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ABSTRACT  
 

Leakage from water distribution pipes represent a huge issue worldwide with economic. Leaks are 

normally found by placing sensors either side of the leak recording the leaks acoustic emission as it 

discharges the leak hole. As the leak noise is intrinsic to the leak, it contains information which 

could provide information about the leak, including the leak flow rate. Any tool which can 

accurately determine the leak’s flow rate could be used by water industry practitioners in order to 

prioritise leakage repair activities by repairing the higher leak flow rates first. This will result in 

economic savings through reduced water lost and better allocation of company resources. This 

paper demonstrates a small element of research undertaken at the University of Sheffield in 

collaboration with several UK water companies. The aim of the research is to develop a tool in 

order to predict leak flow rate using acoustic emission sensors. The research uses Least Squares-

Support Vector Machines in order to predict leak flow rate in MDPE pipe using high quality data 

from a unique experimental pipe rig. The results demonstrate that there is sufficient information 

within the leak’s acoustic emission signal in order to predict leak flow rate. Therefore the research 

represented in this paper presents a tool which can be used by water industry practioners to 

prioritise leak repair.  

 

Keywords: Leakage, Pipeline, Acoustic Emission. 

1 BACKGROUND 

Leakage from Water Distribution Systems (WDS) represent a huge problem worldwide due to the 

economic and environmental effects [1]. Leakage levels in developing countries can be as high as 

50% [2], whereas in newer, well maintained WDS leakage levels can be as low as 5%.  

A number of methods exist in order to reduce leakage levels. One of the most common methods is 

that of leak noise correlation. As water discharges the leak hole it produces an acoustic emission. 

Accelerometers or Hydrophones can then be placed either side of the leak at some distance away 

and the signal analysed in order to find the location of the leak (Figure 1). The leak is found using 

the following equation: 
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(1) 

 

where  is the distance between the two accelerometers or hydrophones and  is the wavespeed of 
the leak signal.   is the lag in arrival time between the two acoustic emission sensors, 
calculated from the peak in the cross correlation function:   
 

 (2) 

 

where  is the expectation operator. Leak noise correlation has been shown to be highly 

successful on metallic pipes but has been relatively unsuccessful on plastic pipe due to the rapid 

attenuation of the leak signal [2]. Moreover, it has also been shown by a number of authors that a 

number of variables influence the leak signal, including pipe material [3], [4], backfill [5], [6], leak 

shape [4] and leak flow rate [7].  

 

 

 

 

 

 

 

 

 

 

Figure 1: Identifying the presence of a leak. Figure reproduced from [5] 

UK water companies are under increased pressure from customers and the water economic 

regulator (Ofwat) and customers to reduce leakage levels. Ofwat incentives water companies to 

reduce leakage with economic incentives and also to achieve their Sustainable Economic Level of 

Leakage (SELL). The SELL mechanism provides a trade-off between the cost of fixing a leak (pipe 

repair, road excavation etc.) with the cost of the water lost. Therefore, in some cases it is cheaper 

not to repair a leak. As the cost of leakage is directly linked to a leak flow rate, water companies can 

achieve their SELL through knowledge of their leak flow rate. However, no tool exists to accurately 

predict leak flow rate in WDS despite the benefits of doing so. 

The prediction of leak flow rate in WDS will provide authors with valuable tool in order to 

prioritise leak repair. A few attempts have been tried in the gas industry but there is no technology 

actively used in the water industry despite the obvious benefits. Butterfield et al. [7] compared a 

variety of data driven methods in order to predict leak flow rate. They found that the signal Root 

Mean Square (RMS) had a strong correlation with leak flow rate. Signal RMS was also shown to be 

useful predictor of leak flow rate through leaky gas valves by Kaewwaewnoi et al. [8] and Chen et 

al. [9]. The RMS is of signal with samples,  is given by: 
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(3) 

Such data driven methods rely on the comparison of new data to existing data and therefore in order 

to make accurate predictions a large data set is required [10]. The advantage of such data driven 

methods is that they are intrinsic to the leak and therefore represent information about the leaks 

flow rate, leak shape, surrounding backfill etc. However, as such a large training set is required, it 

would be difficult to gain a training set big enough to demonstrate the wide ranging conditions 

found in WDS.  

