design  of  the  historical  comparison
solution.
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