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ABSTRACT 

PCA in this study builds upon a correlation matrix of 11 hydraulic parameters including pipe hydraulic 

data and pipe-level energy metrics by using Eigen values and Eigen vectors to compress the high-

dimensional space of the data into a two-dimensional space. This makes the visualization of the data 

possible, including all hydraulic parameters simultaneously. The graphical presentation of the hydraulic 

parameters (mono-plots) and the data set (bi-plots) help which parameters can lead into inefficiency in 

pipes in the whole dataset.  

The results show that the metric energy lost to friction in a pipe along with average unit headloss, average 

flow rate and proximity to major components have a high influence in distinguishing poorly performing 

pipes from the others. Average pressure and the metric for energy needed by the user for each pipe tend 

to track closely, despite a lower statistical importance than previous parameters. Diameter and pipe 

roughness tend to stand alone with poor representations on the two principal component axes.  

Keywords: Energy Efficiency; Principal Components Analysis; Water Distribution Systems. 

1 INTRODUCTION 

Aging water infrastructures face water main breaks, major leaks and considerable headlosses regularly 

[1, 2]. Therefore, in order to stay functioning and cost effective, these infrastructures require continual 

monitoring and scheduled rehabilitation [3, 4]. Aging water mains from late 1800’s in North American 

cities importune municipalities, while cities are almost always under budget to keep up with maintaining 

these systems [5]. It seems that there is a pressing need to create new knowledge in this regard, a missing 

link between pipe rehabilitation and energy dynamics of water mains. This new insight would be a new 

approach to better understanding pressure conduits and their energy behavioral character [6, 7, and 8].     

Previous research has suggested the use of energy indicators to improve knowledge about the energy 

performance of pressure pipes in water distribution networks [6, 8, and 9]. These studies for the most 

part focus on energy dynamics of these systems at a network level. Even though a network approach is 

informative for decision makers to understand how their systems compare to ideal or desirable 

performance, there is also a need to understand individual pipe energy performance. Pipe-level energy 

indicators developed by Hashemi et al. [10]  have corroborated previous research findings by Dziedzic 
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and Karney [8] that larger water mains closer to treatment plants tend to waste more energy. However, 

the results of the study by Hahsemi et al. [10] create new knowledge concerning the spatial and diurnal 

variation of energy efficiency in distribution systems.  

In another study, Hashemi et al., [11] however, have performed correlation and regression analyses to 

relate their newly suggested pipe-level energy indicators to decision parameters in available to municipal 

managers. This study can be perceived as a step towards creating a knowledge applicable to other WDSs 

for the purpose of energy-based pipe rehabilitation. However, further assessment of the results shows 

that correlation analysis may not provide information on which hydraulic factors or energy metrics can 

better describe the variance or have a higher influence on the whole pipe data set on a broader sense [12, 

13]. This is because correlation does not possess the capacity of considering a number of hydraulic 

parameters simultaneously.  

The present study extends the previous work by applying principal components analysis (PCA) to 

visualize the relative importance of a number of hydraulic parameters in energy efficiency a large 

ensemble of pipes. This data sets comprises over 20,000 pipes water mains, selected from 17 systems in 

Ontario, Ohio and Kentucky [14]. The advantages of graphical presentation of the correlation matrix 

include: 1) an understanding of which hydraulic parameters and energy metrics are clustered together, 2) 

identification of similarities in describing the variance of the data, 3) a demonstration of which pipe 

parameters/energy metrics seem to behave differently from the other parameters, and 4) an estimate of 

the importance of each of the hydraulic parameters and energy metrics in describing the variance within 

a large ensemble of pipes. 

2 Methods 

2.1 Pipe-level energy metrics 

Energy metrics that are going to be considered in the statistical analysis along with the hydraulic factors 

are listed and summarized and defined in Table 1. Other hydraulic factors are average daily pressure, 

average flow rate, average elevation of pipes, unit headloss, hydraulic proximity, pipe roughness and 

diameter. Hydraulic proximity to major components is also defined in Table 1, however, more details 

about this newly developed indicator and energy metrics can be found in another study by Hashemi et 

al. [10]. 