Of greater value would be a method that can collect data and learn from the data set that will adapt 

to the wide ranging conditions found in a real WDS. A method from machine learning may provide 

useful tool in this regard. Sun et al. [11] presented a study whereby a number of ‘features’ were 

extracted from a leak’s acoustic signal from leaky gas pipes in order to classify the aperture of 

round hole leaks. These features were used as inputs in to a Support Vector Machine model. They 

found time-frequency features to be useful for leak aperture recognition. However, the study by Sun 

et al. [11] only classified round holes which only represent a small proportion of the leak shapes 

found on real WDS and moreover took place on gas pipes. 

Least Squares-Support Vector Machines (LS-SVM) models have been shown to be successful in 

predictive problems in a wide variety of disciplines, including fault detection in non-linear systems 

[12], cracks in images [13] to financial time series prediction [14]. LS-SVM was original developed 

by Suykens et al [15] and it is advised that the reader refers to Suykens et al. [15] for the associated 

detail on the algorithm. The overall aim of this paper is to therefore establish whether enough 

information exists within the leak acoustic signal in order to predict leak flow rate.   

2 METHODOLOGY 

2.1 Experimental methods 

The research conducted herein utilised a novel Leaks in ViscoElastics (LIVE) pipe rig at the 

University of Sheffield, UK, which was specifically designed for the purpose of this study. A 

schematic of the pipe rig can be found in Figure 2. The pipe rig consists of a 26 m long, 63 mm 

outer diameter Medium Density Polyethylene pipe loop. Water is pumped from an upstream 

reservoir (0.95 m3 volume) by a 3.5 kW (Wilo, Burton upon Trent, UK) variable speed pump set at 

15 rpm. System pressure is measured by two pressure sensors (Gems Plainville 2200) downstream 

and upstream of the leak. A removable 5.5 m ‘test section’ is situated in the middle of the pipe rig. 

This removable section allows for the alteration of leak shapes and sizes. 3 leak shapes consisting of 

a number of sizes were drilled in to these test sections (further details about the leak shapes and 

sizes are provided in Table 1). A separate test section was used for each test. System pressure was 

varied in order to alter leak flow rate by adjusting the downstream gate valve.  The removable test 

section passes through a rectangular box measuring 0.5 x 0.5 x 0.5 m whereby the backfill type can 

be alternated. 3 different backfill types were measured for all leak shapes, including 5-12 mm 

diameter pea gravel, geotextile fabric and submerging the pipe in water. The backfill types represent 

idealised versions of backfills found on real distribution networks.  
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Table 1. Leak shapes measured. All shapes were recorded at 5 different leak flow rates under 3 

different backfill types. 

Leak Shape Width Length Diameter Depths Area 

Horizontal Slit 2 mm 5 mm   10 mm2 

 2 mm 8 mm   16 mm2 
 2 mm 12 mm   24 mm2 
 2 mm 16.5 mm   33 mm2 
Round Hole   3.5 mm  9.6 mm2 
   4.5 mm  15.9 mm2 
   5.5 mm  23.8 mm2 
   6.5 mm  33.2 mm2 
Electrofusion Joint 4 mm   4 mm 16 mm2 
 8 mm   4 mm 32 mm2 

The leak noise was measured using 2 hydrophones Bruel and Kjaer type 8103, 50 x 9.5 mm), 

located approximately 2.25 m from the leak. The hydrophones were set at a sample rate of 2500 Hz. 

Hydrophones were connected to a current source unit (Dyrtran Instruments type 4102C) and then 

connected to a CCLD conditioning amplifier via a 6m integral cable. 20 samples were taken at each 

leak flow rate for each leak shape and backfill type.  

 

 

 

 

 

Figure 2: Schematic of the LIVE pipe at the University of Sheffield, UK. Reproduced from 

Butterfield et al. [5] 

2.2 Signal processing methods 

Signals gathered from the hydrophones were imported in to Matlab and initially bandpass filtered 

using a 4th Order Butterworth bandpass filter, at set points <10 Hz and >1000 Hz. Vital to the 

success of the model is the accurate derivation of a number of signal features. 24 features 

representing time domain, frequency domain and time-frequency domain were extracted from the 

leak’s acoustic emission signal and used and imported in to the LS-SVM model. A list of the 

features can be found in Table 2. Redundant features were removed from the model by identifying 

the features most relevant to the model using the greedy forward search algorithm. 
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Table 2. List of features used as inputs in to the LS-SVM mode.  

Feature No. Name Feature No. Name 

1-6 RMS of IMFs1-6 18 Standard deviation 

7-12 Shannon Entropy of IMFs 1-6 19 Signal power 

13 Shannon Entropy of whole signal 20 Fundamental frequency 

14 RMS of whole signal 21 Spectral flux 

15 Mean dB of PSD 22 Kurtosis 

16 Maximum dB of PSD 23 Skewness 

17 Minimum dB of PSD 24 Crest factor 

 

3 RESULTS 

3.1 Performance of the leak flow rate prediction model 

The model output of the LS-SVM model presented in Figure 3 includes round holes, longitudinal 

slits and electrofusion joints, all buried in either gravel, geotextile fabric or submerged in water. The 

individual shapes are colour coded in the model in order to establish if there is an effect on leak 

shape.  The colour coding in Figure 3 demonstrates there is little trend between accuracy and leak 

shape. However, a visual inspection it appears that electrofusion joints tend to predict more 

accurately compared to the other leak shapes, whilst longitudinal slits and round holes tend to have 

a slightly larger spread of data. The associated Root Mean Square Error of this model output is 3.19 

l/min. 
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Figure 3: LS-SVM output using hydrophone data for leak flow rate prediction. Individual colours 

denote the predictive results for each leak shape.  

Figure 4 demonstrates the accuracy in prediction (±10%). Both figures clearly show that it is 

possible to predict leak flow rate, despite shape and backfill type to >78%. Of the flow rates 

studied, Figure 4 suggests that the model performed better at lower leak flow rates and worst at the 

highest leak flow rates.  

 

Figure 4: Accuracy in the prediction of leak flow rate found from the LS-SVM model (± 10%). 

 

3.2 Sensitivity of the model to leak shape and backfill 
The influence of leak shape on the prediction accuracy was evaluated by training on the model on 

one leak shape and tested on the other leak shapes. In this case, only the features relating to the 

individual leak shape is used as an input to the model. The results presented in Figure 5 demonstrate 

the model being trained on one leak shape and tested on another. The results clearly demonstrate 

that the best results will always come from knowing the leak shape prior to predicting leak flow 

rate, which is shown in all the figures. The maximum prediction accuracy came from training on 

electrofusion joints and testing on electrofusion joints at the lowest leak flow rate achieving 96% 

accuracy (Figure 5c). On average, electrofusion joints had the greatest prediction accuracy when 

comparing all results, however this only came from training and testing on electrofusion joints 

(92% on average).  

 

By training on one shape and testing on an alternative, this appeared to impact the model negatively, 

reducing prediction accuracy, always dropping to <50%. This is true for all cases, apart from 

training on round holes and testing on longitudinal slits which was able to achieve 56% prediction 

accuracy (Figure 5b). The worst results came from training on longitudinal slits and testing on 

electrofusion joints, which achieved and average of 32.8% prediction accuracy across all leak flow 
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rates.  This appears to demonstrate that the leak shape has a significant impact on the leak signal, 

and this influence was enough in order to have a negative influence on the prediction accuracy. 

  

 

Figure 5: Sensitivity of model to changes in backfill type: (a) trained on round holes and tested on 

alternate leak shapes; (b) trained on longitudinal slits and tested on alternate leak shapes; and (a) 

trained on electrofusion joints and tested on alternate leak shapes. 

 

The sensitivity of the model to backfill type was assessed by training on one backfill type and 

testing on an alternative, in a similar fashion to the above. The results for these are shown in Figure 

6. The best results would always be achieved by training and testing on the same backfill type. This 

was shown especially in the case of gravel and submerged backfill, which when trained and tested 

on gravel was able to achieve an average of >90% prediction accuracy across all leak flow rates. In 

the case of the submerged, accuracy was slightly less 85.2% across all leak flow rates when training 

and testing on the submerged data. Training on one backfill type and testing on an alternative 

backfill type resulted in a reduction in prediction accuracy. The most negatively impacted seemed 

to be from training on submerged and then testing on geotextile fabric backfill.  
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Figure 6: Sensitivity of model to changes in backfill type: (a) trained on gravel and tested on alternate 
backfill; (b) trained on geotextile and tested on alternate backfill; and (a) trained on submerged and tested 

on alternate backfill. 

 

4 CONCLUSIONS 

The research presented in this paper presents a method of predicting leak flow rate using solely the 

leaks acoustic emission signal. It was found that the leak flow rate can be predicted to an accuracy 

of >78% independent of leak shape and backfill type. It was also found that the model was highly 

sensitive to changes in leak shape and backfill type. The results presented in this paper are of 

interest to water industry practitioners as the model provides them with a tool to prioritise leak 

repair based on the leak flow rate. 
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