Table 1. Pipe- level energy metrics by Hashemi et al. [10] 

Energy Metric Definition 

Gross Energy Efficiency (GEE) 
d e livered

su p p lied

1 0 0 %
E

G E E
E

  

Net Energy Efficiency (NEE) 
d e liv e re d

su p p lie d d s

1 0 0 %
E

N E E
E E

 


 

Energy Needed by User (ENU) 
d elivered

n eed

1 0 0 %E N U
E

E
  

Energy Lost to Friction 
fric tio n

su p p lied d s

1 0 0 %E L T F
E

E E



 

Hydraulic Proximity* 4

s
Q . H (m /s)  

*Hydraulic proximity is not an energy metric like other items in this table. 
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2.2 Principal Components Analysis (PCA) 

PCA is capable of visualizing the whole data set by compressing the transcription of the high dimension 

data set into lower dimensions, based on correlation matrix. This method finds new directions/dimensions 

on which the data set shows the highest variance/scatteredness [15]. These new directions are rotations 

of the previous data set with regard to previous directions/dimensions [16], which are hydraulic 

parameters and energy metrics, in this study. Therefore, each of the observations on the previous system 

of coordinates can be assigned a new score on the new system of coordinates, also known as Principal 

Components (PCs). Each of the new directions or PCs have a contribution in describing the variance of 

the data. The first few PCs describe most of the variance in the data set so that the rest of the PCs or 

dimensions are negligible. More important PCs or Eigen vectors correspond to larger Eigen values of the 

correlation matrix of the ranks of variables of interest [11]. In fact, by finding the Eigen values for 

correlation matrix of the variables of interest, directions on which correlations of variables are zero will 

be achieved, thus showing the most variance/scatteredness. This can distinguish pipes or groups of pipes 

from each other will be the point of interest in this study. 

2.3 PCA Mono-plots and Bi-plots 

Each of the components of the PCs are called a “loading”, implying the score of each variable of interest 

on the PCs. If the loading of a variable is high on a PC, it means that specific variable is well represented 

by that PC. Initial variables of interest with high scores on the first two PCs seem to be more influential 

in the data set. Plotting the first two PCs on a two dimensional plot, also known as a “mono-plot”, can 

represent the initial variables of interest and their influence on the new coordinate system (PCs). 

Variables that track closely together imply similarity in their effect on the data set, while those staying 

away from others display different influences. Moreover, the original observations in the data set can be 

presented in a “bi-plot” by transforming their original values into the new PC coordinates. 

3 Application of Multivariate Statistical Analyses in Large WDSs 

For the purpose of attaining robust results in statistical analysis, pipe data must be adaptable to different 

situations. 17 WDSs, possessing varying characteristics, have thus been selected from different areas in 

North America, such as states of Kentucky, Ohio, and the province of Ontario. This large ensemble of 

pipes includes over 20,000 pipes. The characteristics of these WDSs are summarized in Table 1. In order 

to obtain basic hydraulic results for mentioned WDSs, EPANET2.0 network models were used [17].  
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Table 1. Summary of characteristics of 17 North American WDSs 

Network State/ 

Province 

No. 

of 

Pipes 

Pipes 

length 

(km) 

No. of 

junctions 

Difference 

in 

elevations 

(m) 

No. of 

pumps 

No. of 

Tanks 

Average  

daily  

demand 

(MLD) 

Average 

daily 

pressure 

(m) 

1 ON1
a 12189 627 11177 50 31 10 69.07 44.86 

2 ON2 405 56 349 46 6 3 3.54 46.71 

3 KY1
b 984 67 856 37 1 2 7.52 33.07 

4 KY2 1124 152 811 29 1 3 7.92 46.07 

5 KY3 366 91 271 43 5 3 15.19 41.76 

6 KY4 1156 260 959 75 2 4 5.65 48.02 

7 KY5 496 96 420 75 9 3 8.58 134 

8 KY6 644 123 543 96 2 3 6.19 60.2 

9 KY7 603 137 481 70 1 3 5.80 55.32 

10 KY8 1614 247 1325 135 4 5 9.32 54.15 

11 KY9  1270 972 1242 138 17 15 5.07 94 

12 KY10  1043 435 920 96 13 13 8.18 68 

13 KY11  846 464 802 248 21 28 6.61 97.11 

14 KY12 2426 655 2347 145 15 7 5.18 111 

15 KY13  940 155 778 95 4 5 8.92 50.78 

16 KY14  548 105 377 65 5 3 3.94 53.9 

17 OH1
c 1183 166 956 100 15 4 10.13 57 

a. ON= Ontario, b. KY= Kentucky, c. OH= Ohio 
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4 Results 

The results for Eigen values of the correlation matrix, in Figure 2 also known as scree plot, show that the 

first two Eigen vectors/PCs in this case have the most contribution in describing the variance in the data 

(almost 65%). The first and second PCs according to this scree plot describe 47.3% and 16.9% of the 

variance in the data set, respectively. Hence, the first two PCs are selected to in order to transform, 

compress and visualize the pipe data set in the form a new two-dimensional space. Hydraulic parameters 

and energy metrics each have scores/loadings on the new PCs or in other words in the new coordinate 

system, summarized in Table 2. Mono-plots presented discussed in the next section are a visual 

expression of what is included in Table 2. 

 

Figure 1. Scree plot- Contribution of Eigen Values/Principal components 

Table 2. First two (most influential) PCs in the 17 systems 

 PC1 PC2 

C   -0.04 0.12 

D   0.23 -0.06 

P   -0.06 0.59 

Q   0.41 0.05 

headloss   0.37 0.04 

Proximity 0.40 0.05 

Elevation 0.09 -0.45 

GEE -0.38 -0.06 

NEE -0.41 -0.07 

ENU -0.07 0.64 

ELTF 0.39 0.07 
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4.1 Hierarchical Importance of Hydraulic Parameters 

In the mono-plot presented in Figure 2, x-axis represents principal component 1 (PC1) which shows the 

most variation in the pipe data set (47.3%). However, y-axis represents PC2 describing the second most 

variation in the data (16.9%). This can also be a graphical presentation of Table 2.  

 

Figure 2. Mono-plot of energy metrics and hydraulic factors in 17 systems  

According to Figure 2, GEE and NEE track closely, meaning that higher values for one results in higher 

values for the other too and vice versa. Also, based on the PC1 values for these two parameters, they 

seem to be more influential in describing variance. On the other hand, ELTF, Ave Q, headloss and 

proximity cluster together. This not only means that they have similar effects on pipes but also, that high 

values of these parameters result in lower values of GEE and NEE. It is also noted that all parameters of 

GEE, NEE, ELTF , proximity, Ave Q and headloss are well represented with regard to PC1, as they show 

relatively higher values of PC1.  

Moreover, along PC2 axis, it seems that ENU and P have higher importance and cluster up. Therefore, it 

can be inferred that first, these two parameters are highly correlated to each other, and second they enjoy 

a higher importance compared to D and CHW. However, ENU and P would have a lower priority 

compared to those with higher values of PC1 (ELTF, GEE, NEE, heasdloss, etc.). This is mainly because 

PC2 inherently describe less variance (almost 16.9%) compared to PC1 (almost 47.3%).  

CHW and D do not seem to be close to any other parameters or each other, which means that they will not 

have an effect similar to any other parameters. Also, these parameters are not well represented on any 

other the two axes of PC1 and PC2, as a result of attaining low scores on these axes. Hence, they are not 

perceived influential on describing the variance of pipe data or decision making with regard to energy 

dynamics. The fact that elevation stands away from other parameters implies that it has a different effect 

on variance of the pipe dataset. Also from Figure 2, it can be inferred that higher elevations cause lower 

pressure, as the two parameters stand in the opposite directions of PC2. Elevation in this study represents 

the average elevation of upstream and downstream nodes for each pipe.   
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Figure 3 shows the bi-plot of the pipes from the 17 systems. This figure shows the score of each pipes 

with regard to PC1 and PC2. The poor and ideal pipes in terms of energy metrics are then highlighted in 

red and green respectively. An important point in this discussion would be gleaned from stacking Figures 

2 and 3 together, as they are based on the same axes/PCs (different scales). In fact, doing so would clarify 

what hydraulic parameters in Figure 2 would drive pipes towards green or red pipes in Figure 3. 

 

Figure 3. Bi-plot of pipes on PCs- Ideal versus poor pipes 

5 CONCLUSION  

This study attempted to showcase the hierarchical importance of hydraulic parameters in explaining the 

energy efficiency of pipes. The results aimed for graphical presentation of correlations and a step further 

to analyze and monitor a number of factors simultaneously. In contrary to correlation results, PCA not 

only visualized the correlation of pairs of parameters, but also outlined the importance of each factor 

among all from a decision maker’s perspective. PCA made this possible by compressing the transcription 

of the data with high dimensions. The results finally showed that hydraulic proximity, average flow and 

unit headloss can be more influential than average pressure, elevation roughness and diameter, in 

distinguishing the cohorts of poor pipes from efficient pipes. 
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